
DCFS
2010

DCFS
2010

Descriptional Complexity of Formal Systems
(Draft) Deadline for submissions: April 25, 2010

Final versions: July 8, 2010

State Elimination Ordering Strategies: Some

Experimental Results

Nelma Moreira Davide Nabais(A) Rogério Reis

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

nam@ncc.up.pt dnabais@ncc.up.pt rvr@ncc.up.pt

Abstract. Recently, the problem of obtaining a short regular expression
equivalent to a given finite automaton has been intensively investigated.
Algorithms for converting finite automata to regular expressions have an
exponential blow-up in the worst-case. To overcome this, simple heuristic
methods have been proposed. In this paper we analyse some of the heuris-
tics presented in the literature and propose new ones. We also present
some experimental comparative results based on uniform random gener-
ated deterministic finite automata.

Keywords: finite automata, regular expressions, state elimination method,
heuristics

1 Introduction

Recently, the problem of obtaining a short regular expression equivalent to a
given finite automaton has been intensively investigated. An extensive sur-
vey was presented by Ellul et al. [EKSW05], and more recently by Gruber
and Holzer [GH08b]. It is well known that the problem of obtaining a min-
imal regular expression is PSPACE-complete and NP-complete for acyclic au-
tomata [JR93]. It is also inefficient to approximate a minimal regular expres-
sion [GS07], unless P=PSPACE. Classic algorithms for converting finite au-
tomata to regular expressions can produce regular expressions of size O(nk4n)
in the worst case, where n is the number of states and k the alphabet size
of the correspondent automaton. Several exponential lower bounds are pro-
vided in the literature [EKSW05, GH08a] showing that the exponential blow-
up is unavoidable. For specific classes of automata, better upper bounds can be
found [EKSW05, GF08, Sak05, MR09]. In particular, Gruber and Holzer [GH08b]
presented an algorithm that converts an n-state deterministic finite automaton
(DFA) over a binary alphabet into a regular expression of size at most O(1.742n).
In general, to obtain shorter regular expressions it is essential the order in which
the automaton’s states are considered in the conversion. To tackle the problem

Research partially funded by Fundação para a Ciência e Tecnologia (FCT) and Pro-
gram POSI, and by projects ASA (PTDC/MAT/65481/2006) and CANTE (PTDC/EIA-
CCO/101904/2008).
(A)Davide Nabais is funded by a LIACC-FCT scholarship for young undergraduate researchers.

2

of obtaining an optimal ordering in a feasible manner, heuristic methods have
been proposed [DM04, HW07, AH09].

In this paper we analyse some of the heuristics presented in the literature
and propose new ones. To test their performance, some experimental results
were carried out using statistically significant samples obtained with an uniform
random generator. The paper is organized as follows. In the next section some
basic notions are reviewed. Section 3 summarizes the conversions from finite
automata to regular expressions, and in particular the state elimination method.
Section 4 describes some elimination ordering strategies and two new ones are
proposed. In Section 5 experimental results are analysed and Section 6 concludes.

2 Preliminaries

We recall some basic notions of digraphs, finite automata and regular expressions.
For more details we refer the reader to standard books [HMU00, Sak09, Har69].

A digraph D = (V,E) consists of a finite set V of vertices and a set E of
ordered pairs of vertices, called arcs. If (u, v) in E, u is adjacent to (or incident
to) v and v is adjacent from u. For each vertex v, the indegree of v is the number
ni of vertices adjacent to it and the outdegree of v is the number no of vertices
adjacent from it, and we write v(ni;no). An arc (u, v) can be denoted by uv. A
path between v0 and vn is a sequence v0v1, v1v2, . . . , vn−1vn of arcs, and is denoted
by v0 · · · vn, or v0 · · · vk · · · vn, for 1 ≤ k < n. A path is simple if all the vertices
in it are distinct. The length of a path is the number of arcs in the path. A path
is a cycle if v0 = vn and n ≥ 1. A digraph that has no cycles is called acyclic.

We now review some notions and notation from formal languages and finite
automata. Let Σ be a finite alphabet and Σ⋆ be the set of words over Σ. The
empty word is denoted by ε. A language over Σ is a subset of Σ⋆. A regular
expression (r.e.) α over Σ represents a regular language L(α) ⊆ Σ⋆ and is induc-
tively defined by: ∅ is a r.e. and L(∅) = ∅; ε is a r.e. and L(ε) = {ε}; a ∈ Σ is a
r.e. and L(a) = {a}; if α1 and α2 are r.e., (α1 + α2), (α1α2), and (α1)

⋆ are r.e.,
respectively with L((α1 + α2)) = L(α1) ∪ L(α2), L((α1α2)) = L(α1)L(α2), and
L((α1)

⋆) = L(α1)
⋆. The alphabetic size of an r.e. α is the number of alphabetic

symbols of α and is denoted by |α|Σ. Let R be the set of regular expressions over
Σ. Two regular expressions α and β are equivalent if L(α) = L(β), and we write
α = β. With this interpretation, the algebraic structure (R,+, ·, ∅, ε) constitutes
an idempotent semiring, and with the unary operator ⋆, a Kleene algebra. Using
these algebraic properties as (simplification) rewrite rules, it is possible to decide
if two regular expressions are equivalent, but no algorithm is known to minimize
a given regular expression (except a brute-force one).

A non-deterministic finite automaton (NFA) A is a quintuple (Q,Σ, δ, q0, F)
where Q is a finite set of states, Σ is the alphabet, δ ⊆ Q×Σ×Q is the transition
relation, q0 the initial state and F ⊆ Q is the set of final states. For q ∈ Q

and a ∈ Σ, we denote the set {p ∈ Q | (q, a, p) ∈ δ} by δ(q, a), and we can
extend this notation to w ∈ Σ⋆, and to R ⊆ Q. The language recognized by

3

A is L(A) = {w ∈ Σ⋆ | δ(q0, w) ∩ F 6= ∅}. An NFA is deterministic (DFA) if
for each pair (q, a) ∈ Q × Σ, |δ(q, a)| ≤ 1. A DFA is complete if δ is a total
function. An NFA is initially-connected if for each state q ∈ Q there exists a word
w ∈ Σ⋆ such that q ∈ δ(q0, w). A complete initially-connected DFA is denoted
by ICDFA. An NFA is trim if it is initially-connected and if every state is useful,
i.e., for all q ∈ Q there exist a word w ∈ Σ⋆ such that F ∩ δ(q, w) 6= ∅. The
underlying digraph of an NFA A = (Q,Σ, δ, q0, F) is the digraph D = (Q,E) such
that E = {(q, q′) | q, q′ ∈ Q and ∃a ∈ Σ ∪ {ε} such that (q, a, q′) ∈ δ}. Note that
even if there can be more than one symbol of Σ between two states q and q′, only
one arc exists in the underlying digraph.

For the conversion from NFAs to r.e.’s extended finite automata are considered.
An extended finite automaton (EFA) A is a quintuple (Q,Σ, δ, q0, F), where Q, Σ,
q0 and F are as before, and δ : Q × Q → R. We assume that δ(q, q′) = ∅, if the
transition from q to q′ is not defined. Any NFA can be easily transformed into an
equivalent EFA, with the same underlying digraph: for each pair of states (q, q′)
one needs to construct a regular expression a1 + · · ·+ an such that (q, ai, q

′) ∈ δ,
ai ∈ Σ ∪ {ε}, 1 ≤ i ≤ n. This transformation corresponds to eliminate parallel
transitions. Whenever appropriated we will use the same terminology both for
digraphs and for automata.

3 From Finite Automata to Regular Expressions

Kleene’s theorem [Kle56] establishing the equivalence between languages accepted
by finite automata and represented by regular expressions provided proof that
a language accepted by an NFA can be represented by a r.e.. McNaughton and
Yamada [MY60] presented a recursive algorithm that calculates a r.e. from an
NFA based on the computation of the transitive closure of the underlying digraph.
Brzozowski and McCluskey [BJ63] introduced a method now known as state elim-
ination algorithm (SEA) that considers EFAs and leads, in general, to simpler com-
putations and shorter r.e.’s. A third method exists based on solving a system of
linear equations akin a Gaussian elimination process [Ard60, Koz94]. This last ap-
proach is interesting as linear algebra or optimization techniques can be adapted
in order to provide new methods to obtain r.e.’s. Sakarovitch [Sak05, Sak09]
studied the relationship between the three methods and in particular showed
that given an order in the set of states Q the regular expressions obtained by two
different methods can be reduced to each other by the application of a specific
subset of algebraic properties.

Most improvements and heuristic methods are based on the state elimination
method and try to identify state orderings that lead to shorter r.e.’s.

3.1 State Elimination Method Revisited

The state elimination algorithm takes as input an EFA and produces an equivalent
r.e.. In each step, a non-initial and non-final state of the EFA is eliminated
(deleted) and the transitions are changed in such way that the new and the

4

older EFAs are equivalent. Usually it is assumed that the input EFA is trim and
normalized, i.e., the initial state has no incoming transitions, there is only a final
state and that state has no outgoing transitions. Every EFA (or NFA) can be
transformed into an equivalent normalized EFA. Formally, let A = (Q,Σ, δ, qo, F)
be an EFA, then:

Normalization:

(NI) If there is q ∈ Q such that δ(q, q0) 6= ∅, then add a new state i to Q,
define δ(i, q0) = ε, and set i as the new initial state.

(NII) If |F | > 1 or exists q ∈ F and q′ ∈ Q such that δ(q, q′) 6= ∅, then add
a new state f to Q and a transition δ(q, f) = ε, for all q ∈ F . The set
of final states becomes {f}.

Without lost of generality, let A′ = (Q′,Σ, δ′, i, f) denote the new normalized
EFA. Let αqq′ denote the regular expression δ(q, q′). Normalization is preserved
when the below state elimination process is performed.

State Elimination:

(EI) If Q = {i, f}, then the resulting regular expression is αif , and the
algorithm terminates. Otherwise continue to step (EII).

(EII) Choose q ∈ Q \ {i, f}. Eliminate q from A′, considering Q′ \ {q} the
new set of states, and for each q1, q2 ∈ Q′ \ {q},

δ′(q1, q2) = αq1q2 + αq1qα
⋆
qqαqq2 ,

Continue to step (EI).

Hopcroft et al. [HMU00] presented a slight variation of the above algorithm
that omits the normalization step. Considering that there is only one final state,
state elimination ends with one of the following EFAs (where some r.e.’s can be
∅):

i

β

i f

β1

α1

α2

β2

Initial state is final. There are two different states.

In the left case, the final regular expression is β⋆ and in the right case, the final
regular expression can be β⋆

1α1(β2 + α2β
⋆
1α1)

⋆ or any shorter r.e. if some of the
transitions are labelled by ∅. When |F | > 1 the normalization step (NII) should
be considered. We refer, by abuse of language, to this algorithm as the SEA

without normalization (SEAwn). It has the advantage of avoiding unnecessary ε

transitions, and, as we will see in Section 4.3, it exhibits a better performance
for the elimination strategies.

5

4 State Elimination Orderings

The importance of the order in which the states are considered in the conversion,
was noticed by the authors of the early algorithms. McNaugthon and Yamada
suggested that states with higher in- and outdegrees should be considered at the
end. Brzozowski and McCluskey proposed to eliminate first the states q ∈ Q such
that q(1; 1), i.e., q connects two other states in series:

q′ q q′′α β

Acyclic NFAs for which in each step of the state elimination process there is a state
satisfying these conditions were studied by Moreira and Reis [MR09] and called
SP-automata. For this class it is possible to obtain a linear size r.e. in O(n2 log n)
time. If an acyclic NFA is not SP, it must be reduced by series-parallel elimination
to one that contains a subgraph of the form:

s1

s2

s3

s4

a

b

c
d

e

And, in general, it is not easy to see which elimination ordering should be con-
sidered.

The SP-automata strategy was extended by Gulan and Fernau [GF08] for a
specific case of cyclic NFAs. SP-automata belong to the class of graphs which
excludes a complete graph as a minor. For this class, Ellul and et al. proved
that there are r.e.’s which size is less than eO(

√
n). Gruber and Holzer extended

this work to DFAs, providing an algorithm with a guaranteed performance of
O(1.742n) for binary alphabets.

4.1 Delgado and Morais Heuristics

In each step of the state elimination process, given q(m; l), the contribution of
this state for the size of the final regular expression can be measured by

W (q) = (l − 1)

m∑

i=1

|αqiq| + (m − 1)

l∑

j=1

|αqqj
| + (ml − 1)|αqq|. (1)

Delgado and Morais [DM04] proposed a strategy (DM) that in each step elim-
inates a state q with the lowest weight W (q). Although this heuristic is quite
simple and runs in O(n2), the experimental results provides evidence that it has
very good performance. Recently, Gruber et al. [GHT09] presented more exper-
imental results which showed statistical significance and were based on uniform
random generated ICDFAs, where this heuristic almost always outperforms sev-
eral others. Our results corroborate this good performance. In particular, when
applied to an SP-automaton, this heuristics always selects a state q such that
q(1; 1), producing a linear size r.e..

6

4.2 Han and Wood Heuristics

Han and Wood [HW07] introduced the notion of bridge state which leads to a
decomposition of the EFA, therefore of the elimination process. That notion was
redefined by Ahn and Han [AH09], as follows: a state q is a bridge state if it
satisfies the following conditions:

(BI) q is neither initial nor final;

(BII) For any f ∈ F , each path i · · · f must pass through q, i.e., must be of
the form i · · · q · · · f , where i is the initial state;

(BIII) q does not participate in any cycle except for a loop.

Note that bridge states correspond to the usual notion of cut points, with the
extra constraint (BIII). Bridge states can be found in linear time, and it was
proved that in an optimal elimination ordering the bridge states must be the last
ones. This is easy to see because the automaton can be decomposed into two
subautomata A1 and A2, such that a bridge state q corresponds to the final state
of A1 and the initial state of A2:

A1 A2
q

Ahn and Han present some empirical results of this strategy (that we designed
by HW) combined with the one based on state weights (DM) and also with one
that performs a parallel decomposition of the EFA. Although the dataset used is
random generated, it is not uniform nor statistically significant.

4.3 SEA Without Normalization

Consider the following simple DFA:

1 30

2

b

a

a
a

a

b

b

b

Applying the SEA with normalization to this DFA and using the DM strategy,
the first state to be eliminate corresponds to the initial state (i.e. it is the one
with small weight). This will lead to a r.e. with the highest alphabetic size (29),
within all that can be obtained by state elimination. The elimination ordering is
0, 3, 1, 2.

7

On the other hand, if we consider a SEA with the Hopcroft et al. approach
(such that the initial state is only considered at the end) applying the DM strategy
will lead to a r.e. with the smallest alphabetic size (12). Now, the elimination
ordering is 2, 1 (as the two other states are fixed). This strategy corresponds
to combine the DM strategy with one where the initial state is the last to be
eliminated. Our experimental results below show that this approach (SEAwn)
improves, in general, the strategies we considered.

4.4 A New Heuristic: Counting Cycles

Consider, now, the following DFA

1 30

2 4

a

b

a, b
b aa

b

b

a

The DM heuristics produces a r.e. with alphabetic size 29 or 26, if either SEA or
SEAwn is considered. The corresponding elimination order are 1, 4, 0, 2, 3 and
1, 3, 2, 4, respectively. For this DFA the optimal alphabetic size for r.e. obtained
by the state elimination method is 16 (and the worst is 126). Instead of the
weight of a state being the weighted summation of its in- and out-degrees, one
can consider the number of cycles that pass through it (multiplicities included).
In this particular case the obtained r.e. has size 19. The number of cycles for
each state is, by increasing identifier order, 4, 3, 4, 3 and 2, respectively.

Two strategies can be developed to obtain an elimination ordering:

(CI) statically determine the number of cycles for each state q, of the original
automaton (CS); this can be achieved in O(n2).

(CII) dynamically determine those values after each elimination step (CD);
this can be achieved in O(n3).

In the second case, (CII), instead of the multiplicities, the alphabetic size of each
transition label is considered.

5 Experimental Results

Each of the state elimination algorithms described before was implemented in
Python within the FAdo system [MR05, AAA+09, FAd10]. The experiments were
undertaken with samples of 10, 000 uniform random generated ICDFAs [AMR07]
with a fixed number of states (n) and alphabet size (k). The sample size ensures
the statistical significance with a 95% confidence level within a 1% error margin.
Most of the tests were performed for automata with n ∈ {10, 20, 50} states and
k ∈ {2, 3, 5, 10, 26, 100} symbols. Each generated automaton is represented by a
canonical string. Assuming an ordering on the alphabet, the states are numbered
from 0 to n − 1, 0 being the initial state. The string representation is a list

8

of states reached from each state by increasing order of symbols and of state
numbering, beginning with the initial state. For example, the string for the DFA

of Section 4.3, considering a < b, is 12312312.

Experiments were carried out considering the following goals:

• to determine the density of occurrence of bridge states in (complete) DFAs.

• to test the performance of SEAwn, i.e. the state elimination method with-
out normalization, independently of other elimination ordering strategies;

• to test the performance of the strategies based on counting the number of
cycles.

5.1 Bridge States Density

The performance of the strategy HW proposed by Han and Wood, and described
in Section 4.2, heavily depends on the existence of bridge states in a finite automa-
ton. We estimated the occurrence of these states in ICDFAs, and their average
position in the ICDFA canonical string. In the string representation, an early
position corresponds to a closer proximity to the initial state. Thus this index
measures the state distance from the initial state and gives information about
the number of states of each subautomaton in which the ICDFA can be decom-
posed. In the following table, and for each sample, tot is the total number of
bridge states, num is the number of ICDFAs with at least a bridge state and pos
is their average position in the ICDFA canonical string. The table values suggest
that bridge states are very rare and a bridge state is usually the initial state or
adjacent from it. Note that for larger alphabets (k ≥ 10) no bridge states, at all,
were found.

k = 2 k = 3 k = 5 k = 10
tot num pos tot num pos tot num pos tot num pos

n = 10 3252 2327 0.824 829 707 0.458 88 82 0.193 0 0 N/A
n = 20 3506 2375 1.224 757 634 0.486 73 71 0.123 0 0 N/A
n = 50 3499 2411 1.375 758 649 0.451 69 63 0.115 0 0 N/A

5.2 SEAwn Performance

To test the performance of the SEAwn method, several elimination ordering
strategies were considered. A trivial order is the one in which the states oc-
cur in the ICDFA canonical string. This ordering produces very bad results (even
compared with a random one) but here we wanted to test the effect of the prior
automata normalization. The correspondent algorithms are S and Swn, respec-
tively. We also considered the DM strategy with the SEAwn method (DMwn).
For each pair of algorithms, the ratio between the average r.e. alphabetic sizes
was computed. The following bar charts summarize some of the results. The Swn

method (without normalization) always outperforms the S (with normalization).
Because the r.e. sizes are huge some ratios are very small. For example, a ratio

9

of 0.08, for n = 50 and k = 10, corresponds to the diminishing of two orders of
magnitude (from 1027 to 1025). The DMwn method can achieve an improvement
of 15% over the DM one.

n = 10

0

1

.195

2

.120

3

.111

5

.233

10

.449

26

.490

100
k

0

1

1.028

2

1.016

3

.945

5

.875

10

.871

26

.915

100
k

n = 20

0

1

.088

2

.047

3

.036

5

.053

10

.244

26

.477

100
k

0

1

1.078

2

1.036

3

.945

5

.871

10

.856

26

.919

100
k

n = 50

0

1

.033

2

.016

3

.016

5

.008

10

.043

26

.318

100
k

0

1

1.124

2

1.068

3

.933

5

.866

10

.857

26

.916

100
k

Swn/S DMwn/DM

5.3 Cycle Heuristic Performance

The two heuristics presented in Section 4.4, CS and CD, were implemented using
the SEAwn method. It was then natural to compare their performance with
DMwn, the best heuristic so far. The following table summarizes the results.
The third to the fifth columns have the average r.e. alphabetic sizes obtained for
each of the mentioned heuristics. The sixth column corresponds to the average
of the minimum value of the three, the best of the 3 (B3). The three last columns
contain the maximum values obtained by each of the heuristics.

10

k n DMwn CS CD B3 MDMwn MCS MCD

2 10 149 144 143 135 864 1014 909
20 1557 1531 1617 1331 12494 18235 16230
50 3.5 × 105 4.9 × 105 5.5 × 105 2.5 × 105 7.8 × 106 1.9 × 107 2.5 × 107

3 10 633 617 628 564 4792 4206 5095
20 23431 25817 27560 18739 339595 365533 428164
50 2.5 × 108 7.6 × 108 6.5 × 108 1.6 × 108 1.0 × 1010 1.6 × 1011 8.9 × 1010

5 10 4492 4646 4713 3942 32780 34044 35508
20 1.0 × 106 1.5 × 106 1.4 × 106 8.2 × 105 1.2 × 107 2.8 × 107 2.7 × 107

50 5.5 × 1012 3.5 × 1013 2.0 × 1013 3.2 × 1012 4.4 × 1014 5.3 × 1015 3.1 × 1015

10 10 52943 59921 57138 47564 232338 430391 262446
20 1.8 × 108 3.1 × 108 2.7 × 108 1.4 × 108 1.7 × 109 9.9 × 109 3.2 × 109

26 10 6.0 × 105 7.1 × 105 6.5 × 105 5.8 × 105 1.1 × 106 1.7 × 106 1.5 × 106

20 3.3 × 1010 5.7 × 1010 4.4 × 1010 2.9 × 1010 1.3 × 1011 3.8 × 1011 1.8 × 1011

100 10 4.1 × 106 4.2 × 106 4.1 × 106 4.1 × 106 5.3 × 106 5.6 × 106 5.5 × 106

20 1.5 × 1012 1.7 × 1012 1.6 × 1012 1.4 × 1012 2.1 × 1012 2.9 × 1012 2.7 × 1012

On average, the heuristics DMwn outperforms the other two, although not
always. However, the performance of the cycle heuristics are of the same order
of magnitude. The comparison between CS and CD is hard to interpret. The
overhead of reevaluate the cycle weights after each step seems not worthwhile.
This suggest that the CS strategy is a good choice, even compared with DMwn,
as the weights are computed only once. The most important result is that con-
sidering the three heuristics a better value is always obtained (B3). This means
that when DMwn produces a bad value one of the other two produces a better
value, and vice versa. This is surprising, and deserves future research.

6 Conclusions

Several state elimination ordering strategies were analysed and new ones were
proposed. Experimental results were conducted with statistical accurate samples
of uniform random generated deterministic finite automata. In this context the
following conclusions can be drawn:

• a general improvement in all strategies is obtained if the SEA without
normalization is considered;

• bridge states are very rare;

• the HW strategy clearly clash with the new strategies based on the number
of cycles count (CS and CD), because bridge states are cycle free; but, as
we saw, their rarity makes this contradiction unimportant;

• the new proposed strategies (CS and CD) are comparable with the DM

heuristic; however these new heuristics only outperform, on average, the
DM heuristic for automata with small alphabets and small number of
states;

• if one takes as strategy, for each automaton, the best result from these
three heuristics (DM, CS and CD) a gain of 25% is obtained, with the

11

same worst case complexity, O(n3).

Part of our planned future work is to gain some theoretical understanding of
these facts. Furthermore, we conjecture that a more sophisticated hybridization
of these three heuristics could lead to even better results.

7 Acknowledgements

We thank the anonymous referees for the many suggested improvements of the
paper.

References

[AAA+09] A. Almeida, M. Almeida, J. Alves, N. Moreira, and R. Reis. FAdo and
GUItar: tools for automata manipulation and visualization. In S. Maneth,
editor, CIAA 2009: 14th International Conference on Implementation and
Application of Automata, volume 5642 of LNCS, pages 65–74, Sidney, July
2009. Springer.

[AH09] J.-H. Ahn and Y.-S. Han. Implementation of state elimination using heuris-
tics. In S. Maneth, editor, CIAA 2009, 14th International Conference on
Implementation and Application of Automata, volume 5642 of LNCS, pages
178–187, Sidney, July 2009. Springer.

[AMR07] M. Almeida, N. Moreira, and R. Reis. Enumeration and generation with a
string automata representation. Theoret. Comput. Sci., 387(2):93–102, 2007.
Special issue ”Selected papers of DCFS 2006”.

[Ard60] D. N. Arden. Delayed logic and finite state machines. In Theory of Computing
Machine Design, pages 1–35. U. of Michigan Press, Ann Arbor, 1960.

[BJ63] J. A. Brzozowski and E. J. McCluskey Jr. Signal flow graph techniques for
sequential circuit state diagrams. IEEE Trans. on Electronic Computers,
EC-12(2):67–76, 1963.

[DM04] M. Delgado and J. Morais. Approximation to the smallest regular expression
for a given regular language. In M. Domaratzki, A. Okhotin, K. Salomaa,
and S. Yu, editors, CIAA 2004, 9th International Conference on Implemen-
tation and Application of Automata, volume 3317 of LNCS, pages 312–314.
Springer, 2004.

[EKSW05] K. Ellul, B. Krawetz, J. Shallit, and M. Wang. Regular expressions: New
results and open problems. J. Aut., Lang. and Combin., 10(4):407–437, 2005.

[FAd10] Project FAdo. FAdo: tools for formal languages manipulation.
http://www.ncc.up.pt/FAdo, Access date:1.1.2010.

[GF08] S. Gulan and H. Fernau. Local elimination-strategies in automata for shorter
regular expressions. In V. Geffert, J. Karhumäki, A. Bertoni, B. Preneel,
P. Návrat, and M. Bieliková, editors, SOFSEM 2008, Nový Smokovec, Slo-
vakia, 2008, Volume II - Student Research Forum, pages 46–57, 2008.

[GH08a] H. Gruber and M. Holzer. Finite automata, digraph connectivity, and reg-
ular expression size. In L. Aceto, I. Damg̊ard, L. A. Goldberg, M. MM.
Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, ICALP 2008, 35th

12

International Colloquium on utomata, Languages and Programming, Part II,
volume 5126 of LNCS, pages 39–50, Reykjavik, Island, July 2008. Springer.

[GH08b] H. Gruber and M. Holzer. Provably shorter regular expressions from deter-
ministic finite automata. In M. Ito and M. Toyama, editors, Proceedings of
the 12th International Conference Developments in Language Theory, num-
ber 5257 in LNCS, pages 383–395, Kyoto, September 2008. Springer.

[GHT09] H. Gruber, M. Holzer, and M. Tautschnig. Short regular expressions from
finite automata: Empirical results. In S. Maneth, editor, CIAA 2009, 14th
International Conference on Implementation and Application of Automata,
volume 5642 of LNCS, pages 188–197, Sidney, July 2009. Springer.

[GS07] G. Gramlich and G. Schnitger. Minimizing nfa’s and regular expressions. J.
Comput. Syst. Sci., 73(6):908–923, 2007.

[Har69] F. Harary. Graph Theory. Addison Wesley, 6th edition, 1969.

[HMU00] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison Wesley, 2000.

[HW07] Y.-S. Han and D. Wood. Obtaining shorter regular expressions from finite-
state automata. Theoret. Comput. Sci., 370:110–120, 2007.

[JR93] T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM Journal
of Computation, pages 1117–1141, 1993.

[Kle56] S. C. Kleene. Representation of events in nerve nets and finite automata.
In C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 3–41.
Princeton University Press, 1956.

[Koz94] D. C. Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. Infor. and Comput., 110(2):366–390, May 1994.

[MR05] N. Moreira and R. Reis. Interactive manipulation of regular objects with
FAdo. In Proceedings of 2005 Innovation and Technology in Computer Sci-
ence Education (ITiCSE 2005), pages 335–339. ACM, 2005.

[MR09] N. Moreira and R. Reis. Series-parallel automata and short regular expres-
sions. Fundam. Inform., 91(3-4):611–629, 2009.

[MY60] R. McNaughton and H. Yamada. Regular expressions and state graphs for
automata. IEEE Trans. on Electronic Computers, EC-9(1):39–47, 1960.

[Sak05] J. Sakarovitch. The language, the expression, and the (small) automaton. In
I. Litovshy J. Farré and S. Schmitz, editors, CIAA 2005, 10th International
Conference on Implementation and Application of Automata, volume 3845
of LNCS, pages 15–30. Springer, 2005.

[Sak09] J. Sakarovitch. Elements of Automata Theory. CUP, 2009.

