
A Quantifier Elimination Algorithm in a FOL with

Equality

Lúıs Damas
Nelma Moreira

University of Porto, Campo Alegre 823, 4100 Porto, Portugal
{luis,nam}@ncc.up.pt

December 1991

1 Introduction

Let V ars be a countable set of variables x, y, z, . . . and Fun be a countable set
of n-ary function symbols f, g, h, l . . .,n ≥ 0. If f has arity n we will denote it
by fn,whenever necessary. If n=0 f is called atomic and we will omit its arity.
Let T be the term algebra over Fun and V ars and T0 be the corresponding set
of ground terms.

Let C be a first order language over T with equality as the only predicate
symbol.
We introduce a path notation p to a allow reference to a specific argument of
a complex term avoiding the need for introducing existencial quantifiers and
extraneous variables. So we extend C to expressions involving paths, which are
called values. If t denotes terms, p paths, v values and c formulas of C we have:

t ::= x
fn(t1, . . . , tn) n ≥ 0

p ::= ε
pfnπi 1 ≤ i ≤ n

v ::= t
v.p
⊥

c ::= t.pfn

v = v
false
¬c
c ∧ c
c ∨ c
c → c
∃x c
∀x c

where

1

c → c ≡ ¬c ∨ c

∀x c ≡ ¬∃x ¬c

In the above definitions πi denotes de ith projection of a term. Formulas of the
form t.pfn will be called path formulas. Given a formula c, V ars(c) will denote
the set of variables occurring in c. Given v and v′, v ≡ v′ if they are the same
value.

We take as semantic model for C the Herbrand model with the usual se-
mantics for the logic connectives. Given a term t its denotation is

[[t]] = {St ∈ T0}

where S is a substitution of terms for variables. We consider two formulas are
equivalent concerning the semantic model.

2 Reduced formulas

Definition 1 (Slots) A value s is a slot if

s := x | x.p

where x denotes variables and p paths.

Definition 2 The length of a path p, |p| is inductively defined by:

1. |ε| = 0

2. |pfnπi| = 1 + |p|

Definition 3 (Reduced values) A value v is reduced if it is either a term
or a slot.

Proposition 1 Any value can be rewritten to an equivalent reduced value or
⊥ using the following rewriting rules:

f(t1, . . . , tn).fnπip −→ ti.p

f(t1, . . . , tn).gkπip −→ ⊥
if fn 6= gk

Proof.
If v is a term or a slot then it is already in reduced form. Otherwise it is

of the form fn(t1, ..., tn).p. If n = 0 then if p = ε v is reduced form else v is
rewritten to ⊥. If n > 0 let m = |p| be the length of p. Applying the rewritting
rules at most m times we obtain a term or a slot or ⊥. •

2

Definition 4 (Reduced equalities) An equality c is in reduced form if it is

c ::= s = s′ | s = a

where a is an atomic term.

Proposition 2 An equality c := v = v′ where v and v′ are reduced values,
can be rewritten to an equivalent conjuction of reduced equalities or false or
¬false using the following rewriting rules:

v = v′ −→ false if either v or v’ is ⊥
v = v′ −→ false if v and v’ are atomic and v 6= v′

v = v′ −→ ¬false if v and v’ are the same value
f(t1, . . . , tn) = f(u1, . . . , un) −→ t1 = u1 ∧ . . . ∧ tn = un

f(t1, . . . , tn) = g(u1, . . . , un) −→ false
x.p = f(t1, . . . , tn) −→ x.pfnπ1 = t1 ∧ . . . ∧ x.pfnπn = tn, n > 0
t = s −→ s = t if t is not a variable

Definition 5 (Reduced formulas) A formula c is in reduced form it has
only reduced equalities and path formulas of the form x.pfn.

Proposition 3 Any formula c can be converted to reduced form by reducing
all equalities and for each path formula, t.pfn reducing the value t.p and using
the following rewriting rules:

⊥.fn −→ false

f(t1, . . . , tn).fn −→ ¬false

f(t1, . . . , tn).gk −→ false

if fn 6= gk

Definition 6 (Prenex reduced formulas) A formula is in prenex reduced
form if it is a reduced formula in prenex normal form

Q1x1 . . . Qnxn c

where n ≥ 0, c is a reduced formula and Qi ≡ ∃ or Qi ≡ ∀, for i = 1, . . . , n.

Definition 7 (Normal formulas) A formula c is a normal formula if it is a
prenex reduced formula in disjunctive normal form.

c ::= cc
cc ∨ cc
∃x c
∀x c

cc ::= ci
ci ∧ ci

ci ::= s = s′

s = a
x.pfn

¬ci

Reduced equalities and path formulas x.pfn will be called positive literals
and its negations negative literals.

3

3 Elimination of existencial quantifiers

Definition 8 Let p be a path and v a value, p(v) is defined inductively by:

1. ε(v) = v

2. fn.πi.p(v) = fn(z1, . . . , zi−1, p(v), zi+1, . . . , zn) where z1, . . . , zn are new variables

Note that if v is a term also is p(v).

Definition 9 The compatiblity of Two paths p and q, p ≈ q is defined as
follows:

1. ε ≈ ε

2. fnπip ≈ fnπiq iff p ≈ q

3. fnπip ≈ fnπjq and i 6= j

If two paths p and q are compatible then the terms p(z) and q(z) are unifiable,
where z is a new variable.

3.1 Elimination Algorithm

Let [v/x]c be the formula obtainned from c replacing all free ocurrences of
x with v.

Considering the rewriting rules of figure 3.1, the elimination algorithm is as
follows:

Input: A formula c

Output: A quantifier free formula or report failure.

Step 1 Put c in normal form.

Step 2 If there exists quantified variables then select the innermost quantifica-
tion else go to step 4. If x is universally quantified, ∀xc (with c quantifier
free) then proceed to step 3 with ∃x¬c and in the end of step 3 negate
the resulting formula; otherwise go to step 3.

Step 3 If necessary apply Rule I. For every disjunct of the form ∃x c:

1. Apply rule II.

2. Or:

(a) find a formula of the form x = v or v = x and apply a rewrite
rule of group I (rearranging if necessary the conjuncts).

(b) if not found, find one of the form x.p = v or v = x.p or x.pfn

and apply a rewrite rule of group II.
(c) if x only appears in negative literals then, if the Herbrand uni-

verse, H is infinite, either we can reduce that formulas to ¬false
or false by applying a rewrite rule group III to each one.

4

Rule I

∃x c1 ∨ c2 −→ ∃x c1 ∨ ∃x c2

Rule II

∃x c −→ c if x does not occur free in c

Group I

∃x x = u −→ ¬false if u is atomic or a variable
∃x x = y.pfnπi −→ y.pfn if x 6≡ y
∃x x = u ∧ c −→ [u/x]c if u is atomic or a variable
∃x x = y.pfnπi ∧ c −→ [y.pfnπi/x]c ∧ y.pfn if x 6≡ y

Group II

∃x x.p = u −→ ¬false
if u 6≡ x and u is atomic or a variable

∃x x.p = x.q −→ ¬false if p ≈ q
∃x x.p = y.qfnπi −→ y.qfn if x 6≡ y
∃x x.p = y.q ∧ c −→ ∃z∃z1 . . .∃zm[p(z)/x](z = y.q ∧ c)

where if x ≡ y then p ≈ q
∃x x.p = u ∧ c −→ ∃z1 . . .∃zm[p(u)/x]c

if u ≡ x and u is atomic or a variable
∃x x.pfn ∧ c −→ ∃z1 . . .∃zm[p(f(z1, . . . , zn))/x]c m ≥ n

Group III

∃x ¬x = x −→ false
∃x ¬x.p = v −→ ¬false if x does not occur free in v
∃x ¬x.pfn −→ ¬false

Figure 1: Rewriting rules for quantifier elimination.

5

In any case perform step 1 to the resulting formula. Go to step 2.

3. Otherwise halt with failure.

Step 4 If rule I has been applied, produce a final normal fomula and halt.

In order to prove the correctness of the algorithm we define a norm on paths,
slots and formulas. These norms are related to the number of new variables
that can be introduced.

Definition 10 (Norms) 1. Let p be a path, the norm of p, ‖p‖, is defined

as follows:

(a) ‖ε‖ = 0

(b) ‖pfnπi‖ = (n− 1) + ‖p‖

2. Let s be a slot, the norm of s, ‖s‖, is defined as:

(a) ‖x‖ = 1

(b) ‖x.p‖ = ‖p‖+ 1

3. (a) Let c be a positive literal, the norm of ‖c‖ is define as:

i. ‖s = s1‖ = ‖s‖+ ‖s1‖
ii. ‖s = a‖ = ‖s‖ where a is atomic
iii. ‖x.pfn‖ = ‖x.p‖+ n

(b) Let x be a variable and c be apositive literal the norm of c with respect
to x, ‖c : x‖ is defined by:

i. ‖c : x‖ if x does not occur in c

ii. ‖s = s1‖ = ‖s‖+ ‖s1‖ is x occurs in s and s1

iii. ‖s = s1‖ = ‖s‖ is x occurs only in s

iv. ‖s = s1‖ = ‖s1‖ is x occurs only in s1

v. ‖x.p = a : x‖ = ‖x.p‖ where a is atomic
vi. ‖x.pfn‖ = ‖x.p‖+ n

4. (a) Let c be formula and n be the number of positive literals of c,ci. Given
a variable x, the norm of c with respect to x, ‖c : x‖, is defined as
follows:

‖c : x‖ =
n∑

i=1

‖ci : x‖

where some pi can be ε.

(b) Let c be a formula, the norm of c, ‖c‖, is defined by:

‖c‖=

∑
x∈V ars(c)

‖c : x‖

6

The idea of this last definition is that new existencial quantified variables
can only be produced by positive literals. The norm of slots in negative literals
can be arbitratly great.

Lema 1 Let cc ≡ ∃x c be a formula such that c is a quantifier free formula.
The elimination algorithm converts cc to an equivalent quantifier free normal
formal c′.

Proof.
Step 1 produces a normal formula cc′ ≡ ∃x c′, c′ quantifier free. Rule I

transforms cc′ in a disjunction of formulas ∃x ci. It suffices to show that x is
eliminate from each one.

The rewriting rules ensure that x is eliminated from ci and that equivalence
is preserved. If no rule can be applied then failure is reported (cases where x
appears in the right hand of equalities).

As in the elimination process new existencial quantified variables are intro-
duced, we must show that the process always halts.

If rule II is applied, the algorithm halts and the result is a quantifier free
formula. In the same way, if a rewrite rule of group I, finitly many of group III
or one of the first three rules of group II is applied, x is eliminated, the substi-
tutions do not introduce more variables or positive literals and the algorithm
obviously halts with a quantifier free (normal) formula.

Otherwise, let ‖ci‖ = m and ‖ci : x‖ = k, k ≤ m.
We prove by induction on k.
If k = 1 then one of the rules of group I must apply.
Suppose valid for any value less than k.
Let x.pm = u be the first occurence of x in positive literals of ci, where

m = ‖pm‖.
Suppose, without loss of generality that ci is ∃x x.pm = u ∧ c1. Let cp

j , j =
1, . . . , n be the positive literals of c1 and pm(u) = tx. Then,

∃xx.pm = u ∧ c1 −→ ∃z1 . . .∃zm [tx/x]c1

−→ ∃z1 . . .∃zmc2

where c2 is the resulting reduced formula.
Each cp

j , j = 1, . . . , n was rewritten in one of the ways shown in figure 3.1.
Then we can ensure that:

m∑
i=1

‖c2 : zi‖ < ‖c1 : x‖+ (m + 1) = ‖ci : x‖ = k

So, every zi has a norm that is less than k and by inductive hypothesis every
each zi is eliminated and as no more positive literals are added the process is
finite and the algorithm halts.

If the first occurrence of x in positive literals of ci, was in x.p = y.q or x.pfn

the proof was similar.
•

7

[tx/x]x.p = a → tx.p = a
→ zi.qi = a ‖p‖ > ‖qi‖
→ zi = a
→ b = a → false

→ ¬false
→ ⊥ = a → false

[tx/x]x.p = y.q → tx.p = y.q
→ zi.qi = y.q ‖p‖ > ‖qi‖
→ zi = y.q
→ b = y.q → y.q = b
→ ⊥ = y.q → false

[tx/x]x.pfn → tx.pfn

→ zi.qif
n ‖p‖ > ‖qi‖

→ zi.f
n

→ gk(zi, . . . , zj).fn → false
→ b.fn → false
→ ⊥.fn → false

Figure 2: Reducing positive literals

8

Theorem 1 The elimination algorithm converts any formula c into an equiv-
alent quantifier free formula or halts with failure.

Proof.
As the number of quantified variables is finite, it suffices to sucessively apply

lemma 1 to the innermost quantification. •

4 Related Work

D.Smith in [7] presents an algorithm for reducing sets of universally quantified
disequalities to solved form based on an algorithm for existencially quantified
equations do to [5] and [4].

References

[1] Damas, Lúıs, Nelma Moreira and Giovanni B. Varile, 1991. The Formal and
Processing Models of CLG, in Proceedings of the EACL’91, Berlim.

[2] Dörre, J. and William Rounds, 1990. On Subsumption and Semiunification
in Features Algebras.

[3] Johnson, Mark, 1988. Attribute-Value Logic and the Theory of Grammar,
number 16 in CSLI Lecture Notes, Center for the Study of Language and
Information, Standford, CA.

[4] Lassez, J-L., M. J. Maher and K.Marriott, 1988. Unification Revisited, in
Fundations of Deductive Databases and Logic Programming. M. Kaufmann.

[5] Maher, Micheal J., 1988. Complete axiomatizations of the algebras of fi-
nite, rational and infinite trees. Research Report, IBM, Thomas J. Watson
Research Center.

[6] Smolka, G., 1989. Feature Constraint Logics for Unification Grammars,
LILOG Report 93, IWBS, IBM Deutschland.

[7] Smith, Donald, 1991. Constraint Operations for CLP(FT). In Proceedings
of the ICLP91, MIT Press.

9

