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Abstract. In this paper we describe an implementation of Kleene Al-
gebras with Tests (KAT) in the Coq theorem prover. We also present
the Propositional Hoare Logic (PHL) encoding in KAT, by deriving its
deduction rules as theorems of KAT. This work is part of a study of the
feasibility of using KAT for to the automatic production of certi�cates
in the context of (source-level) Proof-Carrying-Code (PCC).

1 Introduction

A Kleene Algebra with Tests (KAT) is an algebraic structure developed by Kozen
[1] which is the combination of a Boolean Algebra (BA) and Kleene Algebra (KA)
[2]. This algebraic structure permits the interaction of Boolean tests and regu-
lar events in a very compact way. It was shown to be highly expressive, which
allow it to be applied to several formal veri�cation tasks involving communica-
tion protocols, basic safety analysis, source-to-source program transformation,
concurrency control, compiler optimization and data-�ow analysis [3�5].

In this paper we present an approach to program veri�cation using KAT by
proving in the Coq theorem prover [6] that Propositional Hoare Logic (PHL) [7,
8] rules are theorems of KAT.

This paper is organized as follows. In Section 2 we brie�y present the theory
of KAT and PHL. In Section 3 we show how we have implemented KAT and
PHL in the Coq theorem prover. In Section 4 we relate the work presented here
with the enforcement of security mechanisms for Embedded Systems' software.

Finally, in Section 5 we draw some conclusions and point some directions to
future research.

2 Revision of KAT and PHL concepts

As de�ned by Kozen in [1], a KAT is a KA combined with a BA where the
elements of the latter are called tests. Therefore, a KAT is an algebraic structure

(K, B, +, ·,∗ ,− , 0, 1)

with B ⊆ K and where
(K, +, ·,∗ , 0, 1)

is a KA and
(B, +, ·,− , 0, 1)



is a BA. Both the KA and the BA satisfy the axioms (1)-(11) presented below.
In addition, KA satis�es the axioms (12)-(15) and BA satis�es the usual Boolean
axioms (16)-(24). As usual we omit the · operator. The Kleene Star operator ∗

has the higher precedence level, and + the lower precedence level, in the KA
context. In the BA context, − has the higher precedent and the rest remains the
same.

Let p, q, r ∈ K and b, c ∈ B for any given KAT. The axioms for KAT are the
following:

p + (q + r) = (p + q) + r (1)

p + q = q + p (2)

p + 0 = p (3)

p + p = p (4)

p(qr) = (pq)r (5)

1p = p (6)

p1 = p (7)

p(q + r) = pq + pr (8)

(p + q)r = pr + qr (9)

0p = 0 (10)

p0 = 0 (11)

1 + pp∗ = p∗ (12)

1 + p∗p = p∗ (13)

q + pr ≤ r → p∗q ≤ r (14)

q + rp ≤ r → qp∗ ≤ r (15)

1̄ = 0 (16)

0̄ = 1 (17)

bc = cb (18)

b + 1 = 1 (19)

b + b̄ = 1 (20)

bb̄ = 0 (21)

¯̄b = b (22)

(b + c) = bc (23)

(bc) = b̄ + c̄ (24)

where ≤ is the natural partial order on K, de�ned as

p ≤ q ↔ p + q = q.



The language of KAT is very expressive and compressed and permits us to
represent both (simple) imperative programs and its properties, such as Propo-
sitional Hoare Logic (PHL) rules). The PHL deductive rules are theorems of
KAT, i.e., can be derived using the above axioms of KAT and a usual deduction
system.

Let p and q be elements of K, and b elements of B, for any KAT. Consider
the following simple while language without assertions:

p ::= p; q |
if b then p else q |
while bdo p

These rules can be easily translated into KAT expressions as follows:

p; q = pq

if b then p else q = bp + b̄q

while bdo p = (bp)∗b̄

The basic assertion of Hoare Logic is the Partial Correctness Assertion (PCA)

{b}p{c}

where b and c are formulas and p is a program. The intuition behind this assertion
is that whenever the formula b holds before executing p, then if p halts, it will
halt in an output state where c will be true. However, this condition does not
force the program p to halt. In KAT, the PCA is written as

bpc̄ = 0

or, equivalently [8], as
bpc = bp.

The translation of the four deduction rules of PHL is as follows:

Composition rule:

{b}p{c} {c}q{d}

{b}p;q{d}

⇔

bp = bcp ∧ cq = cqd→ bpq = bpqd

Conditional rule:

{b ∧ c} p {d} {¬ b ∧ c} q {d}

{c}if b thenp else q {d}



⇔
bcp = bcpd ∧ b̄cq = b̄cqd→ c(bp + b̄q) = c(bp + b̄q)d

While rule:

{b ∧ c} p {c}

whilebdo p {¬ b ∧ c}

⇔
bpc = bcpc→ c(bp)∗b̄ = c(bp)∗b̄b̄c

Weakening rule:

b' → b {b} p {c} c → c'

{b'} p {c'}

⇔
b′ ≤ b ∧ bp = bpc ∧ c ≤ c′ → b′p = b′pc′

3 Implementation of KAT in Coq

A KAT is a combination of BA and KA. Both share a set of axioms for the
operations + and ., applied to both elements of B and K, respectively. In the
current version of our implementation we use the Coq module system to de�ne
modules which represent a BA, a KAT and PHL, respectively.

3.1 Implementation of the BA module

The module Boolean_Algebra_of_Test represents a BA. It contains a type B

representing the elements of B and an inductive type BExpr for representing BA
expressions.

Module Boolean_Algebra_of_Tests.

Parameter B : Set.

Inductive BExpr : Set :=

| BZero : BExpr

| BOne : BExpr

| BTv : B -> BExpr

| BNeg : BExpr -> BExpr

| BPlus : BExpr -> BExpr -> BExpr

| BDot : BExpr -> BExpr -> BExpr.



The constants 0 and 1 are represented, respectively, by the constructors BZero
and BOne. The constructor BTv establishes that elements of B are Boolean ex-
pressions by construction and the constructors BNeg, BPlus and BDot represent,
respectively, the operators −, + and . of negation, disjunction and conjunction.

The implementation of this module is completed by establishing the axioms
(1)-(11) and (16)-(22) in Coq, by just stating them as primitive properties of
BExpr expressions.

Axiom BPlus_Assoc : BPlus (BPlus x y) z = BPlus x (BPlus y z).

Axiom BPlus_Comm : BPlus x y = BPlus y x.

Axiom BPlus_BZero : BPlus x BZero = x.

Axiom BPlus_Idem : BPlus x x = x.

Axiom BDot_Assoc : BDot (BDot x y) z = BDot x (BDot y z).

Axiom BDot_BOne : BDot x BOne = x.

Axiom BDot_BOne_Comm : BDot x BOne = BDot BOne x.

Axiom BDot_Assoc_Left : BDot (BPlus x y) z = BPlus (BDot x z) (BDot y z).

Axiom BDot_Assoc_Right : BDot x (BPlus y z) = BPlus (BDot x y) (BDot x z).

Axiom BDot_BZero : BDot x BZero = BZero.

Axiom BDot_BZero_Comm : BDot x BZero = BDot BZero x.

Axiom BNeg_One : BNeg BOne = BZero.

Axiom BNeg_Zero : BNeg BZero = BOne.

Axiom BIdemp : BDot b b = b.

Axiom BDot_Comm : BDot b c = BDot c b.

Axiom BPlus_Comp : BPlus b (BNeg b) = BOne.

Axiom BDot_Comp : BDot b (BNeg b) = BZero.

Axiom BDouble_Neg : BNeg (BNeg b) = b.

Axiom BPlus_Neg : BNeg (BPlus b c) = BDot (BNeg b) (BNeg c).

Axiom BDot_Neg : BNeg (BDot b c) = BPlus (BNeg b) (BNeg c).

Besides these axioms, some authors use auxiliary axioms to characterize a BA.
Two of the most used are the following, which here we proved as theorems:

Theorem BPlus_One : BPlus b BOne = BOne.

Proof.

intros b.

rewrite <- (BPlus_Comp b).

rewrite <- BPlus_Assoc.

rewrite BPlus_Idem.

trivial.

Qed.

Theorem BPlus_Distr : BPlus b (BDot c d) = BDot (BPlus b c) (BPlus b d).

Proof.

intros b c d.

rewrite BDot_Assoc_Left.

repeat rewrite BDot_Assoc_Right.

rewrite BIdemp.



rewrite <- (BDot_BOne b).

rewrite BDot_Assoc.

rewrite <- BDot_Assoc_Right.

rewrite (BPlus_Comm BOne (BDot BOne d)).

rewrite (BPlus_One).

rewrite BDot_BOne.

rewrite <- BPlus_Assoc.

rewrite (BDot_Comm c b).

rewrite <- (BDot_BOne b).

rewrite (BDot_Assoc b BOne c).

rewrite <- BDot_Assoc_Right.

rewrite <- (BDot_BOne_Comm c).

rewrite (BDot_BOne c).

rewrite (BPlus_Comm BOne c).

rewrite BPlus_One.

rewrite BDot_BOne.

trivial.

Qed.

End Boolean_Algebra_of_Tests.

3.2 Implementation of KAT module

The module Kleene_Algebra_With_Tests represents a KAT. We use the BA
module for the Boolean part of KAT and de�ne a new inductive type for repre-
senting KAT expressions. This type is named K and is presented below:

Module Kleene_Algebra_With_Tests.

Module BAT := Boolean_Algebra_of_Tests.

Notation B := BAT.B.

Notation BExpr := BAT.BExpr.

Parameter Sigma : Set.

Inductive K : Set :=

| One : K

| Zero : K

| T : BExpr -> K

| S : Sigma -> K

| Star : K -> K

| Dot : K -> K -> K

| Plus : K -> K -> K.

The constructors Zero and One represent the constants 0 and 1 respectively.
The constructors Dot, Plus and Star represent the operators +, . and ∗ re-



spectively. The constructor S is used to refer to elements of K in a KAT and
the constructor T brings a BA expression of type BExpr into an element of type
K which permits us to reason about the interaction of Boolean test and the
elements of K.

We have also proved some theorems of KAT which enable us to prove that
PHL rules are theorems of KAT. In particular, that the ≤ relation is an equiva-
lence an it veri�es the following properties.

1 ≤ x∗

x ≤ x∗

x∗x∗ ≤ x∗

. (25)

We proved also the following theorems of equality and of the ≤ relation.

x = y ∧ z = t→ (x + z) = (y + t) x ≤ y ∧ z ≤ t→ (x + z) ≤ (y + t)
x = y ∧ z = t→ xz = yt x ≤ y ∧ z ≤ t→ xz ≤ yt
x = y → x∗ = y∗ x ≤ y → x∗ ≤ y∗

(26)

Here we present the proof of the monotonicity of expressions involving the
Kleene's Star operator both on equality and on the ≤ relation.

Lemma eq_Mon_Star : x = y -> (Star x) = (Star y).

Proof.

intros x y H.

rewrite H.

reflexivity.

Qed.

Definition le_Mon_Star : le x y -> le (Star x) (Star y).

Proof.

intros x y H.

unfold le in *.

rewrite <- H.

rewrite Denesting. (* (x + y)^* = x^*(yx^*)^* *)

rewrite <- (Dot_One (Star x)).

rewrite Dot_Assoc.

rewrite <- Dot_One_Comm.

rewrite Dot_One_Comm.

rewrite <- (Dot_Assoc y One (Star x)).

rewrite (Dot_One y).

rewrite (Dot_One (Star (Dot y (Star x)))).

rewrite <- Dot_One_Comm.

rewrite <- Dot_Assoc_Right.

rewrite One_le_Star. (* 1 <= x^* *)



reflexivity.

Qed.

Besides these properties, we also proved other equivalences between KAT expres-
sions such as the useful theorems of bisimulation, sliding and denesting. These
three theorems of KAT are respectively de�ned as follows:

xy = yz → x∗y = yz∗ (27)

(xy)∗x = x(yx)∗ (28)

(x + y)∗ = x∗(yx∗)∗ (29)

The importance of these theorems is mostrly related to the treatment of the
Kleene star operator under the representation of square matrices within KA.
If the elements of set where the matrices are built from is a KA, then these
matrices become themselves KA, as presented by Kozen in [9].

3.3 Implementation of PHL module

The module Propositional_Hoare_Logic represents the PHL implementation
in the language of KAT. This module is an extension of the Kleene_Algebra_With_Tests
where we proved that rules of PHL are theorems of KAT. For purposes of sim-
plifying the implementation we de�ned new notations to the sets K and B, and
to the Boolean and KAT inductive types.

Module Propositional_Hoare_Logic.

Module KAT := Kleene_Algebra_With_Tests.

Notation K := KAT.K.

Notation B := KAT.B.

Notation BExpr := KAT.BExpr.

Notation Sigma := KAT.Sigma.

The base for the implementation of PHL is the PCA condition. This condition
can be represented in two equivalent ways in KAT. We take one as de�nition
and we proved their equivalence.

Definition PCA (b c : BExpr) (x : K):= Dot (Dot (T b) x) (T (BNeg c)) = Zero.

Lemma PCA_Equiv_Left : PCA b c x -> Dot (T b) x = Dot (Dot (T b) x) (T c).

Proof.

intros b c x H.

rewrite KAT.Dot_Assoc.

rewrite <- (KAT.Dot_One (Dot (T b) x)).

rewrite <- KAT.Eq_Expr_Bool_KAT_1.

rewrite <- (KAT.BAT.BPlus_Comp c).



rewrite KAT.Eq_Expr_Bool_KAT_4.

rewrite KAT.Dot_Assoc_Right.

rewrite H.

rewrite KAT.Plus_Zero.

rewrite KAT.Dot_Assoc.

trivial.

Qed.

Lemma PCA_Equiv_right : Dot (T b) x = Dot (Dot (T b) x) (T c) -> PCA b c x.

Proof.

intros b c x H.

unfold PCA.

rewrite H.

repeat rewrite KAT.Dot_Assoc.

rewrite <- KAT.Eq_Expr_Bool_KAT_3.

rewrite KAT.BAT.BDot_Comp.

rewrite KAT.Eq_Expr_Bool_KAT_2.

repeat rewrite KAT.Dot_Zero.

trivial.

Qed.

The rest of the implementation consisted on the proofs that PHL rules are
theorems of KAT. Here we present the case for composition.

Definition Composition :

Dot (T b) x = Dot (Dot (T b) x) (T c) /\ Dot (T c) y = Dot (Dot (T c) y) (T d)

->

Dot (Dot (T b) x) y = Dot (Dot (T b) x) (Dot y (T d)).

Proof.

intros b c d x y H.

elim H.

intros H0 H1.

rewrite H0.

rewrite KAT.Dot_Assoc.

rewrite H1.

repeat rewrite <- KAT.Dot_Assoc.

trivial.

Qed.

Definition Conditional :

Dot (Dot (T b) (T c)) x = Dot (Dot (Dot (T b) (T c)) x) (T d)

/\

Dot (Dot (T (BNeg b)) (T c)) y = Dot (Dot (Dot (T (BNeg b)) (T c)) y) (T d)

->

Dot (T c) (Plus (Dot (T b) x) (Dot (T (BNeg b)) y))

=



Dot (Dot (T c) (Plus (Dot (T b) x) (Dot (T (BNeg b)) y))) (T d).

Proof.

intros a b c x y H.

elim H.

intros H0 H1.

rewrite KAT.Dot_Assoc_Right.

repeat rewrite <- KAT.Dot_Assoc.

rewrite <- KAT.Eq_Expr_Bool_KAT_3.

rewrite (KAT.BAT.BDot_Comm c b).

rewrite KAT.Dot_Assoc_Left.

rewrite KAT.Eq_Expr_Bool_KAT_3.

rewrite H0.

rewrite (KAT.Dot_Assoc (Dot (Dot (T b) (T c)) x) (T d) (T d)).

repeat rewrite <- KAT.Eq_Expr_Bool_KAT_3.

rewrite (KAT.BAT.BIdemp).

rewrite (KAT.BAT.BDot_Comm c (BNeg b)).

repeat rewrite KAT.Eq_Expr_Bool_KAT_3.

rewrite H1.

rewrite (KAT.Dot_Assoc (Dot (Dot (T (BNeg b)) (T c)) y) (T d) (T d)).

repeat rewrite <- KAT.Eq_Expr_Bool_KAT_3.

rewrite (KAT.BAT.BIdemp).

repeat rewrite KAT.Eq_Expr_Bool_KAT_3.

trivial.

Qed.

4 Applications

We have developed a set of Coq modules that formally implement the KAT
theory and shown its application to program veri�cation using PHL. We did
this with the aim of studying the feasibility of using KAT in the context of
enforcement of security mechanisms for Embedded Systems, in particular, Proof-
Carrying-Code systems.

Proof-Carrying-Code aims at providing static and decentralized security en-
forcement mechanisms based on the notion of veri�able evidence, usually de�ned
as certi�cate. The key idea of Proof-Carrying-Code is to attach to a (mobile)
code �le, an easily checkable proof (certi�cate) that its execution does not violate
certain safety policies.

One possibility is to use KAT as the formal system to write certi�cates for
programs, even at the source code level of the application. KAT has a very
compact representation and there exists automatic procedures to decide KAT
equations, as presented by Worthington in [10] and Kozen in [11]. This means
that we can automate the production of certi�cates in Coq by implementing a
tactic which automatically proves KAT properties which we might be interessed
in the contect of mobile code security. The study of the computational costs of
having a Proof-Carrying-Code system whose certi�cate production is based on



KAT, using the Coq interactive theorem prover. The computational cost of the
implementation of such a system will be subject to future research.

5 Conclusion

In this paper we have presented an implementation of KAT in the Coq theorem
prover. We also presented how the implementation of the KAT model served as
the basis for the implementation of a Coq module for verifying simple imperative
programs using KAT by applying the PHL rules written in the language of KAT.

As we have seen, simple imperative languages have somehow direct transla-
tions into KAT expressions. Moreover, KAT is very compact and needs small
computation power for being analysed and processed for proof correctness. This
aspect is fundamental when considering Embedded Systems, which are now more
in the mobile systems concept and with considerable limitations either in com-
putational power and lack of energy for keeping alive and executing. The imple-
mentation we have presented here can be seen as the starting point for such a
system.

For future work, we intend to augment the implementation we have, by prov-
ing more properties and develop a certi�ed algorithm which decides if two KAT
expressions are equivalent, in an automatic way, probably in the line of the work
presented by Worthington [10]. Such algorithm will facilitate the introduction of
KAT in the realm of new computer paradigms, as is the case of Proof-Carrying-
Code.
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