
CGM: A context-free grammar manipulator?

André Almeida José Alves
{bernarduh,c0507049}@alunos.dcc.fc.up.pt

Nelma Moreira Rogério Reis
{nam,rvr}@ncc.up.pt

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

Abstract. We present an interactive graphical environment for the ma-
nipulation of context-free languages. The graphical environment allows
the editing of a context-free grammar, the conversion to Chomsky normal
form, word parsing and the (interactive) construction of parse trees. It is
possible to store positive and negative datasets of words to be tested by a
given grammar. The main goal of this system is to provide a pedagogical
tool for studying grammar construction and parse trees.

1 Introduction

Context-free languages are fundamental computer science structures and efficient
software tools are available for their representation and manipulation. But for
experimenting, studying and teaching their formal and computational models it
is useful to have tools for manipulating them as first-class objects. Automata the-
ory and formal languages courses are mathematical in essence, and traditionally
are taught without computers. Well known advantages of the use of computers
in education are: interactive manipulation, concepts visualisation and feedback
to the students.

In this paper, we describe an interactive graphical environment, implemented
in Python [vR05], for manipulation of context-free languages. The use of Python,
a high-level object-oriented language with high-level data types and dynamic
typing, allows us to have a system which is modular, extensible, clear, easy
to implement, and portable. The Python interface to the Wxwidgets graphical
toolkit [SRZD] gives a good platform to build a graphical environment. This
work is part of the FAdo project which aims the development of interactive
environments for symbolic manipulation of formal languages [MR,MR05], that
includes already a toolkit for the manipulation of finite automata and regular
expressions [MR05], a Turing machine simulator and an LR parser generator,
Yappy [RM03].

The context-free grammar manipulator now presented allows the editing of
a context-free grammar, the conversion to Chomsky normal form, word parsing
? This work was partially funded by Fundação para a Ciência e Tecnologia (FCT) and

Program POSI.

and the (interactive) construction of parse trees. It is possible to store positive
and negative datasets of words to be tested by the grammar, respectively. Gram-
mar ambiguity will the detected if an inputed word has several parse trees, and
all those parse trees will be shown.

The paper is organized as follows. In the next section we review the basic
concepts of context-free languages and context-free grammars. In Section 3 we
describe the parsing algorithm that was implemented and discuss how it can
be used to allow the interactive construction of parse trees. Section 4 describes
the CGM interactive graphical environment. Section 5 concludes with a short
discussion of related work and some future work.

2 Context-free languages

We assume basic knowledge of formal languages and automata theory [HMU00].
An alphabet Σ is a nonempty set of symbols. A word over Σ is a finite sequence
of symbols of Σ. The empty word is denoted by ε. The set Σ? is the set of all
words over Σ. A language L is a subset of Σ?.

A context-free grammar (or just grammar, from now on) is a tuple G =
(V,Σ, P, S) where V is a non empty set of non-terminals, Σ is the alphabet or
set of terminals Σ ∩ V = ∅, S ∈ V is the start symbol and P ∈ V × (V

⋃
Σ)∗ a

set of rules. If (X,w) ∈ P we write X → w. If there are several rules with the
same non-terminal X, we can write X → α1 | · · · | αn.

Given α, β ∈ (V
⋃
Σ)∗, β is derivable from α on one step, α⇒1

G β, if there
exist α1, α2 ∈ (V

⋃
Σ)∗ such that α = α1Xα2, β = α1γα2 and X → γ ∈ P .

The relation derivation on n steps, ⇒n
G, is defined by induction in n ≥ 0, and

⇒∗
G (derivation) is the reflexive and transitive closure of ⇒1.
The language generated by a grammar G is defined by

L(G) = {x ∈ Σ∗ | S ⇒∗
G x}.

A parse tree for x ∈ L(G) is a tree such that:

– The root is S.
– Each node is labeled by a symbol of V

⋃
Σ

⋃
{ε}

– A label of a internal node is a non-terminal
– The label of the leaves are terminals or ε
– If an internal node has label X and has n sons with labels X1, X2, ..., Xn,

respectively, then X → X1X2 · · ·Xn ∈ P
– x is the concatenation of the leaves labels (ordered from left to right) (also

called the yield of the tree).

To each word derivation corresponds a parse tree. A grammar G is said
ambiguous if there exists more than one parse tree for some x ∈ L(G). The
grammar G = (S, (,), S → (S) | SS | ε, S), that generates a language of balanced
parenthesis, is ambiguous, as is illustrated in Figure 1.

S

S

)S

ε

(

S

S

)S

ε

(

S

)S

ε

(

S

S

S

)S

ε

(

S

)S

ε

(

S

)S

ε

(

Fig. 1. Two distinct parse trees for the word “()()()”.

3 Parsing

There are several parsing methods for determining if a word x is generated by a
grammar, and, if so, to produce the parse trees [GJ90]. Applications of grammars
for programming languages development, namely compilers, normally require
that grammars are non-ambiguous (otherwise several semantics can be given to
a word). Efficient (linear) parsing algorithms are well-known for sub-classes of
context-free languages as the ones generated by LR-grammars [ASU86].

Here we wanted a parser for a generic context-free grammar that would allow
the interactive construction of parse trees.

There are two main approaches to parse a word:

top-down building the parse tree from the start symbol down to the yield (the
word)

bottom-up building the parse tree from the leaves (the word) up to the start
symbol

We choose a bottom-up parsing method: the CYK algorithm due to J. Cocke,
D. H Younger and T. Kasami [HMU00].

This algorithm implies that the grammar is in Chomsky Normal Form (CNF),
i.e, all rules either have the form A → a or A → BC, where A, B and C are
non-terminals and a is a terminal.

Every grammar G can be transformed into a CNF grammar that generates
L(G) \ {ε}. For that the following steps must be taken:

– Eliminate ε-rules (A→ ε);
– Eliminate unitary rules (A→ B);
– Eliminate useless symbols, i.e., non-terminals that do not contribute to the

derivation of any word;
– Ensure that all rules has right-hand sides with two non-terminals or one

terminal.

All these steps can be automatically implemented.
Given a CNF grammarG and an input word x, the CYK algorithm constructs

a table that indicates which non-terminals derive which subwords of the input
word. This is the recognition phase. In a second phase, the table and the grammar
are used to construct all possible parse trees (derivations).

The algorithm decides if x ∈ L(G) by analysing all its subsequences (sub-
words) of x = x1x2 . . . xn. For all 1 ≤ i ≤ i + s ≤ n = |x|, let N [i, i + s] be the
set of non-terminals that derive the subword xi . . . xi+s, i. e.

N [i, i+ s] = {A | A⇒? xi . . . xi+s}

CYK Recognition Algorithm:

For i=1 to n:
N[i,i]={A| A→ xi}

For s=1 to n-1:
For i=1 to n-s:

N[i,i+s]=∅
For k=i to (i+s)-1:

N[i,i+s] = N[i,i+s]∪
{A| A → BC, B ∈ N[i,k] and C ∈ N[k+1,i+s]}

The word x is in L(G) iff S ∈ N [1, n].

Constructing the parse trees of the original grammar

The transformation of the grammar in CNF can eliminate some non-terminals
of the original grammar, because either they are not useful or as result of the
elimination of ε-rules. But it is possible to recover the removed non-terminals
and add that information when building the CYK recognition table. In our
implementation we build a list of tuples that relates the original non-terminals
with the ones that appear in the CNF grammar.

When building a parse tree, each occurrence of a new symbol in the recogni-
tion table is substituted by the respective original symbol.

To verify if a word belongs to the language, the program checks if the start
symbol occurs N [1, n]. If so it begins to build the possible parse trees (as tuples
of trees). If not, the program will try to find trees for the subwords, that in the
worst case, will be the trees for each symbol of the word.

4 Interactive visualization

The interactive graphical environment CGM has the following components and
functionalities:

– Console and grammar information panel
– Grammar Editor

• Edition of a grammar
• Compilation of a grammar
• Load and save a grammar
• Transformation into CNF

– Words Lists
• Input or remove a word
• List of words generated by the grammar
• List of words not generated by the grammar

– Parse Tree Editor
• View all parse trees associated with a word
• Interactive construction of a parse tree
• Save and load parse trees

Several grammars can be manipulated simultaneously by using different win-
dows (tabs). In Figure 2 we present the general view of the CGM application,
with the main five working areas identified. The CGM graphical interface was
implemented using the wxWidgets toolkit for Python.

Fig. 2. The CGM interactive graphical environment.

In the following we will describe each of the components and some imple-
mentation details.

4.1 Console and grammar info panel

The console logs the events that are performed by the user and shows some
extra information.

The grammar info panel provides information about a compiled grammar:
the start symbol, the set of terminals and the set of non-terminals. Each grammar
has also associated special characters that indicates the empty word and the
concatenation symbol that allows the separation of grammar symbols.

4.2 Grammar editor

The grammar editor allows the introduction of the grammar rules. Each rule
is of the form X → α1| · · · |αn, where the rule separator is | and each αi is a
sequence of symbols (terminals or non-terminals) separated by a special con-
catenation symbol (by default, ’.’), that do not belong to the grammar symbols.

An example of a rule is:

Num -> Int.Digit | Digit | Int.Frac

Note that the concatenation symbol will be also used for the input words.
For instance 1.2.,.3.0 will represent the number 12, 30. By default the empty
word will be represented by e, but both of the special symbols (concatenation
and empty word) are configurable. If a rule is not well-formed the editor will
detect and a red bullet will appear in the correspondent line.

There is no need to introduce the start symbol and the sets of terminals and
of non-terminals. Whenever the grammar is compiled those symbols are inferred
by the set of rules. By default, the start symbol corresponds to the symbol in
the left-hand side of the first rule. But the user can specify the start symbol
by setting the cursor on the desired rule and pressing ctrl+i (or using the
menu Grammar>Set Start Symbol). The line containing the rule with the start
symbol will be marked with a blue arrow.

If option auto-compile is enabled, the grammar will be automatically com-
piled when the editor loses focus. If auto-compiled is disabled, the grammar
can be compiled by selecting the menu Grammar>Compile. If a grammar is suc-
cessfully compiled, some information appears in the grammar info panel and
words can now be inputed for parsing.

The text editor is based on the wxStyledTextCrl class, that implements the
editing component Scintilla [Gro07,Sas03]. This component provides all the
usual editing facilities (select, copy, cut, paste, undo, etc) that are available by
pressing the left mouse button.

A grammar can be transformed into Chomsky Normal Form (CNF) by se-
lecting the menu Grammar>Normal Form. A new window (tab) will be opened
with the new grammar.

A grammar can be saved or loaded (by selecting the menu File). The gram-
mar filename will have the extension .cgm, and it is saved as a persistent Python
object (shelve). Besides the grammar information, those files will also store the
datasets of words and the parse trees associated with the grammar.

In Figure 3 we present a grammar for simple arithmetic expressions, some
datasets of words and the parse tree of the current word.

Fig. 3. An example of a grammar and the parsing of words.

4.3 Words lists

In order to write a correct grammar for a given language it is helpful to have
positive and negative datasets of words that should be generated by the grammar
or not, respectively.

A word (sequence of symbols) can be inputed and by pressing the add button
(or enter key) the word will be parsed by the grammar. An error is reported if
any symbol of word is not a terminal of the grammar. If the word is generated by
the grammar it will be added to the positive dataset, otherwise to the negative
one. If the word is generated by the grammar then a parse tree will be drawn in
the parse tree editor area, as is exemplified in Figure 3.

A word selected can be removed from the corresponding dataset, by pressing
the remove button. To remove all words (from both datasets) the user must
select the menu Grammar>Erase all words.

4.4 Parse tree editor

The parse tree editor allows the visualization and interactive construction of
parse trees associated with a currently selected word, that appears in the bottom
panel of the editor. It is constituted by a canvas and a toolbar (see Figure 3).
It is implemented using the Floatcanvas component [Bar07] of the wxWidgets
toolkit. The Floatcanvas is an object canvas that allows high-level manipulation
of graphical objects and has built-in zoom.

The toolbar buttons have the following functionalities:

+: Zoom in mode, in the canvas
-: Zoom out mode, in the canvas
Zoom2Fit: Adjusts the view window to the tree
Hand Drag mode, the user can drag the view window
Edit/View mode: Switch between edit and view mode (see below)
Load tree: If the user saved any trees, they can be loaded (requires Edit mode)
Save tree: Saves the current parse tree (requires Edit mode)
Export JPG: Exports the parse tree to a jpg file

The parse tree editor has two modes of visualization and interaction: the
view mode and the edit mode.

View mode

Allows the visualization of the parse trees associated to the current word. The
parse trees were previously constructed by the parser, as described in Section 3.
If there are more then one, the grammar is ambiguous and that fact is indicated
in the grammar info panel.

In this mode the parse tree editor functionalities are the following ones.

– The sub-trees associated to each non-terminal can be expanded or collapsed
(by pressing left mouse button). Double-click expands all sub-trees of that
node.

– If a node has an ellipse around it, it means that the tree has more than one
(valid) subtrees at that node. Right-clicking on the node, shifts between the
several (sub-) parse trees.

– A red X means that it is impossible to reach the yield from the root (which
means that the word is not generated by grammar).

In Figure 4 we show a tree where the nodes labelled by the non-terminal
Integer have several sub-trees.

Edit mode

Allows the interactive construction of parse trees. This is an innovative and
important feature of this application because it can help learning the concept of
word parsing. Its functionalities are illustrated in Figure 6 and are as follows:

– Left-clicking on a non-terminal makes a bar pop-up with the possible right-
hand symbols of the rules that are associated with that non-terminal. Se-
lecting one symbol (non-terminal or terminal) will allow the construction of
the tree (and the associated derivation)

– Right-clicking on a non-terminal removes its sub-tree.

In this mode, it is also possible to save a tree and to load it latter. Figure 6
illustrates how we can load one tree previously saved.

Fig. 4. The Parse Tree Editor in view mode.

Fig. 5. Interactive building of a parse tree: the second bar has the possible choices for
the current node Integer.

Fig. 6. Parse tree editor with several saved trees.

5 Conclusions

In this paper we presented an interactive graphical environment that allows the
edition of context-free grammars and the parsing of words. Its main goal is to
provide a pedagogical tool for studying grammar construction and parse trees.

Similar projects are, besides others, the JFLAP[BLP+97] and the Gaminal
project[DK00]. Both have graphical symbolic environments to manipulate gram-
mars. Comparing with our approach JFLAP, although more complete, has a less
user-friendly grammar editor and lacks some of our functionalities. Gaminal is
more oriented to teaching compiler design.

Concerning future work, we would like to study ways of automatic detection
of grammar ambiguities. The graphical environment can also be improved and
extended in several directions. In particular, by the implementation and visual-
ization of more parsing algorithms and by supporting languages operations such
as, union, concatenation and Kleene closure. Currently, we are already imple-
menting a top-down LL1 parser. We also plan to integrate Yappy with CGM in
order to provide a learning environment for LR parsing concepts. New versions
of the system will be found its Web page (www.ncc.up.pt/cgm).

References

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools. Addison Wesley, 1986.

[Bar07] Christopher Barker. Floatcanvas. http://morticia.cs.dal.ca/FloatCanvas/,
2007.

[BLP+97] Bilska, Leider, Procopiuc, Procopiuc, Rodger, Salemme, and Tsang. A col-
lection of tools for making automata theory and formal languages come alive.
SIGCSEB: SIGCSE Bulletin (ACM Special Interest Group on Computer Sci-
ence Education), 29, 1997.

[DK00] Stephan Diehl and Thomas Kunze. Visualizing principles of abstract ma-
chines by generating interactive animations. Future Generation Computer
Systems, 16(7):831–839, 2000.

[GJ90] Dick Grune and Ceriel J.H. Jacobs. Parsing Techniques - A Practical Guide.
Prentice Hall, 1990. http://www.cs.vu.nl/ dick/PTAPG.html.

[Gro07] Scintilla Project Group. Scintilla. http://www.scintilla.org/, Date of
Access:2007.

[HMU00] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages and Computation. Addison Wesley, 2nd
edition, 2000.

[MR] Nelma Moreira and Rogério Reis. FAdo: tools for formal languages manip-
ulation. http://www.ncc.up.pt/fado.

[MR05] Nelma Moreira and Rogério Reis. Interactive manipulation of regular objects
with FAdo. In Proceedings of 2005 Innovation and Technology in Computer
Science Education (ITiCSE 2005). ACM, 2005.

[RM03] Rogério Reis and Nelma Moreira. Yappy:Yet another LR(1) parser generator
for Python. DCC-FC & LIACC, Universidade do Porto, 2003.

[Sas03] Jeff Sasmor. Yellow brain guide to wxpython.
http://www.yellowbrain.com/stc/index.html, 2003.

[SRZD] Julian Smart, Robert Roebling, Vadim Zeitlin, and Robin Dunn. wxWidgets
2.6.3: A portable C++ and Python GUI toolkit.

[vR05] Guido van Rossum. Python Library Reference, 2.4.2 edition, 2005.
http://python.org.

