
Formal Modelling of Emotions in BDI Agents

David Pereira1, Eugénio Oliveira2, and Nelma Moreira1

1 DCC-FC & LIACC � University of Porto
Rua Campo Alegre, 1021/1055

4169-007 Porto, Portugal
{dpereira,nam}@ncc.up.pt

2 DEEC-FE & LIACC � University of Porto
Rua Dr. Roberto Frias, s/n Lab. I 1212 - NIAD&R

4200-465 Porto, Portugal
eco@fe.up.pt

Abstract. Emotional-BDI agents are BDI agents whose behaviour is
guided not only by beliefs, desires and intentions, but also by the role of
emotions in reasoning and decision-making. The EBDI logic is a formal sys-
tem for expressing the concepts of the Emotional-BDI model of agency.
In this paper we present an improved version of the EBDI logic and show
how it can be used to model the role of three emotions in Emotional-BDI
agents: fear, anxiety and self-con�dence. We also focus in the computa-
tional properties of EBDI which can lead to its use in automated proof
systems.

1 Introduction

Emotional-BDI agents are BDI agents whose behaviour is guided not only by
beliefs, desires and intentions, but also by the role of emotions in reasoning and
decision-making. This conceptual model was developed by Pereira et al. [1] and
a �rst version of the EBDI logic was presented in [2], where a �rst formalisation of
fear was given. In this paper we present an improved version of the EBDI logic in
order to model the role of three emotions in Emotional-BDI agents: fear, anxiety
and self-con�dence. The aim of this paper is to show how EBDI logic has enough
expressivity to model some of the properties of these emotions, following Oliveira
& Sarmento's model of emotional agent [3�5].

The main motivation for the current work was to provide a formal system
in which the concepts of the Emotional-BDI model of agency could be logically
expressed. Using these concepts we can specify distinct behaviours which are
expected from agents under the in�uence of emotions. The existing formal sys-
tems for rational agency such as Rao & George�'s BDI logics [6, 7] and Meyer's
et al. KARO framework [8�11] do not allow a straight forward representation
of emotions. However, both have properties which we can combine in order to
properly model Emotional-BDI agents.

The EBDI logic is an extension of the BDICTL logic, equipped with explicit
reference to actions, capabilities and resources. The choice of BDICTL, and not

2

the more powerfull BDICTL∗ , was motivated by our interest in automated proof
methods that will allow the development of executable speci�cation languages of
rational agency or of formal veri�cation systems for the Emotional-BDI model
of agency.

This paper is organised as follows. In Section 2 we de�ne the EBDI logic. This
logic is based in BDICTL logic and we begin by referring the new operators that
were added. Besides the syntax and semantics of EBDI, we present the axiom
systems for the new modal operators. We also establish the decidability of EBDI-
formulae, by transforming EBDI-formulae into equivalent BDICTL ones. In Section
3 we use the EBDI-logic to de�ne a set of conditions which are pre-requisites for
de�ning how emotions are activated in Emotional-BDI agents and also special
purpose actions which are executed by the agent when it "feels" these emotions.
In Section 4 we model the activation and e�ects of each of the emotions in
Emotional-BDI agents using the previous conditions. Finally, in Section 6 we
present some conclusions about this work and point some topics for ongoing and
future research in the EBDI logic.

2 The EBDI logic

The EBDI is an extension of Rao & George�'s BDICTL. This extension adds new
modal operators for representing the concepts of fundamental desires, capabil-
ities, action execution and resources. The semantics of EBDI is therefore given
by the satis�ability of EBDI-formulae on extended BDICTL-models, considering
accessibility-relations and functions for modelling the new operators.

2.1 Informal description

The BDICTL logic is a multi-modal logic which combines Emerson's et al. branching-
time logic CTL [12] and modal operators for representing the mental states of
belief (Bel), desire (Des) and intention (Int) as de�ned by Bratman et al. in [13].
The underlying model of BDICTL has a two dimensional structure. One dimension
is a set of possible worlds that correspond to the di�erent perspectives of the
agent representing his mental states. The other is a set of temporal states which
describe the temporal evolution of the agent. A pair 〈world, temporal_state〉 is
called a situation.

In the EBDI logic we added the following modal operators:

Fundamental desire: a fundamental desire is a desire which represents vital
conditions to the agent, like its life or alike propositions. We model this
concept using the modal operator Fund.

Actions: in EBDI we consider regular actions as de�ned in Propositional Dy-
namic Logic PDL [14]. In this way we can refer to the actions that the agent
performs, in particular when he is under the in�uence of emotions. Given
a �nite set of atomic actions, regular actions are derived through the usual
regular action operations (test, sequence, disjunction and Kleene closure).

3

Capabilities: a capability represents the operational structure of the execution
of an action. This concept is similar to KARO's ability. This is represented
by the modal operator Cap.

Resources: resources are the means (physical or virtual) for engaging the exe-
cution of actions. For the modelling of resources we consider the operators:

� Needs(a, r) : the atomic action a needs a unit of the resource r to be
executed.

� Availableq(r) : the agent has q units of the resource r, with 0 ≤ q ≤
MAX, MAX > 0.

� Savedq(r) : the agent has q units of resource r saved for future usage.

We also consider the operator Res for representing the availability or not of
all the resources needed to execute a regular action.

In terms of actions we consider three families of special purpose atomic ac-
tions, for the management of resource availability:

� get(r): the agent gets one more unit of the resource r.
� save(r): the agent saves one unit of the resource r.
� free(r): the agent frees one unit of the resource r which he has previously
saved.

2.2 Syntax

As in BDICTL we distinguish between state formulae, which are evaluated in a
single situation, and path formulae which are evaluated along a path.

De�nition 1. Considering a non-empty set of propositional variables P , a �nite
set of atomic actions AAt that include the set of resource availability manage-
ment actions, a �nite set of resource symbols R and a set of resource quantities
{0, . . . ,MAX}, with MAX > 0, the language of EBDI-formulae is given by the
following BNF-grammar:

� state-formulae:
ϕ ::= p | ¬ϕ |ϕ ∧ ϕ | 〈α〉ϕ |Eψ |Aψ |Bel(ϕ) |Des(ϕ) | Int(ϕ) |

Fund(ϕ) |Needs(a, r) |Availableq(r) |Savedq(r) |Cap(α) |Res(α)
where p ∈ P, a ∈ AAt, r ∈ R and 0 ≤ q ≤MAX.

� path-formulae:
ψ ::= Xϕ | (ϕUϕ)

� regular actions:
α ::= id | a ∈ AAt |ϕ? |α;α |α+ α |α∗

In addition, we introduce the following abbreviations: >, ⊥, ϕ∨ψ and ϕ→ ψ
are abbreviations of ¬(p∧¬p) (with p being a �xed element of P), ¬>, ¬(¬ϕ∧¬ψ)
and ¬(ϕ ∧ ¬ψ), respectively; AFϕ, EFϕ, AGϕ and EGϕ are abbreviations of
A(>Uϕ), E(>Uϕ), ¬EF¬ϕ and ¬AF¬ϕ, respectively. The formula [α]ϕ stands

4

for ¬〈α〉¬ϕ. Iterated action αn, with n ≥ 0, are inductively de�ned by α0 = id
and α(n+1) = α;αn.

Informally, X means next temporal state, U true until, F in a future temporal
state, G globally true. The path quanti�cation modal operators E and A mean,
respectively, in one path and in all paths. The regular action modal operator 〈α〉
means possibly true after a successful execution of α.

2.3 Semantics

EBDI-formulae are interpreted in extended BDICTL models, called EBDI-models.
We follow Schild's approach to BDICTL [15], by considering a situation as a pair
δ = 〈w, s〉, where s is a temporal state and w refers to a world (mental state
perspective).

De�nition 2. Given a non-empty set of situations ∆, a non-empty set of propo-
sitional variables P , a �nite set of atomic actions AAt, a set of resource symbols
R and a positive constant MAX, we de�ne an EBDI-model as a tuple:

M = 〈∆,RT , {Ra : a ∈ AAt},B,D, I,F , V, C, avl, svd, needs〉

such that:

� RT ⊆ ∆×∆ is a temporal accessibility-relation, such that:
• it is serial, i.e., ∀δ ∈ ∆, ∃δ′ ∈ ∆ such that (δ, δ′) ∈ RT ;
• if (〈wi, sj〉, 〈wk, sl〉) ∈ RT , then wi = wk.

� Ra ⊆ RT is an atomic action accessibility-relation, with a ∈ AAt;
� B,D, I,F ⊆ ∆×∆ are accessibility-relations for the mental state operators.
These relations have the following property (considering O ∈ {B,D, I,F}):

if (〈wi, sj〉, 〈wk, sl〉) ∈ O then sj = sl;

� V : P → ℘(∆) is a propositional variable labelling function;
� C : AAt → ℘(∆) is a capability labelling function;
� needs : AAt → ℘(R) is a function that de�nes which resource symbols in R
are needed to execute each action of AAt;

� avl : ∆ × R → {0, . . . ,MAX} is a function that for each situation de�nes
which quantity of each resource is available;

� svd : ∆ × R → {0, . . . ,MAX} is a function that for each situation de�nes
which quantity of each resource is saved.

As in BDICTL path-formulae are evaluated along a path πδ = (δ0, δ1, δ2, . . .),
such that δ = δ0 and ∀i ≥ 0, (δi, δi+1) ∈ RT . The kth element of a path πδ is
denoted by πδ[k].

The accessibility-relation and the capability labelling function for atomic
actions are extended to regular actions, as usual in PDL and KARO. We denote
them, respectively, by RA and cA.

For the modelling of resources the function avl and svd verify the following
properties:

5

� the total amount of resources which the agent can deal with cannot be greater
than MAX:
∀δ ∈ ∆,∀r ∈ R, 0 ≤ avl(δ, r) + svd(δ, r) ≤MAX.

� the execution of an atomic action consumes one unit of each resource needed
for the execution of that action:
∀r ∈ needs(a),∀(δ, δ′) ∈ Ra, avl(δ′, r) = avl(δ, r)− 1.

Also, we assume that for the resource management atomic actions we have:

needs(get(r)) = needs(save(r)) = needs(free(r)) = ∅, ∀r ∈ R

The availability of resources for executing regular actions is given by:

res : ARa → ℘(∆)

resa =

{δ | if r ∈ needs(a) then avl(r, δ) ≥ 1}, ifneeds(a) 6= ∅

∆, otherwise.
resϕ? = ∆

resα;β = {δ | δ ∈ resα ∧ ∃(δ, δ′) ∈ RAα , δ′ ∈ resβ}
resα+β = resα ∪ resβ
resα∗ = ∪n≥0(resαn)

The intuition behind the value of the resource availability function res for α∗

is that the iterated execution of α is bounded to the existence of a �nite amount
of resources.

We are now in conditions to de�ne the satis�ability for an EBDI-formula.

De�nition 3. Let M be an EBDI-model and δ a situation. The satis�ability of
an EBDI-formula is de�ned inductively as follows:

� state formulae satisfaction rules:
• M, δ |= p i� δ ∈ V (p)
• M, δ |= ¬ϕ i� M, δ 6|= ϕ
• M, δ |= ϕ ∧ ψ i� M, δ |= ϕ e M, δ |= ψ
• M, δ |= Eψ i� exists a path πδ such that M,πδ |= ψ
• M, δ |= Aψ i� for all paths πδ, M,πδ |= ψ
• M, δ |= 〈α〉ϕ i� exists (δ, δ′) ∈ RAα such that M, δ′ |= ϕ
• M, δ |= Bel(ϕ) i� for all (δ, δ′) ∈ B, M, δ′ |= ϕ
• M, δ |= Des(ϕ) i� for all (δ, δ′) ∈ D, M, δ′ |= ϕ
• M, δ |= Int(ϕ) i� for all (δ, δ′) ∈ I, M, δ′ |= ϕ
• M, δ |= Fund(ϕ) i� for all (δ, δ′) ∈ F , M, δ′ |= ϕ
• M, δ |= Cap(α) i� δ ∈ cAα
• M, δ |= Needs(a, r) i� r ∈ needs(a)
• M, δ |= Availableq(r) i� avl(δ, r) = q
• M, δ |= Savedq(r) i� svd(δ, r) = q
• M, δ |= Res(α) i� δ ∈ resα

� path formulae satisfaction rules:
• M,πδ |= Xϕ i� M,πδ[1] |= ϕ
• M,πδ |= ϕ1Uϕ2 i� ∃ k ≥ 0 such that M,πδ[k] |= ϕ2 and ∀j, 0 ≤ j <
k
(
M,πδ[j] |= ϕ1

)

6

2.4 Properties of EBDI

The axiomatic characterisation of EBDI's modal operators of time and BDI mental
states are the same as in BDICTL-logic. The modal operator Fund, for fundamental
desires, follows the axiom set of Des and Int operators, which is the KD system
[16], i.e., F is a serial accessibility-relation. The Bel operator veri�es the KD45
axioms, i.e., B is an equivalence relation.

The temporal operators follow the axioms of CTL and the action execution
operators verify the axioms of PDL. Since both branching-time and regular action
execution structures coexist, we have the following properties:

Theorem 1. Let M be an EBDI-model, a an atomic action and α a regular
action. We have:

1. if M, δ |= 〈a〉ϕ then M, δ |= EXϕ.
2. if M, δ |= 〈α〉ϕ then M, δ |= EFϕ.
3. if M, δ |= 〈α∗〉ϕ then M, δ |= E(〈α〉>Uϕ).

Capabilities are characterised similarly to abilities in the KARO framework.
The axioms for the Cap modal operator are:

� Cap(ϕ?)→ >
� Cap(α;β)↔ Cap(α) ∧ 〈α〉Cap(β)
� Cap(α+ β)↔ Cap(α) ∨ Cap(β)
� Cap(α∗)↔ Cap(α) ∧ 〈α〉Cap(α∗)
� Cap(α) ∧ 〈α∗〉(Cap(α)→ 〈α〉Cap(α))→ Cap(α∗)

Resource availability for regular actions follows almost the same axioms that
characterise the Cap operator. However, the unbounded composition operator ∗

behaves di�erently, bounding the execution of an action α∗ to a �nite number
of compositions of α. This composition stops when there are no resources to
execute α once more. The Res operator veri�es the following axioms:

� Res(get(r))↔ Res(save(r))↔ Res(free(r))↔ Res(ϕ?)↔ >
� Res(a)↔

∧
r∈R

(
Needs(a, r)→

∨MAX
n=1 Availablen(r)

)
� Res(α;β)↔ Res(α) ∧ 〈α〉Res(β)
� Res(α+ β)↔ Res(α) ∨ Res(β)
� Res(α∗)↔ Res(α) ∧ 〈α〉Res(α∗)
� Res(α∗) ∧ 〈α∗〉(Res(α)→ 〈α〉Res(α))→ Res(α∗)

Resources are also characterised by axioms which deal with the modal oper-
ators Available, Needs and Saved. First we de�ne some abbreviations that repre-
sent, respectively, the maximum quantity of available and saved resources, in a
situation:

� MaxAvlq(r) =def Availableq(r) ∧ ¬Available(q+1)(r)
� MaxSvdq(r) =def Savedq(r) ∧ ¬Saved(q+1)(r)

7

The following axioms characterise the interaction between action execution
and resource availability:

� MaxAvlq(r) ∧ Needs(a, r)→ [a]MaxAvl(q−1)(r), 0 < q ≤MAX
� MaxAvlq(r) ∧ ¬Needs(a, r)→ [a]MaxAvlq(r), 0 ≤ q ≤MAX
� MaxSvdq(r) ∧ Needs(a, r)→ [a]MaxSvdq(r), 0 ≤ q ≤MAX
� MaxSvdq(r) ∧ ¬Needs(a, r)→ [a]MaxSvdq(r), 0 ≤ q ≤MAX

The following axioms characterise the dynamics of the availability of re-
sources, considering both resource availability limits and the execution of the
special actions to manage them. We have:

� resource availability limits:

• Available0(r), ∀r ∈ R
• Saved0(r), ∀r ∈ R
• Availableq(r)→ Available(q−1)(r), 1 < q ≤MAX

• Savedq(r)→ Saved(q−1)(r), 1 < q ≤MAX

� resource availability and resource management actions:

• Needs(get(r), r′)→ ⊥, ∀r, r′ ∈ R
• Needs(save(r), r′)→ ⊥, ∀r, r′ ∈ R
• Needs(free(r), r′)→ ⊥, ∀r, r′ ∈ R
• MaxAvlq(r)→ [get(r)]MaxAvl(q+1)(r), for 0 ≤ q < MAX

• MaxAvlq(r)∧MaxSvdq
′
(r)→ [save(r)](MaxAvl(q−1)(r)∧MaxSvd(q′+1)(r)),

with 0 ≤ q + q′ ≤MAX

• MaxAvlq(r)∧MaxSvdq
′
(r)→ [free(r)](MaxAvl(q+1)(r)∧MaxSvd(q′−1)(r)),

with 0 ≤ q + q′ ≤MAX

2.5 Decidability

The decidability of EBDI is obtained by transforming an original EBDI-formula ϕ
into a new formula ϕ′ which is evaluated in a modi�ed EBDI-model. This mod-
i�ed model is a BDICTL-model which considers the accessibility relation F and
special propositional variables which represent the execution of atomic actions,
capabilities and resource availability.

Let L be an EBDI language and P the set of propositional variables. We de�ne
a new language L′ equal to L except that it has a new set of propositions P ′

that is the union of the following disjunct sets:

� the set of propositional variables P ,
� the set of propositional variables which represent the atomic actions:
{done_a | a ∈ AAt},

8

� the set of propositional variables which represent the capabilities for atomic
actions:
{cap_a | a ∈ AAt},

� the set of propositional variables which represent the resources for atomic
actions:
{res_a | a ∈ AAt},

� a set of propositional variables for representing the various quantities of re-
sources available:
{avl_q_r, svd_q_r | q ∈ {0, . . . ,MAX}, r ∈ R},

� a set of propositional variables for representing the resources needed for the
execution of each atomic action:
{needs_a_r | a ∈ AAt, r ∈ R}.

Considering an EBDI-model M , the modi�ed model M ′ is de�ned as follows,
extending the propositional labelling function of M .

De�nition 4. Let M be an EBDI-model such that:

M = 〈∆,RT , {Ra : a ∈ AAt},B,D, I,F , V, C, avl, svd, needs〉,

a model M ′ is a tuple:

M ′ = 〈∆,RT ,B,D, I,F , V ′〉,

such that V ′ : P ′ → ℘(∆) is de�ned as follows:

� V ′(p) = V (p),
� V ′(done_a) = {δ′ | ∃(δ, δ′) ∈ RAa },
� V ′(cap_a) = C(a),
� V ′(res_a) = resa,
� V ′(avl_q_r) = {δ |M, δ |= Availableq(r)},
� V ′(svd_q_r) = {δ |M, δ |= Savedq(r)},
� V ′(needs_a_r) = {δ |M, δ |= Needs(a, r)}.

Note that in V ′ only atomic actions are considered. Therefore, any EBDI-
formula must be normalised into an equivalent one where only atomic actions
can occur. The normalisation ξ is presented in the extended version of this paper
[17]. After normalisation, we apply the transformation de�ned below, so that the
resulting formula can be evaluated in a model M ′.

De�nition 5. Let ϕ be an normalised EBDI-formula. The transformation of ϕ
to ϕ′ is given by τ , inductively de�ned as follows:

� propositional-formulae:

τ(>) = >,
τ(p) = p,
τ(¬ϕ) = ¬(τ(ϕ)),
τ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ).

9

� temporal-formulae:

τ(Aψ) = A(τ(ϕ)),
τ(Eψ) = E(τ(ϕ)),
τ(Xϕ) = X(τ(ϕ)),
τ(ϕ1Uϕ2) = (τ(ϕ1)Uτ(ϕ2)).

� action execution formulae:

τ(〈a〉ϕ) = EX(done_a ∧ τ(ϕ)),
τ([a]ϕ) = AX(done_a→ τ(ϕ)).

� mental-state formulae:

τ(Bel(ϕ)) = Bel(τ(ϕ)),
τ(Des(ϕ)) = Des(τ(ϕ)),
τ(Int(ϕ)) = Int(τ(ϕ)),
τ(Fund(ϕ)) = Fund(τ(ϕ)),
τ(Fear(ϕ)) = Fear(τ(ϕ)).

� capabilities and resources formulae:

τ(Cap(a)) = cap_a,
τ(Res(a)) = res_a,
τ(Needs(a, r)) = needs_a_r,
τ(Availableq(r)) =

∧
0≤s≤q(avl_s_r),

τ(Savedq(r)) =
∧

0≤s≤q(svd_s_r).

Now we can present the following theorem.

Theorem 2. Let M be an EBDI-model, δ a situation and ϕ a normalised EBDI-
formula. If M, δ |= ϕ then M ′, δ |= τ(ϕ).

Using this theorem, we obtain the decidability of a EBDI-formula ϕ by trans-
forming it into ϕ′ and applying to the latter the tableau construction for BDICTL,
with a rule for expanding formulas containing the Fund modal operator. There-
fore we have:

Theorem 3. The EBDI logic is decidable.

The details and proofs for the decidability of EBDI are presented in the ex-
tended version of this paper.

3 Preliminaries for modelling emotions in EBDI

In this section we present a series of concepts which will be useful for modelling
emotions in EBDI. These concepts refer to conditions that are the basis for mod-
elling the activation of emotions and the consequences that these emotions have
in the behaviour of the agent.

10

3.1 Resource management actions

We begin by de�ning special regular actions for dealing with resource manage-
ment. For that we consider the following abbreviations for regular actions:

� If(ϕ, α) =def (ϕ?;α)
� IfE(ϕ, α, β) =def If(ϕ, α) + If(¬ϕ, β)
� WhileDo(ϕ, α) =def ((ϕ?;α)∗);¬ϕ?

We also consider a special function which, given a �nite set of regular actions
S, returns the composition of all the actions in S, in some order (in this function
we consider ∀α, β ∈ ARa, α;β = β;α). This function, which we denominate by
eval_set, is inductively de�ned as:

eval_set : ℘(ARa)→ ARa

eval_set(∅) = id
eval_set({α} ∪ S) = α; eval_set(S)

Based on the atomic actions for the of resource management, we de�ne the
following set of resource management regular actions:

GET: the agent gets all the resources needed to execute some action. Consid-
ering:
Cond1(a, r) = Needs(a, r) ∧MaxAvl0(r)
we have:
GET(a) = eval_set({If(Cond1(a, r), get(r)) | r ∈ R})

SAVE: the agent saves a unit of each resource needed to execute an action.
Considering:
Cond2(a, r) = Needs(a, r) ∧ ¬MaxSvd1(r)
we have:
SAVE(a) = eval_set({If(Cond2(a, r), IfE(Avl(r), save(r), get(r); save(r))) | r ∈
R})

FREE: the agent frees the resources previously saved for executing an action.
Considering:
Cond3(a, r) =def Needs(a, r) ∧ Saved1(r)
we have:
FREE(a) = eval_set({If(Cond3(a, r), free(r)) | r ∈ R})

3.2 Proposition achievement

For the agent to succeed in the execution of an action it must have both the
capability and resources for that action. We denote the existence of both of them
as e�ective capability. Formally we have:

� EffCap(α) =def Cap(α) ∧ Res(α)

11

The agent also considers if it can or cannot execute some action to achieve the
truth of some proposition. Formally we have:

� Can(α,ϕ) =def Bel(〈α〉ϕ ∧ EffCap(α))
� Cannot(α,ϕ) =def Bel(¬〈α〉ϕ ∨ ¬EffCap(α))

3.3 Risk and favourable conditions

The activation of emotions is based on conditions of the environment that show
to be positive or negative to the desires and fundamental desires of the agent.
First we de�ne the following conditions:

Risk condition: a proposition ϕ is said to be at risk if there is a next situation
in which ¬ϕ is true:
AtRisk(ϕ) =def EX(¬ϕ)

Possibly at risk: a proposition ϕ is said to be possibly at risk if there exists a
future situation where ¬ϕ is true. Formally this is de�ned as:
PossAtRisk(ϕ) =def EF(¬ϕ)

Safe: a proposition ϕ is said to be safe if it will always be true in the future.
Formally we have:
Safe(ϕ) =def AF(ϕ)

On believing on the above, and the propositions being either fundamental
desires or only desires, the agent distinguishes between three types of conditions
for activating emotions:

1. Threats: a threat is a condition of the environment in which a fundamen-
tal desire is in imminent risk of failure. We consider the following kinds of
threats:

� a fundamental desire ϕ is said to be threatened if the agent believes that
ϕ is at risk:
Threatened(ϕ) =def Bel(AtRisk(ϕ)) ∧ Fund(ϕ)

� a fundamental desire ϕ is said to be threatened by a proposition ψ if the
agent believes that the truth of ψ implies ϕ being at risk:
ThreatProp(ψ,ϕ) =def Bel(ψ → AtRisk(ϕ)) ∧ Fund(ϕ)

� a fundamental desire ϕ is said to be threatened by the execution of an
action a if the agent believes that the successful execution of a will put
ϕ at risk:
ThreatAct(a, ϕ) =def Bel(〈a〉AtRisk(ϕ)) ∧ Fund(ϕ)
ThreatsEffC(a, ϕ) =def Bel(¬EffCap(a)→ AtRisk(〈a〉ϕ)) ∧ Fund(ϕ)

12

2. Not favourable: a condition is not favourable if it reveals a possible failure
of one of the agent's desires, in the future. As in the case of the threats, we
consider the following kinds of not favourable conditions:

� NotFavourable(ϕ) =def Bel(PossAtRisk(ϕ)) ∧ Des(ϕ)
� NotFavourableProp(ψ,ϕ) =def Bel(ψ → PossAtRisk(ϕ)) ∧ Des(ϕ)
� NotFavourableAct(α,ϕ) =def Bel(〈α〉PossAtRisk(ϕ)) ∧ Des(ϕ)

Note that here we consider regular actions instead of atomic ones since the
risk condition is not bounded to verify in a next situation.

3. Favourable: a condition is said to be favourable if it refers to a current sit-
uation of the environment in which a desire of the agent has the possibility
to be achieved. We de�ne the following kinds of favourable conditions:

� Favourable(ϕ) =def Bel(Safe(ϕ)) ∧ Des(ϕ)
� FavourableProp(ϕ,ψ) =def Bel(ψ → Safe(ϕ)) ∧ Des(ϕ)
� FavorableAct(α,ϕ) =def Bel(〈α〉Safe(ϕ)) ∧ Des(ϕ)

4 Modelling emotions in EBDI

In this section we present the modelling of three emotions within EBDI logic:
Fear, Anxiety and Self-Con�dence. For each of these emotions we model both
its activation conditions and the e�ects that their presence have in the future
behaviour of an Emotional-BDI agent. This modelling is based in the work of
Oliveira & Sarmento in [4].

The activation condition of each of the emotions corresponds precisely to a
condition de�ned in the previous section. We opted by this approach to avoid the
logical omniscience problem [18]. The use of a notation Emotion(F (ϕ)) allows
a more intuitive meaning and can help in the future development of a formal
calculus for (emotional) EBDI-formulae.

4.1 Fear

The activation of fear occurs when a fundamental desire of the agent is put at
risk of failure. Using other words, fear is activated when the agent detects a
threat. Therefore we have the following kinds of fear:

� Fear(¬ϕ) ≡ Threatened(ϕ)
� Fear(ψ → ¬ϕ) ≡ ThreatsProp(ψ,ϕ)
� Fear(〈a〉¬ϕ) ≡ ThreatsAct(a, ϕ)

The main e�ect of fear is bringing the agent into a cautious perspective
towards the environment and, in particular, to the threat he detected. Depending
on the kind of threat, the agent will aim at avoiding that threat. We consider
the following behaviours under the e�ect of fear:

13

� if the agent can avoid a threat through the execution of an action a the he
intends to execute it:
Fear(¬ϕ) ∧ Can(a, ϕ)→ Int(〈a〉ϕ)

� if the agent cannot avoid the threat through an action a then he does not
intend to execute it:
Fear(¬ϕ) ∧ Cannot(a, ϕ)→ ¬Int(〈a〉ϕ)

� if the agent can avoid a proposition which is a threat, or can make the propo-
sition and the fundamental desire coexist � both through the execution of
an action � then the agent intends to execute that action:
Fear(ψ → ¬ϕ) ∧ Can(a,¬ψ)→ Int(〈a〉¬ψ)
Fear(ψ → ¬ϕ) ∧ Can(a, ψ ∧ ϕ)→ Int(〈a〉(ψ ∧ ϕ))

� if the execution of an action is a threat to the agent then the agent will
not intend to execute it (possibly for achieving some proposition ψ) until it
causes no fear:
Fear(〈a〉¬ϕ)→ A(¬Int(〈a〉>)U¬Fear(〈a〉ϕ))

� if the agent believes that an action a for which it does not have resources
can eliminate the threat, then one of the following conditions apply:
1. the agent can eliminate the fear by freeing previouly saved resources to

execute other action:
Fear(¬ϕ) ∧ Cannot(a, ϕ) ∧ Bel([FREE(α)]Can(a, ϕ))→ Int(〈FREE(α); a〉ϕ)

2. the agent believes it can get the resources for a before compromising its
fundamental desire:
Fear(¬ϕ) ∧ Cannot(a, ϕ) ∧ Bel([GET(α)]Can(a, ϕ))→ Int(〈GET(α); a〉ϕ)

4.2 Anxiety

The activation of anxiety occurs when the desires of the agent can be at risk
in the future. Therefore, anxiety works as preventive alert system towards fu-
ture situations which may compromise the overall performance of the agent. We
consider the following kinds of anxiety activation:

� Anx(EF¬ϕ) ≡ NotFavourable(ϕ)
� Anx(ψ → EF¬ϕ) ≡ NotFavourableProp(ψ,ϕ)
� Anx(〈α〉EF¬ϕ) ≡ NotFavourableAct(α,ϕ)

The e�ects of anxiety are mainly preparing the agent to face future risk
conditions, or to avoid them before they occur. We consider the following cases:

� if an action α guarantees that the desire will not be at risk, the agent intends
to execute α. If he does not have enough resources, he will save them:
Anx(EF¬ϕ) ∧ Can(α,AFϕ)→ Int(〈α〉AFϕ)

14

Anx(EF¬ϕ) ∧ Int(〈α〉AFϕ) ∧ ¬Res(α)→ 〈Save(α)〉Int(〈α〉AFϕ)

� if a proposition causes anxiety and the agent has a way to either negate that
proposition or make that proposition coexist with the desire possibly at risk,
then the agent will execute that action:
Anx(ψ → EF¬ϕ) ∧ Can(α,AF(¬ψ ∨ (ψ ∧ ϕ))→ Int(〈α〉AF(¬ψ ∨ (ψ ∧ ϕ)))

� if the execution of an action is causing anxiety and the execution of that ac-
tion is an intention of the agent, the agent will not intend it until it becomes
harmful:
Anx(〈α〉EF¬ϕ) ∧ Int(〈α〉ϕ)→ AX(A(¬Int(〈α〉ϕ)UBel(AFϕ)))

4.3 Self-con�dence

Self-con�dence represents the well-being of the agent relatively to the future
achievement of one of its desires. Using other words, if a desire is in a favourable
condition to be achieved, the agent feels self-con�dence about its achievement.
We consider the following kinds of self-con�dence:

� SConf(ϕ) ≡ Favourable(ϕ)
� Sconf(ψ → ϕ) ≡ FavourableProp(ψ,ϕ)
� SConf(〈α〉ϕ) ≡ FavourableAct(α,ϕ)

Self-con�dence deals mostly with the maintainance of intentions. Since the
desires are considered to be achievable, the agent only cares about maintaining
them in the set of intentions until he believes he achieved them. We consider the
following kinds of behaviour:

� if the agent already intends a desire to which he is self-con�dent about, the
agent will continue to intend it until he believes it is achieved:
SConf(ϕ) ∧ Int(〈α〉ϕ)→ A(Int(〈α〉ϕ)UBel(ϕ))

� if the agent still does not intend the desire, he will begin to intend it from
the next situation on:
SConf(ϕ) ∧ Can(α,ϕ) ∧ ¬Int(〈α〉ϕ)→ AXInt(〈α〉ϕ)

� if a proposition causes self-con�dence about a desire, then the agent will
start intending that proposition and also intend both the proposition and
the desire itself:
SConf(ψ → ϕ) ∧ Can(α,ψ) ∧ ¬Int(〈α〉ψ)→ AXInt(〈α〉ϕ)
SConf(ψ → ϕ)→ Int(ψ ∧ ϕ)

� if the agent has the resources needed to execute an action which will guaran-
tee the achievement of a desire to which it is self-con�dent about, then the
agent will free those resources and intend to get them right before executing
the action:
SConf(〈α〉ϕ) ∧ Int(〈α〉ϕ) ∧ Saved(α)→ 〈FREE(α)〉Int(〈Get(α);α〉ϕ)

15

5 Related work

The work which more relates to the one we present in this paper is the one of
Meyer in [19], where he proposes the formal modelling of happiness, sadness,
anger and fear in the KARO logical framework. The main di�erences and sim-
ilarities betwen Meyer's work and ours are:

� Meyer suggests the introduction of a modal operator Goalm(ϕ) which rep-
resents what they call a maintainance goal. This modal operator is used to
model fear with a similar intuition as the one behind our Fund(ϕ) modal
operator, i.e., to de�ne a more important kind of desire.

� Meyer uses computational sequences of atomic actions to refer to future
states of an agent, while we use the standard CTL's temporal operators.

In a more recent work, Meyer and Dastani introduce the modelling of emo-
tions previously done in a agent oriented programming language. This work is
presented in [20]. In this work the author presents transition rules for the gener-
ation of each of the emotions modelled in [19]. This generated emotions are then
feed into the programming language's deliberation process which determine the
e�ects that these emotions have in the mental states of an agent.

6 Conclusions and future work

In this paper we have presented an improved version of the EBDI logic to model
the activation and e�ects of emotions in the behaviour exhibited by a Emotional-
BDI agent. The emotions analysed were fear, anxiety and self-con�dence. This
formalisation was based in the BDICTL logic, which was extended with the notions
of fundamental desire, explicit reference to actions, capabilities and resources.

We have shown that the satis�ability of EBDI-formulae can be reduced to the
satis�ability of BDICTL-formulae. We have implemented an extended version of
the BDICTL's tableau decision procedure for EBDI-formulae.

We plan to obtain a direct characterisation of a sound and complete axiomatic
system for EBDI that would allow the development of deduction systems suitable
for automatic theorem proving, along the lines of the work of Naoyuki & Takata
[21].

This work was partially founded by Fundação para a Ciência e Tecnologia (FCT)
and program POSI.

References

1. Pereira, D., Oliveira, E., Moreira, N., Sarmento, L.: Towards an architecture for
emotional BDI agents. In Carlos Bento, A.C., Dias, G., eds.: EPIA05 � 12th
Portuguese Conference on Arti�cial Intelligence, Universidade da Beira Interior,
IEEE (December 2005) 40�46 ISBN 0-7803-9365-1.

16

2. Pereira, D., Oliveira, E., Moreira, N.: Modelling emotional BDI agents, Riva Del
Garda, Italy, Workshop on Formal Approaches to Multi-Agent Systems (FAMAS
2006) (August 2006)

3. Oliveira, E., Sarmento, L.: Emotional valence-based mechanisms and agent per-
sonality. In Bittencourt, G., Ramalho, G., eds.: SBIA. Volume 2507 of Lecture
Notes in Computer Science., Springer (2002) 152�162

4. Oliveira, E., Sarmento, L.: Emotional advantage for adaptability and autonomy.
In: AAMAS. (2003) 305�312

5. Sarmento, L., Moura, D., Oliveira, E.: Fighting �re with fear. Proceedings of 2nd
European Workshop on Multi-Agent Systems (EUMAS 2004) (December 2004)

6. Rao, A.S., George�, M.P.: Decision procedures for bdi logics. J. Log. Comput.
8(3) (1998) 293�342

7. Rao, A.S., George�, M.P.: Modeling rational agents within a BDI-architecture.
In Allen, J., Fikes, R., Sandewall, E., eds.: Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning (KR'91),
Morgan Kaufmann publishers Inc.: San Mateo, CA, USA (1991) 473�484

8. van der Hoek, W., van Linder, B., Meyer, J.J.C.: A logic of capabilities. In Nerode,
A., Matiyasevich, Y., eds.: LFCS. Volume 813 of Lecture Notes in Computer Sci-
ence., Springer (1994) 366�378

9. Schmidt, R.A., Tishkovsky, D., Hustadt, U.: Interactions between knowledge, ac-
tion and commitment within agent dynamic logic. Studia Logica 78(3) (2004)
381�415

10. van Linder, B., van der Hoek, W., Meyer, J.J.C.: Formalising abilities and oppor-
tunities of agents. Fundamenta Informaticae 34(1-2) (1998) 53�101

11. van der Hoek, W., van Linder, B., Meyer, J.J.C.: On agents that have the ability
to choose. Studia Logica 66(1) (2000) 79�119

12. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B). (1990) 995�1072

13. Bratman, M.E., Israel, D., Pollack, M.E.: Plans and resource-bounded practical
reasoning. Computational Intelligence 4 (1988) 349�355

14. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
15. Schild, K.: On the relationship between bdi logics and standard logics of concur-

rency. Autonomous Agents and Multi-Agent Systems 3(3) (2000) 259�283
16. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics

of knowledge and belief. Artif. Intell. 54(3) (1992) 319�379
17. Pereira, D., Oliveira, E., Moreira, N.: Formal modelling of emotions in BDI agents.

Technical Report DCC-2007-04, DCC-FC & LIACC, Universidade do Porto (2007)
18. Whitsey, M.: Logical omniscience: A survey (2003)
19. Meyer, J.J.C.: Reasoning about emotional agents. In de Mántaras, R.L., Saitta,

L., eds.: ECAI, IOS Press (2004) 129�133
20. Dastani, M., Meyer, J.J.C.: Programming agents with emotions. In Brewka, G.,

Coradeschi, S., Perini, A., Traverso, P., eds.: ECAI, IOS Press (2006) 215�219
21. Nide, N., Takata, S.: Deduction systems for bdi logics using sequent calculus.

In: The First International Joint Conference on Autonomous Agents & Multiagent
Systems, AAMAS 2002, July 15-19, 2002, Bologna, Italy, Proceedings, ACM (2002)
928�935

