
On the Representation of Finite Automata ∗

Rogério Reis

rvr@ncc.up.pt

Nelma Moreira †

nam@ncc.up.pt

Marco Almeida

mfa@alunos.dcc.fc.up.pt

DCC-FC & LIACC, Universidade do Porto

R. do Campo Alegre 823, 4150 Porto, Portugal

Abstract

We give an unique string representation, up to isomorphism, for initially connected
deterministic finite automata (ICDFA’s) with n states over an alphabet of k symbols.
We show how to generate all these strings for each n and k, and how its enumeration
provides an alternative way to obtain the exact number of ICDFA’s.

1 Motivation

In symbolic manipulation environments for finite automata, it is important to have an ad-
equate representation of automata and, dependent upon their use, several representations
may be available. For example, for testing if two finite automata are isomorphic objects or
for (random) generation of automata, the representation must be compact and somehow
canonical. In the FAdo project [?, ?] a canonical form is used to test if two minimal
DFA’s are isomorphic (i.e are the same up to renaming of states). In this paper we prove
the correctness of that representation and show how it can be used for the exact enumer-
ation and generation of initially connected deterministic finite automata (ICDFA). The
problem of enumeration of finite automata was considered by several authors since early
1960s, in particular see Robinson [?], Harary and Palmer [?] and Liskovets [?] amongst
many others. A survey may be found in Domaratzki et al. [?]. More recently, several
authors examined related problems. Domaratzki et al. [?] studied the enumeration of
distinct languages accepted by finite automata with n states; Nicaud [?], Champarnaud
and Paranthoën [?, ?] and Bassino and Nicaud [?] analysed several aspects of the average
behaviour of regular languages; Liskovets [?] and Domaratzki [?] gave (exact and asymp-
totic) enumerations of acyclic DFA’s and of finite languages. The paper is organised
as follows. In the next section, we review some basic notions and introduce some nota-
tion. Section ?? describes a string representation for deterministic finite automata that
is unique up to isomorphism for initially connected deterministic finite automata. Sec-
tion ?? presents an efficient method to generate those strings. Section ?? shows how their
enumeration provides an upper bound and the exact value for the number of ICDFA’s.
Section ?? concludes with some final remarks. We address the reader attention to the
longer version of this paper for some implementation issues and experimental results1.

∗Work partially funded by Fundação para a Ciência e Tecnologia (FCT) and Program POSI.
†Corresponding author
1http://www.dcc.fc.up.pt/Pubs/TR05/dcc-2005-04.ps.gz

1

2 Preliminaries

We first recall some basic notions from automata theory and formal languages, that can
be found in standard books [?]. An alphabet Σ is a nonempty set of symbols. A string
over Σ is a finite sequence of symbols of Σ. The empty string is denoted by ǫ. The set Σ⋆

is the set of all strings over Σ. A language L is a subset of Σ⋆. The density of a language
L over Σ, ρL(n), is the number of strings of length n that are in L, i.e., ρL(n) = |L∩Σn|.
If L1, L2 ⊆ Σ⋆, L1L2 = {xy | x ∈ L1 and y ∈ L2}. A regular expression (r.e.) α over Σ
represents a language L(α) ⊆ Σ⋆ and is inductively defined by: ∅, ǫ and σ ∈ Σ are a r.e.,
where L(∅) = ∅, L(ǫ) = {ǫ} and L(σ) = {σ}; if α1 and α2 are r.e., (α1 + α2), (α1α2) and
α⋆

1 are r.e., respectively with L((α1 + α2)) = L(α1)∪L(α2), L((α1α2)) = L(α1)L(α2) and
L(α1

⋆) = L(α1)
⋆. In this paper, we will use regular expressions to represent descriptions of

finite automata. A deterministic finite automaton (DFA) A is a quintuple (Q,Σ, δ, q0, F)
where Q is a finite set of states, Σ is the alphabet, δ : Q × Σ → Q is the transition
function, q0 the initial state and F ⊆ Q the set of final states. We assume that the
transition function is total, so we consider only complete DFA’s. The size of a DFA is the
number of its states, |Q|. Normally, we are not interested in the labels of the states and we
can represent them by an integer 0 ≤ i < |Q|. The transition function δ extends naturally
to Σ⋆: for all q ∈ Q, if x = ǫ then δ(q, ǫ) = q; if x = yσ then δ(q, x) = δ(δ(q, y), σ). A DFA

is initially connected2 (ICDFA) if for each state q ∈ Q there exists a string x ∈ Σ⋆ such
that δ(q0, x) = q. Two DFA’s A = (Q,Σ, δ, q0, F) and A′ = (Q′,Σ, δ′, q′0, F

′) are called
isomorphic (by states) if there exists a bijection f : Q → Q′ such that f(q0) = q′0 and for
all σ ∈ Σ and q ∈ Q, f(δ(q, σ)) = δ′(f(q), σ). Furthermore, for all q ∈ Q, q ∈ F if and only
if f(q) ∈ F ′. The language accepted by a DFA A is L(A) = {x ∈ Σ⋆ | δ(q0, x) ∈ F}. Two
DFA are equivalent if they accept the same language. Obviously, two isomorphic automata
are equivalent, but two non-isomorphic automata may be equivalent. A DFA A is minimal

if there is no DFA A′ with fewer states equivalent to A. Trivially a minimal DFA is an
ICDFA. Minimal DFA’s are unique up to isomorphism. We are mainly concerned with
the representation of the transition function of DFA’s , so we disregard the set of final
states and we consider only a quadruple (Q,Σ, δ, q0) called the structure of an automaton
and referred as DFA∅. For each of our representations, there will be 2n DFA’s. We denote
by ICDFA∅ the structure of an ICDFA. We consider that any integer variable has always
a nonnegative value (if not otherwise stated). Let [n]0 = {0, 1, . . . , n} and [n] = {1, . . . , n}.

3 Representations towards a normal form

The method used to represent a DFA has a significative role in the amount of computer
work needed to manipulate that information, and can give an important insight about
this set of objects, both in its characterisation and enumeration. Let us disregard the
set of final states of a DFA. A naive representation of a DFA∅ can be obtained by the
enumeration of its states and for each state a list of its transitions for each symbol. For

2Also called accessible.

2

the DFA∅ in Fig.?? we have:

[[A (a : A, b : B)], [B (a : A, b : E)], [C (a : B, b : E)],

[D (a : D, b : C)], [E (a : A, b : E)]]. (1)

0.6

11.7A 11.7B

11.7D

11.7C

11.7E

11.7a

11.7b

11.7a

11.7b

11.7a

11.7b

11.7a

11.7b

11.7b

11.7a

Figure 1: A DFA with no final states marked

Given a complete DFA∅ (Q,Σ, δ, q0) with |Q| = n and |Σ| = k and considering a total
order over Σ, the representation can be simplified by omitting the alphabetic symbols.
For our example, we would have

[[A (A,B)], [B (A,E)], [C (B,E)], [D (D,C)], [E (A,E)]]. (2)

The labels chosen for the states have a standard order (in the example, the alphabetic
order). We can simplify the representation a bit if we use that order to identify the states,
and because we are representing complete DFA∅’s we can drop the inner tuples as well.
We obtain

[0, 1, 0, 4, 1, 4, 3, 2, 0, 4]. (3)

Because this representation depends on the order we label the states, we have more
than one representation for each DFA∅. Can we have a canonical order for the set of the
states? Let the first state be the initial state q0 of the automaton, the second state the
first one to be referred (excepting q0) by a transition from q0, the third state the next
referred in transitions from one of the first two states, and so on... For the DFA∅ in the
example, this method induces an unique order for the first three states (A,B,E), but then
we can arbitrate an order for the remaining states (C,D). Two different representations
are thus admissible:

[0, 1, 0, 2, 0, 2, 3, 4, 1, 2] and [0, 1, 0, 2, 0, 2, 1, 2, 4, 3]. (4)

If we restrict this representation to ICDFA∅’s, then this representation is unique and
defines an order over the set of its states. In the example, the DFA∅ restricted to the

3

set of states {A,B,E} is represented by [0, 1, 0, 2, 0, 2]. Let Σ = {σi | i < k}, with
σ0 < σ1 < · · · < σk−1. Given an ICDFA∅ (Q,Σ, δ, q0) with |Q| = n, the representing
string is of the form [(Si)i<kn] with Si ∈ [n − 1]0 and Si = δ(⌊i/k⌋, σi mod k).

Lemma 1. Let [(Si)i<kn] be a representation of a complete ICDFA∅ (Q,Σ, δ, q0) with
|Q| = n and |Σ| = k, then:

(∀m > 1)(∀i)(Si = m ⇒ ((∃j < i)Sj = m − 1)) (R1)

(∀m ∈ [n − 1])((∃j < km)Sj = m) (R2)

Proof. The condition R1 establishes that a state label (greater than 1) can only occur
after the occurrence of its predecessors. This is a direct consequence of the way we defined
the representing string. Suppose R2 does not verify, thus there exists a state m that
does not occur in the first km symbols of the string (the m first state descriptions).
Because the automaton is initially connected there must be a sequence of states (mi)i≤l

and symbols (σi)i≤l such that m0 = 0, ml = m and δ(mi, σi) = mi+1 for i < l. We
must have 0 < m < ml−1 because m appears in the ml−1 description and we supposed
no occurrences of m in the first m state descriptions. There must exist l′ < l such that
ml′−1 < m < ml′ , implying that ml′ ∈ {Si | i < km}. This contradicts R1 because we
are supposing that m 6∈ {Si | i < km} and m < ml′ . Thus R2 is verified.

Note that the conditions R1 and R2 are independent. For k = 2 and n = 3, the string
[2, 1, 0, 0, 1, 0] satisfies R2 but not R1, and the opposite occurs for the string [0, 0, 1, 1, 0, 2].

Lemma 2. Every string [(Si)i<kn] with Si ∈ [n − 1]0 satisfying R1 and R2 represents a
complete ICDFA∅ with n states over an alphabet of k symbols.

Proof. Let [(Si)i<kn] be a string in the referred conditions, and consider the associated
automaton A using the string symbols as labels for the corresponding states. By its
construction, A is a DFA∅. We only need to prove that it is initially connected. Let m
be a state of the automaton. A proof that m is reachable from the initial state 0 can be
done by induction on m. If m = 0 there is nothing to prove. If m = 1 then, by R2,
1 must occur in the description of state 0, making state 1 reachable from state 0. Let
us suppose that every state m′ < m is reachable from state 0 and prove that state m is
reachable too. By R2, m occurs at least once before position km, say in position km′ + i
with m′ < m and i < k. Then for some symbol σ, δ(m′, σ) = m. By induction hypothesis,
state m′ is reachable from state 0, thus state m is reachable too and the automaton is
initially connected. Now consider the string representation obtained for A, [(S′

i)i<kn]. By
Lemma ?? it satisfies R1 and R2. It is easy to see that this representation is the same as
[(Si)i<kn]. By R1, S0 = S′

0. Suppose that (∀i < j)(Si = S′
i). Now we prove that S′

j = Sj .
By R1, either Sj ∈ {Si | i < j} or Sj = max{Si | i < j} + 1. In the first case, there exists
l < j such that Sj = Sl and, by induction hypothesis, Sl = S′

l, thus
Analogously, by R1, in the second case we have that

S′
j = max{Si | i < j} + 1 = Sj

.

4

Theorem 1. There is a one-to-one mapping between strings [(Si)i<kn] with Si ∈ [n − 1]0
satisfying R1 and R2, and the non-isomorphic ICDFA∅’s with n states, over an alphabet
Σ of size k.

Proof. Let (Q,Σ, δ, q0) and (Q′,Σ, δ′, q′0) be two ICDFA∅’s and [(Si)i<kn] and [(S′
i)i<kn]

their representing strings. By Lemma ??, these strings satisfy R1 and R2. Suppose that
f : Q −→ Q′ is an isomorphism between the ICDFA∅’s. Then 0 = q0 and f(q0) = q′0 = 0.
Either S0 = δ(q0, σ0) = q0 = 0 or S0 = δ(s0, σ0) = 1 (by R1).

i) If S0 = 0 then f(q0) = f(δ(q0, σ0)) = δ′(q′0, σ0) = S′
0 = 0, because δ(q0, σ0) = q0

implies δ′(f(q0), σ0) = f(q0).

ii) If S0 = 1 then f(1) = δ′(q′0, σ0) = S′
0 6= 0, thus S′

0 = 1, again by R1.

Supposing that (∀i < j)(Si = S′
i∧f(Si) = S′

i) we need to prove that Sj = S′
j ∧f(Sj) = S′

j .
Trivially we have {Si | i < j} = {S′

i | i < j}. We know that Sj = δ(⌊j/k⌋, σj mod k), and
by R2 there exists l < j such that ⌊j/k⌋ = Sl thus f(⌊j/k⌋) = f(Sl) = Sl = S′

l = ⌊j/k⌋
by induction hypothesis. We have

S′
j = δ′(⌊j/k⌋, σj mod k) = δ′(f(⌊j/k⌋), σj mod k) = f(δ(⌊j/k⌋, σj mod k)) = f(Sj).

By R1, either Sj ∈ {Si | i < j} or Sj = max{Si | i < j} + 1.

i) If Sj ∈ {Si | i < j} then there exists l < j such that Sj = Sl and Sl = S′
l. Then

δ(⌊j/k⌋, σj mod k) = δ(⌊l/k⌋, σl mod k) ⇒ f(δ(⌊j/k⌋, σj mod k)) = f(δ(⌊l/k⌋, σl mod k))

⇔ δ′(⌊j/k⌋, σj mod k) = δ′(⌊l/k⌋, σl mod k)

Thus Sj = Sl implies S′
j = S′

l, and so S′
j = Sj .

ii) If Sj = max{Si | i < j} + 1 then S′
j 6∈ {Si | i < j} because if there exists a l < j

such that S′
l = S′

j by the same reason as before Sj ∈ {Si | i < j}. Thus, by R1

S′
j = max{Si | i < j} + 1 = Sj.

Conversely, by Lemma ??, we have that each string represents a ICDFA∅ up to a
compatible renaming of states, i.e., if two ICDFA∅’s are represented by the same string,
that representation defines a isomorphism between them.

These string representations lead to a normal representation for ICDFA∅’s. For each
of them, if we add a sequence of final states, we obtain a normal form for ICDFA’s.

4 Generating automata

Normal representations for ICDFA∅’s (as presented above) can be used as compact com-
puter representations for that kind of objects, but even though rules R1 and R2 are quit
simple, it is not evident how to write an enumerative algorithm in an efficient way. In a
string representing an ICDFA∅ with n states over an alphabet of k symbols, [(Si)i<kn],
let (fj)0<j<n be the sequence of indexes of the first occurrence of each state label j. That
those indexes exist is a direct consequence of the way the string is constructed. Now

5

consider b1 = f1, bj = fj − fj−1, for 2 ≤ j ≤ n − 1 and bn = kn − fn−1 + 1. Note that
∑j

l=1 bl = fj, for 2 ≤ j ≤ n − 1.
Note that

j
∑

l=1

bl = fj , for j ∈ [n − 1].

It is easy to see that

1. Rule R1 simply states that

(∀2 ≤ j ≤ n − 1)(bj > 0). (G1)

2. Rule R2 establishes that

(∀m ∈ [n − 1])(fm < km). (G2)

To generate all the automata, for each allowed sequence of (bj)0<j<n we can generate all
the remaining symbols Si (those with i 6∈ {fj | 0 < j < n}) according to the following
rules:

i < b1 ⇒ Si = 0; (G3)

(∀j ∈ [n − 2])(fj < i < fj+1 ⇒ Si ∈ [j]0); (G4)

i > fn−1 ⇒ Si ∈ [n − 1]0. (G5)

5 Enumeration of ICDFA’s

In this section we obtain a formula Bk(n) for the number of strings [(Si)i<kn] representing
ICDFA∅’s with n states over an alphabet of k symbols. Although it is already known
a formula for the number of non-isomorphic ICDFA∅’s, we think that our method is
new. Liskovets [?] and, independently, Robinson [?] gave for that number the formula

Hk(n) = hk(n)
(n−1)! where hk(1) = 1 and for n > 1

hk(n) = nkn −
∑

1≤j<n

(

n − 1

j − 1

)

nk(n−j)hk(j) (5)

Note that nkn is the number of transition functions, from which we subtract the number
of them that have n− 1, n− 2,. . . ,1 states not accessible from the initial state. And then,
we may divide by (n − 1)!, as the names of the remaining states (except the initial) are
irrelevant. Reciprocally, the formula we will derive (Bk(n)) is a direct positive summation.

First, let us consider the set of strings [(Si)i<kn] with Si ∈ [n− 1]0 and satisfying only
rule R1. The number of these strings gives an upper bound for Bk(n). This set can be
given by An ∩ [n − 1]kn

0 , where for c > 0,

Ac = L(0⋆ +

c−1
∑

i=1

0⋆
i

∏

j=1

j(0 + · · · + j)⋆). (6)

6

These languages belong to a family of languages Lc presented by Moreira and Reis [?] and
that represent partitions of [n] with no more than c ≥ 1 parts, i.e.,

Lc = L(

c
∑

i=1

i
∏

j=1

j(1 + · · · + j)⋆). (7)

We have that ρAc(n) = ρLc(n + 1) and that ρLc(n) =
∑c

i=1 S(n, i), where S(n, i) are
Stirling numbers of second kind. So we get that the number of strings of length kn that
are in An, is ρAn(kn) =

∑n
i=1 S(kn + 1, i). We have the proposition,

Proposition 1. For all n, k ≥ 1, Bk(n) ≤
∑n

i=1 S(kn + 1, i).

For n = 3 and k = 2, B2(3) ≤ 365. For k = 2, Bassino and Nicaud [?] presented a
better upper bound, namely that B2(n) ≤ nS(2n, n).

Now let us consider only the rule R2. This rule can be formulated as

n−1
∧

m=1

km−1
∨

j=0

Sj = m. (8)

From this formula it is easy to see that the strings [(Si)i<kn] with Si ∈ [n − 1]0 and
satisfying only rule R2 can be represented by the regular expression

n−1
⋂

m=1

km−2
∑

j=0

(0 + · · · + (m − 1))jm(0 + · · · + (n − 1))kn−j−1, (9)

where we extended the operators of regular expressions to intersection.
Now in order to simultaneously satisfy rules R1 and R2, in formula (??), the first

occurence of m must precede the one of m − 1, for 2 ≤ m ≤ n − 1. These positions are
exactly the sequence (fj)0<j<n defined in Section ??. Given these positions and considering
the correspondent sequence (bj)0<j<n we obtain the regular expression:

n−1
∏

j=1

(0 + . . . + (j − 1))bj−1j

 (0 + · · · + (n − 1))bn−1,

and we must consider the possible values of (bj)0<j<n, constrained to G1 and G2:

k
∑

b1=1

2k−b1
∑

b2=1

· · ·

k(n−1)−
Pn−2

l=1
bl

∑

bn−1=1

n−1
∏

j=1

(0 + . . . + (j − 1))bj−1j

 (0 + · · · + (n − 1))bn−1

For n = 3 and k = 2 we have

(01 + 1(0 + 1))((0 + 1)2 + 2(0 + 1 + 2))(0 + 1 + 2)2 + 12(0 + 1 + 2)4,

and the number of these strings is (1 + 2)((2 + 3)32) + 34 = 216.
For each sequence (bj)0<j<n the number of strings [(Si)i<kn] with Si ∈ [n − 1]0 and

satisfying R1 and R2 is
n

∏

j=1

jbj−1, (10)

a direct consequence of rules G3, G4 and G5. And then we must take the sums over all
bj constrained to rules G1 and G2.

7

Theorem 2. We have

Bk(n) =
k

∑

b1=1

2k−b1
∑

b2=1

3k−b1−b2
∑

b3=1

· · ·

k(n−1)−
Pn−2

l=1
bl

∑

bn−1=1

n
∏

j=1

jbj−1. (11)

Proof. It is an immediate consequence of rules G1 to G5.

Corollary 1. The number of non-isomorphic ICDFA’s with n states over an alphabet of
k symbols is 2nBk(n).

Proof. By Theorems ?? and ?? and considering the possible sets of final states.

6 Conclusion

The method described in Section ?? was implemented and used to generate all ICDFA∅’s
for k = 2 and n < 10, and k = 3 and n < 7. The time complexity of the program is linear
in the number of automata and took about a week to generate all the referred ICDFA∅’s,
in a PPC G4 1.5MHz.

One of the advantage of this method is that only the allowed strings are computed so it
is not a generate-and-test algorithm and because automata are generated in lexicographic
order it is easy to generate them as needed for consumption by another algorithm.

If an ICDFA with n states accepts a finite language then there exists a topological
order of its states such that δ(i, σ) > i, for all i < n − 1 and σ ∈ Σ. But the order we
used for string representations is not a topological order. So we can not determine directly
from the string if the accepted language is finite, as was done by Domaratzki [?] only for
finite languages. Although the formula Bk(n) is quite similar to the one obtained in [?]
for an upper bound of the number of finite languages, the meaning of the parameters (bj)
are not directely related.

7 Acknowledgements

We thank the anonymous referees for their comments that helped to improve this paper.

References

[BN] Frédérique Bassino and Cyril Nicaud. Enumeration of complete accessible de-
terministic automata over a 2-letter alphabet. Submitted.

[CP05] J.-M. Champarnaud and T. Paranthoën. Random generation of DFAs. Theo-
retical Computer Science, 330(2):221–235, 2005.

[DKS02] Michael Domaratzki, Derek Kisman, and Jeffrey Shallit. On the number of dis-
tinct languages accepted by finite automata with n states. Journal of Automata,
Languages and Combinatorics, 7(4):469–486, 2002.

[Dom04] Michael Domaratzki. Combinatorial interpretations of a generalization of the
Genocchi numbers. Journal of Integer Sequences, 7(04.3.6), 2004.

8

[fad] FAdo: tools for formal languages manipulation. http://www.ncc.up.pt/fado.

[HMU00] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages and Computation. Addison Wesley, 2000.

[HP67] F. Harary and E. M. Palmer. Enumeration of finite automata. Information and
Control, 10:499–508, 1967.

[Lis69] Valery Liskovets. The number of inittially connected automata. Kibernetika,
3:16–19, 1969. (in Russian; Engl. transl: Cybernetics, 4 (1969), 259-262).

[Lis03] Valery Liskovets. Exact enumeration of acyclic automata. In Proc. 15th Conf.
”Formal Power Series and Algebr. Combin. (FPSAC’03), 2003.

[MR05a] Nelma Moreira and Rogério Reis. Interactive manipulation of regular objects
with FAdo. In Proceedings of 2005 Innovation and Technology in Computer
Science Education (ITiCSE 2005). ACM, 2005.

[MR05b] Nelma Moreira and Rogério Reis. On the density of languages representing finite
set partitions. Journal of Integer Sequences, 8(05.2.8), 2005.

[Nic99] Cyril Nicaud. Average state complexity of operations on unary automata. In
M. Kurylowski, L. Pacholski, and T. Wierzbicki, editors, Proc. 24th Symposium,
Mathematical Foundations of Computer Science, volume 1672 of Lecture Notes
on Computer Science, pages 231–240. Springer-Verlag, 1999.

[Par04] T. Paranthoën. Génération aléatoire et structure des automates à états finis.
PhD thesis, Université de Rouen, 2004.

[Rob85] R. W. Robinson. Counting strongly connected finite automata. In Graph Theory
with Applications to Algorithms and Computer Science, pages 671–685. Wiley,
1985.

[Slo03] N.J.A. Sloane. The On-line Encyclopedia of Integer Sequences, 2003.
http://www.research.att.com/∼njas/sequences.

9

