
Incremental DFA minimisation?

Marco Almeida?? Nelma Moreira Rogério Reis
{mfa,nam,rvr}@ncc.up.pt

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

Abstract. We present a new incremental algorithm for minimising de-
terministic finite automata. It runs in quadratic time for any practical
application and may be halted at any point, returning a partially min-
imised automaton. Hence, the algorithm may be applied to a given au-
tomaton at the same time as it is processing a string for acceptance. We
also include some experimental comparative results.

1 Introduction

We present a new algorithm for incrementally minimise deterministic finite au-
tomata. This algorithm may be halted at any point, returning a partially min-
imised automaton that recognises the same language as the input. Should the
minimisation process be interrupted, calling the incremental minimisation al-
gorithm with the output of the halted process would resume the minimisation
process. Moreover, the algorithm can be run on some automaton D at the same
time as D is being used to process a string for acceptance.

Unlike the usual approach, which computes the equivalence classes of the set
of states, this algorithm proceeds by testing the equivalence of pairs of states in
the same line of Watson and Daciuk [Wat01,WD03]. The intermediate results
are stored for the speedup of ulterior computations in order to assure quadratic
running time and memory usage.

This paper is structured as follows. In the next Section some basic con-
cepts and notation are introduced. Section 3 is a small survey of related work.
In Section 4 we describe the new algorithm in detail, presenting the proofs of
correctness and worst-case running-time complexity. Section 5 follows with ex-
perimental comparative results, and Section 6 finishes with some conclusions
and future work.

2 Preliminaries

We recall here the basic definitions needed throughout the paper. For further
details we refer the reader to the work of Hopcroft et al. [HMU00].
? This work was partially funded by Fundação para a Ciência e Tecnologia (FCT)

and Program POSI, project ASA (PTDC/MAT/65481/2006), and project CANTE
(PTDC/EIA-CCO/101904/2008).

?? Marco Almeida is funded by FCT grant SFRH/BD/27726/2006.

An alphabet Σ is a nonempty set of symbols. A word over an alphabet Σ
is a finite sequence of symbols of Σ. The empty word is denoted by ε and the
length of a word w is denoted by |w|. The set Σ? is the set of words over Σ. A
language L is a subset of Σ?.

A deterministic finite automaton (DFA) is a tuple D = (Q,Σ, δ, q0, F) where
Q is finite set of states, Σ is the alphabet, δ : Q × Σ → Q the transition
function, q0 the initial state, and F ⊆ Q the set of final states. We can extend
the transition function to words w ∈ Σ? such that w = au by considering
δ(q, w) = δ(δ(q, a), u) for q ∈ Q, a ∈ Σ, and u ∈ Σ?. The language accepted
by the DFA D is L(D) = {w ∈ Σ? | δ(q0, w) ∈ F}. Two finite automata A
and B are equivalent, denoted by A ∼ B, if they accept the same language. For
any DFA D = (Q,Σ, δ, q0, F), let ε(q) = 1 if q ∈ F and ε(q) = 0 otherwise,
for p ∈ Q. Two states q1, q2 ∈ Q are said to be equivalent, denoted by q1 ∼ q2,
if for every w ∈ Σ?, ε(δ(q1, w)) = ε(δ(q2, w)). A DFA is minimal if there is
no equivalent DFA with fewer states. Given an DFA D, the equivalent minimal
DFA D/∼ is called the quotient automaton of D by the equivalence relation ∼.
Minimal DFAs are unique up to isomorphism.

2.1 The UNION-FIND algorithm

The UNION-FIND [Tar75,CLRS03] algorithm takes a collection of n distinct
elements grouped into several disjoint sets and performs two operations on it:
merges two sets and finds to which set a given element belongs to. The algorithm
is composed by the following three functions:

– MAKE(i): creates a new set (singleton) for one element i (the identifier);
– FIND(i): returns the identifier Si of the set that contains i;
– UNION(i, j, k): combines the sets identified by i and j in a new set Sk =
Si ∪ Sj ; Si and Sj are destroyed.

An important detail of the UNION operation is that the two combined sets are
destroyed in the end. Our implementation of the algorithm (using rooted trees)
follows the one by Cormen et al. [CLRS03]. The main claim is that an arbitrary
sequence of i MAKE, UNION, and FIND operations, j of which are MAKE, can
be performed in O(iα(j)), where α(j) is related to a functional inverse of the
Ackermann function, and, as such, grows very slowly. In fact, for every practical
values of j (up to 16512), α(j) ≤ 4.

3 Related work

The problem of writing efficient algorithms to find the minimal equivalent DFA
can be traced back to the 1950’s with the works of Huffman [Huf55] and Moore
[Moo58]. Over the years several alternative algorithms were proposed. In terms of
worst-case complexity the best know algorithm (log-linear) is by Hopcroft [Hop71].
Brzozowski [Brz63] presented an elegant but exponential algorithm that may also
be applied to non-deterministic finite automata.

The first DFA incremental minimisation algorithm was proposed by Wat-
son [Wat01]. The worst-case running-time complexity of this algorithm is expo-
nential — O(kmax(0,n−2)), for a DFA with n states over an alphabet of k symbols.
As shown by Watson himself [Wat95], this bound is tight. Later, Watson and
Daciuk [WD03] proposed a new version of the algorithm. By using a memoiza-
tion technique they achieved an almost quadratic run-time. Recently, however,
a bug was found on the algorithm and one of the authors is currently trying to
fix it.

4 The incremental minimisation algorithm

Given an arbitrary DFA D as input, this algorithm may be halted at any time
returning a partially minimised DFA that has no more states than D and recog-
nises the same language. It uses a disjoint-set data structure to represent the
DFA’s states and the UNION-FIND algorithm to keep and update the equiv-
alence classes. This approach allows us to maintain the transitive closure in a
very concise and elegant manner. The pairs of states already marked as distin-
guishable are stored in an auxiliary data structure in order to avoid repeated
computations.

Let D = (Q,Σ, δ, q, F) be a DFA with n = |Q| and k = |Σ|. We assume that
the states are represented by integers, and thus it is possible to order them. This
ordering is used to normalise pairs of states, as presented in Listing 1.1.

1 def NORMALISE(p, q) :
2 i f p < q :
3 pair = (p, q)
4 else :
5 pair = (q, p)
6 return pair

Listing 1.1. A simple normalisation step.

The normalisation step allows us to improve the behaviour of the minimisa-
tion algorithm by ensuring that only n2

2 − n pairs of states are considered.
The quadratic time bound of the minimisation procedure MIN-INCR, pre-

sented in Listing 1.2, is achieved by testing each pair of states for equivalence
exactly once. We assure this by storing the intermediate results of all calls to
the pairwise equivalence-testing function EQUIV-P, defined in Listing 1.3. Some
auxiliary data structures, designed specifically to improve the worst-case running
time, are presented in Listing 1.4.

1 def MIN-INCR(D = (Q,Σ, δ, q0, F)) :
2 for q ∈ Q :
3 MAKE(q)
4 NEQ = {NORMALISE(p, q) | p ∈ F, q ∈ Q− F}
5 for p ∈ Q :
6 for q ∈ {x | x ∈ Q, x > p} :
7 i f (p, q) ∈ NEQ :
8 continue

9 i f FIND(p) = FIND(q) :
10 continue
11 EQUIV = SET-MAKE(|Q|2)
12 PATH = SET-MAKE(|Q|2)
13 i f EQUIV-P(p, q) :
14 for (p′, q′) ∈ SET-ELEMENTS(EQUIV) :
15 UNION(p′, q′)
16 else :
17 for (p′, q′) ∈ SET-ELEMENTS(PATH) :
18 NEQ = NEQ ∪ {(p′, q′)}
19 classes = {}
20 for p ∈ Q :
21 lider = FIND(p)
22 classes[lider] = classes[lider] ∪ {p}
23 D′ = D
24 joinStates(D′, classes)
25 return D′

Listing 1.2. Incremental DFA minimisation in quadratic time.

Algorithm MIN-INCR starts by creating the initial equivalence classes (lines
2–3); these are singletons as no states are yet marked as equivalent. The global
variable NEQ, used to store the distinguishable pairs of states, is also initialised
(line 4) with the trivial identifications. Variables PATH and EQUIV, also global and
reset before each call to EQUIV-P, maintain the history of calls to the transition
function and the set of potentially equivalent pairs of states, respectively.

The main loop of MIN-INCR (lines 5–18) iterates through all the normalised
pairs of states and, for those not yet known to be either distinguishable or equiv-
alent, calls the pairwise equivalence test EQUIV-P. Every call to EQUIV-P is
conclusive and the result is stored either by merging the corresponding equiva-
lence classes (lines 13–15), or updating NEQ (lines 16–18). Thus, each recursive
call to EQUIV-P will avoid one iteration on the main loop of MIN-INCR by
skipping (lines 7–10) that pair of states.

Finally, at lines 19–22, the set partition of the corresponding equivalence
classes is created. Next, the DFA D is copied to D′ and the equivalent states are
merged by the call to joinStates. The last instruction, at line 25, returns the
minimal DFA D′, equivalent to D.

1 def EQUIV-P(p, q) :
2 i f (p, q) ∈ NEQ :
3 return False
4 i f SET-SEARCH((p, q), PATH) 6= nil :
5 return True
6 SET-INSERT((p, q), PATH)
7 for a ∈ Σ :
8 (p′, q′) = NORMALISE(FIND(δ(p, a)),FIND(δ(q, a)))
9 i f p′ 6= q′ and SET-SEARCH((p′, q′), EQUIV) = nil :

10 SET-INSERT((p′, q′), EQUIV)
11 i f not EQUIV-P(p′, q′) :
12 return False
13 else :
14 SET-REMOVE((p′, q′), PATH)
15 SET-INSERT((p, q), EQUIV)
16 return True

Listing 1.3. Pairwise equivalence test for MIN-INCR.

Algorithm EQUIV-P, presented in Listing 1.3, is used to test the equivalence
of the two states, p and q, passed as arguments.

The global variables EQUIV and PATH are updated with the pair (p, q) during
each nested recursive call. As there is no recursion limit, EQUIV-P will only
return when p � q (line 3) or when a cycle is found (line 5). If a call to EQUIV-
P returns False, then all pairs of states recursively tested are distinguishable and
variable PATH — used to store the sequence of calls to the transition function —
will contain a set of distinguishable pairs of states. If it returns True, no pair of
distinguishable states was found within the cycle and variable EQUIV will contain
a set of equivalent states. This is the strategy which assures that each pair of
states is tested for equivalence exactly once: every call to EQUIV-P is conclusive
and the result stored for future use. It does, however, lead to an increased usage
of memory.

The variables EQUIV and PATH are heavily used in EQUIV-P as several insert,
remove, and membership-test operations are executed throughout the algorithm.
In order to achieve the desired quadratic upper bound, all these operations must
be performed in O(1). Thus, we present in Listing 1.4 some efficient set repre-
sentation and manipulation procedures.

1 def SET-MAKE(size) :
2 HashTable = HASH-TABLE(size)
3 List = LIST()
4 return (HashTable, List)
5
6 def SET-INSERT(v, Set) :
7 p0 = Set.HashTable[v]
8 LIST-REMOVE(p0, Set.List)
9 p1 = LIST-INSERT(v, Set.List)

10 Set.HashTable[v] = p1
11
12 def SET-REMOVE(v, Set) :
13 p0 = Set.HashTable[v]
14 LIST-REMOVE(p0, Set.List)
15 Set.HashTable[v] = nil
16
17 def SET-SEARCH(v, Set) :
18 i f Set.HashTable[v] 6= nil :
19 p = Set.HashTable[v]
20 return LIST-ELEMENT(p, Set.List)
21 else :
22 return nil
23
24 def SET-ELEMENTS(Set) :
25 return Set.List

Listing 1.4. Set representation procedures.

The set-manipulation procedures in Listing 1.4 simply combine a hash-table
with a doubly-linked list. This is another space-time trade-off that allows us to
assure the desired complexity on all operations. The hash-table maps a given
value (state of the DFA) to the address on which it is stored in the linked list.
Since we know the size of the hash-table in advance (n2) searching, inserting, and
removing elements is O(1). The linked list assures that, at lines 14–15 and 17–18

of MIN-INCR, the loop is repeated only on the elements that were actually used
in the calls to EQUIV-P, instead of iterating through the entire hash-table.

Theorem 1. Algorithm MIN-INCR, in Listing 1.2, is terminating.

Proof. It should suffice to notice the following facts:

– all the loops in MIN-INCR are finite;
– the variable PATH on EQUIV-P assures that the number of recursive calls is

finite.

Lemma 1. Algorithm EQUIV-P, in Listing 1.3, runs in O(kn2) time.

Proof. The number of recursive calls to EQUIV-P is controlled by the local
variable PATH. This variable keeps the history of calls to the transition function
(line 8 in Listing 1.3). In the worst case, all possible pairs of states are used:
n2

2 − n, due to the normalisation step. Since each call may reach line 7, we need
to consider k additional recursive calls for each pair of states, hence O(kn2).

Lemma 2. Algorithm EQUIV-P returns True if and only if the two states
passed as arguments are equivalent.

Proof. Algorithm EQUIV-P returns False only when the two states, p and q,
used as arguments are such that (p, q) ∈ NEQ (lines 2–3). This is correct because
the global variable NEQ contains all the pairs of states already proven to be
distinguishable. Conversely, EQUIV-P returns True only if (p, q) ∈ PATH (lines
4–5) or a recursive call returned True (line 16). In both cases this means that a
cycle with no distinguishable elements was detected, which implies that all the
recursively visited pairs of states are equivalent.

Theorem 2. Given a DFA D = (Q,Σ, δ, q, F), algorithm MIN-INCR computes
the minimal DFA D′ such that D ∼ D′.

Proof. Algorithm MIN-INCR finds pairs of equivalent states by exhaustive enu-
meration. The loop in lines 5–18 enumerates all possible pairs of states, and,
for those not yet proven to be either distinguishable or equivalent, EQUIV-P is
called. When line 19 is reached, all pairs of states have been enumerated and the
equivalent ones have been found (cf. Lemma 2). The loop in lines 20–22 creates
the equivalence classes and the procedure joinStates, at line 24, merges the
equivalent states, updating the corresponding transitions. Since the new DFA
D′ does not have any equivalent states, it is minimal.

Lemma 3. At the top-level call at line 13 in MIN-INCR, when EQUIV-P re-
turns True, all the pairs of states stored in the global variable EQUIV are equiva-
lent.

Proof. By Lemma 2, if EQUIV-P returns True then the two states, p and q, used
as arguments are equivalent. Since there is no depth recursion control, EQUIV-P
only returns True when a cycle is detected. Thus being, all the pairs of states
used as arguments in the recursive calls must also be equivalent. These pairs of
states are stored in the global variable EQUIV at line 10 of EQUIV-P.

Lemma 4. At the top-level call at line 13 in MIN-INCR, if EQUIV-P returns
False, all the pairs of states stored in the global variable PATH are distinguishable.

Proof. Given a pair of distinguishable states (p, q), clearly all pairs of states
(p′, q′) such that δ(p′, w) = p and δ(q′, w) = q are also distinguishable, for
w ∈ Σ?. By Lemma 2, EQUIV-P returns False only when the two states, p and
q, used as arguments are distinguishable. Throughout the successive recursive
calls to EQUIV-P, the global variable PATH is used to store the history of calls
to the transition function (line 6) and thus contains only pairs of states with a
path to (p, q). All of these pairs of states are therefore distinguishable.

Lemma 5. Each time that EQUIV-P calls itself recursively, the two states used
as arguments will not be considered in the main loop of MIN-INCR.

Proof. The arguments of every call of EQUIV-P are kept in two global variables:
EQUIV and PATH.

By Lemma 3, whenever EQUIV-P returns True, all the pairs of states stored
in EQUIV are equivalent. Immediately after being called from MIN-INCR (line
13), if EQUIV-P returns True, the equivalence classes of all the pairs of states
in EQUIV are merged (lines 14–15). Future references to any of these pairs will
be skipped at lines 9–10.

In the same way, by Lemma 4, if EQUIV-P returns False, all the pairs of
states stored in PATH are distinguishable. Lines 17–18 of MIN-INCR update the
global variable NEQ with this new information and future references to any of
these pairs of states will be skipped at lines 7–8 of MIN-INCR.

Theorem 3. Algorithm MIN-INCR is incremental.

Proof. Halting the main loop of MIN-INCR at any point within the lines 5–18
only prevents the finding of all the equivalent pairs of states. Merging the known
equivalent states on D′, a copy of the input DFA D, assures that the size of D′

is not greater than that of D and thus, is closer to the minimal equivalent DFA.
Calling MIN-INCR with D′ as the argument would resume the minimisation
process, finding the remaining equivalent states.

Theorem 4 (Main result). Algorithm MIN-INCR, in Listing 1.2, runs in
O(kn2α(n)) time.

Proof. The number of iterations of the main loop in lines 5–18 of MIN-INCR
is bounded by n2

2 − n, due to the normalisation step. Each iteration may call
EQUIV-P, which, by Lemma 1, is O(kn2). By Lemma 5 every recursive call to
EQUIV-P avoids one iteration on the main loop. Therefore, disregarding the
UNION-FIND operations and because all operations on variables NEQ, EQUIV,
and PATH are O(1), the O(kn2) bound holds. Since there are O(kn2) FIND and
UNION intermixed calls, and exactly n MAKE calls, the time spent on all the
UNION-FIND operations is bounded by O(kn2α(n)) — cf. Subsection 2.1. All
things considered, MIN-INCR runs in O(kn2 + kn2α(n)) = O(kn2α(n)).

Corollary 1. Algorithm MIN-INCR runs in O(kn2) time for all practical val-
ues of n.

Proof. Function α is related to an inverse of Ackermann’s function. It grows so
slowly (α(16512) ≤ 4) that we may consider it a constant.

5 Experimental results

In this Section we present some comparative experimental results on four DFA
minimisation algorithms: Brzozowski, Hopcroft, Watson, and the new proposed
incremental one. The results are presented on Table 1, Table 2, and Table 3.

All algorithms are implemented in the Python programming language and in-
tegrated in the FAdo project [?]. The tests were executed in the same computer,
an Intel R© Xeon R© 5140 at 2.33 GHz with 4 GB of RAM, running a minimal 64 bit
Linux system. We used samples of 20.000 automata, with n ∈ {5, 10, 50, 100}
states and alphabets with k ∈ {2, 10, 25, 50} symbols. Since the data sets were
obtained with a uniform random generator [AMR07,AAA+09], the size of each
sample is more than enough to ensure results statistically significant with a 99%
confidence level within a 1% error margin. The sample size is calculated with the
formula N = (z2ε)

2, where z is obtained from the normal distribution table such
that P (−z < Z < z)) = γ, ε is the error margin, and γ is the desired confidence
level.

n = 5
k = 2 k = 10 k = 25 k = 50

Perf. Space Perf. Space Perf. Space Perf. Space
Brzozowski 1424.50 4 119.71 4 45.24 4 22.66 4
Hopcroft 3442.34 4 980.39 4 469.37 4 238.46 4
Watson 3616.63 4 573.88 4 54.29 4 8.00 4
Incremental 4338.39 4 2762.43 4 1814.88 4 1091.70 4

n = 10
k = 2 k = 10 k = 25 k = 50

Perf. Space Perf. Space Perf. Space Perf. Space
Brzozowski 73.45 4 1.89 4 0.50 3248 0.21 1912
Hopcroft 1757.46 4 250.46 4 100.95 4 49.74 4
Watson 691.80 4 0.01 4 0.00 4 0.00 4
Incremental 2358.49 4 1484.78 4 885.73 4 488.75 4

Table 1. Experimental results for ICDFAs with n ∈ {5, 10} states.

Each test was given a time slot of 24 hours. Processes that did not finish
within this time limit were killed. Thus, and because we know how many ICDFAs
were in fact minimised before each process was killed, the performance of the
algorithms is measured in minimised ICDFAs per second (column Perf.). We
also include a column for the memory usage (Space), which measures the peak
value (worst-case) for the minimisation of the 20.000 ICDFAs in kilobytes.

Clearly, the new incremental method always performs better. Both Brzo-
zowski and Watson’s algorithm clearly show their exponential character, being

n = 50
k = 2 k = 10 k = 25 k = 50

Perf. Space Perf. Space Perf. Space Perf. Space
Brzozowski 0.00 664704 0.00 799992 0.00 1456160 0.00 750312
Hopcroft 39.48 4 6.31 4 2.45 4 1.21 4
Watson 0.00 4 0.00 4 0.00 4 0.00 4
Incremental 117.21 288 94.33 540 73.94 612 53.31 636

n = 100
k = 2 k = 10 k = 25 k = 50

Perf. Space Perf. Space Perf. Space Perf. Space
Brzozowski 0.00 2276980 0.00 1061556 0.00 961144 0.00 2862312
Hopcroft 6.25 4 0.97 4 0.37 4 0.18 4
Watson 0.00 4 0.00 4 0.00 4 0.00 4
Incremental 28.23 1028 24.94 2452 21.58 3444 17.17 3824

Table 2. Experimental results for ICDFAs with n ∈ {50, 100} states.

in fact, the only two algorithms that did not finish several minimisation tests.
Hopcroft’s algorithm, although presenting a behaviour that appears to be very
close to its worst-case (O(kn log(n)), is always slower than the quadratic incre-
mental method.

n = 1000
k = 2 k = 3 k = 5

Perf. Space Perf. Space Perf. Space
Hopcroft 0.0121 4 0.0074 4 – –
Incremental 0.2616 34296 0.2416 34068 0.2411 33968

Table 3. Experimental results for ICDFAs with 1000 states.

Because of the big difference between the measured performance of Hopcroft’s
algorithm and the new quadratic incremental one, we ran a new set of tests, only
for these algorithms, using the largest ICDFA samples we have available. The
results are presented on Table 3. These tests were performed on the exact same
conditions as the previously described ones but each process was allowed to
execute for 96 hours. Surprisingly, while Hopcroft’s algorithm did not finish any
of the batches within this time limit, it took only a little over 23 hours for the
quadratic algorithm to minimise the sample of 20.000 ICDFAs with 1000 states
and 5 symbols. The memory usage of the incremental algorithm, however, is far
superior. It always required nearly 33 MB while Hopcroft’s algorithm did not use
more than 4 kB.

6 Conclusions

We presented a new incremental minimisation algorithm. Unlike other non-
incremental minimisation algorithms, the intermediate results are usable and
reduce the size of the input DFA. This property can be used to minimise a DFA
when it is simultaneously processing a string or, for example, to reduce the size

of a DFA when the running-time of the minimisation process must be restricted
for some reason.

We believe that this new approach, while presenting a quadratic worst-case
running-time, is quite simple and easy to understand and to implement. Ac-
cording to the experimental results, this minimisation algorithm outperforms
Hopcroft’s O(kn log(n)) approach, at least in the average case, for reasonably
sized automata.

References

[AAA+09] A. Almeida, M. Almeida, J. Alves, N. Moreira, and R. Reis. FAdo and
GUItar: tools for automata manipulation and visualization. In S. Maneth,
editor, 14th CIAA’09, volume 5642 of LNCS, pages 65–74. Springer, 2009.

[AMR07] M. Almeida, N. Moreira, and R. Reis. Enumeration and generation with
a string automata representation. Theoret. Comput. Sci., 387(2):93–102,
2007. Special issue ”Selected papers of DCFS 2006”.

[Brz63] J. A. Brzozowski. Canonical regular expressions and minimal state graphs
for definite events. In J. Fox, editor, Proc. of the Sym. on Math. Theory of
Automata, volume 12 of MRI Symposia Series, pages 529–561, NY, 1963.

[CLRS03] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT, 2003.

[FAd10] Project FAdo. FAdo: tools for formal languages manipulation.
http://www.ncc.up.pt/FAdo, Access date:1.1.2010.

[HMU00] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison Wesley, 2000.

[Hop71] J. Hopcroft. An n log n algorithm for minimizing states in a finite automa-
ton. In Proc. Inter. Symp. on the Theory of Machines and Computations,
pages 189–196, Haifa, Israel, 1971. Academic Press.

[Huf55] D. A. Huffman. The synthesis of sequential switching circuits. The Journal
of Symbolic Logic, 20(1):69–70, 1955.

[Moo58] E. F. Moore. Gedanken-experiments on sequential machines. The Journal
of Symbolic Logic, 23(1):60, 1958.

[Tar75] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. JACM,
22(2):215 – 225, April 1975.

[Wat95] B. W. Watson. Taxonomies and toolkit of regular languages algortihms. PhD
thesis, Eindhoven Univ. of Tec., 1995.

[Wat01] B. W. Watson. An incremental DFA minimization algorithm. In Interna-
tional Workshop on Finite-State Methods in Natural Language Processing,
Helsinki, Finland, August 2001.

[WD03] B. W. Watson and J. Daciuk. An efficient DFA minimization algorithm.
Natural Language Engineering, pages 49–64, 2003.

