A Quantifier Elimination Algorithm in a FOL with Equality

Luís Damas
Nelma Moreira
University of Porto, Campo Alegre 823, 4100 Porto, Portugal
\{luis,nam\}@ncc.up.pt

December 1991

1 Introduction

Let Vars be a countable set of variables x, y, z, ... and Fun be a countable set of n-ary function symbols $\mathrm{f}, \mathrm{g}, \mathrm{h}, l \ldots, n \geq 0$. If f has arity n we will denote it by f^{n},whenever necessary. If $\mathrm{n}=0 f$ is called atomic and we will omit its arity. Let T be the term algebra over Fun and Vars and T_{0} be the corresponding set of ground terms.

Let C be a first order language over T with equality as the only predicate symbol.
We introduce a path notation p to a allow reference to a specific argument of a complex term avoiding the need for introducing existencial quantifiers and extraneous variables. So we extend C to expressions involving paths, which are called values. If t denotes terms, p paths, v values and c formulas of C we have:

$$
\begin{aligned}
& t::=x \\
& f^{n}\left(t_{1}, \ldots, t_{n}\right) \quad n \geq 0 \\
& p::=\varepsilon \\
& p f^{n} \pi_{i} \quad 1 \leq i \leq n \\
& v::=t \\
& \text { v.p } \\
& \perp \\
& c \quad::=t . p f^{n} \\
& v=v \\
& \text { false } \\
& \neg c \\
& c \wedge c \\
& c \vee c \\
& c \rightarrow c \\
& \exists x c \\
& \forall x c
\end{aligned}
$$

where

$$
\begin{aligned}
c \rightarrow c & \equiv \neg c \vee c \\
\forall x c & \equiv \neg \exists x \neg c
\end{aligned}
$$

In the above definitions π_{i} denotes de ith projection of a term. Formulas of the form $t . p f^{n}$ will be called path formulas. Given a formula $c, \operatorname{Vars}(c)$ will denote the set of variables occurring in c. Given v and $v^{\prime}, v \equiv v^{\prime}$ if they are the same value.

We take as semantic model for C the Herbrand model with the usual semantics for the logic connectives. Given a term t its denotation is

$$
\llbracket t \rrbracket=\left\{S t \in T_{0}\right\}
$$

where S is a substitution of terms for variables. We consider two formulas are equivalent concerning the semantic model.

2 Reduced formulas

Definition 1 (Slots) A value s is a slot if

$$
s:=x \mid x \cdot p
$$

where x denotes variables and p paths.
Definition 2 The length of a path $p,|p|$ is inductively defined by:

1. $|\epsilon|=0$
2. $\left|p f^{n} \pi_{i}\right|=1+|p|$

Definition 3 (Reduced values) A value v is reduced if it is either a term or a slot.

Proposition 1 Any value can be rewritten to an equivalent reduced value or \perp using the following rewriting rules:

$$
\begin{aligned}
& f\left(t_{1}, \ldots, t_{n}\right) \cdot f^{n} \pi_{i} p \longrightarrow \\
& t_{i} \cdot p \\
& f\left(t_{1}, \ldots, t_{n}\right) \cdot g^{k} \pi_{i} p \longrightarrow
\end{aligned} \perp
$$

Proof.

If v is a term or a slot then it is already in reduced form. Otherwise it is of the form $f^{n}(t 1, \ldots, t n) . p$. If $n=0$ then if $p=\epsilon v$ is reduced form else v is rewritten to \perp. If $n>0$ let $m=|p|$ be the length of p. Applying the rewritting rules at most m times we obtain a term or a slot or \perp. •

Definition 4 (Reduced equalities) An equality c is in reduced form if it is

$$
c \quad::=s=s^{\prime} \mid s=a
$$

where a is an atomic term.
Proposition 2 An equality $c:=v=v^{\prime}$ where v and v^{\prime} are reduced values, can be rewritten to an equivalent conjuction of reduced equalities or false or \neg false using the following rewriting rules:

$$
\begin{aligned}
& v=v^{\prime} \quad \longrightarrow \text { false if either } v \text { or } v^{\prime} \text { is } \perp \\
& v=v^{\prime} \quad \longrightarrow \text { false if } v \text { and } v^{\prime} \text { are atomic and } v \neq v^{\prime} \\
& v=v^{\prime} \quad \longrightarrow \quad \neg \text { false if } v \text { and } v^{\prime} \text { are the same value } \\
& f\left(t_{1}, \ldots, t_{n}\right)=f\left(u_{1}, \ldots, u_{n}\right) \longrightarrow t_{1}=u_{1} \wedge \ldots \wedge t_{n}=u_{n} \\
& f\left(t_{1}, \ldots, t_{n}\right)=g\left(u_{1}, \ldots, u_{n}\right) \longrightarrow \text { false } \\
& x . p=f\left(t_{1}, \ldots, t_{n}\right) \quad \longrightarrow \quad x . p f^{n} \pi_{1}=t_{1} \quad \wedge \ldots \wedge x . p f^{n} \pi_{n}=t_{n}, n>0 \\
& t=s \quad \longrightarrow \quad s=t \quad \text { if } t \text { is not a variable }
\end{aligned}
$$

Definition 5 (Reduced formulas) A formula c is in reduced form it has only reduced equalities and path formulas of the form x.pf ${ }^{n}$.

Proposition 3 Any formula c can be converted to reduced form by reducing all equalities and for each path formula, t.pfn reducing the value t.p and using the following rewriting rules:

$$
\begin{array}{rll}
\perp \cdot f^{n} & \longrightarrow & \text { false } \\
f\left(t_{1}, \ldots, t_{n}\right) \cdot f^{n} & \longrightarrow & \neg \text { false } \\
f\left(t_{1}, \ldots, t_{n}\right) \cdot g^{k} & \longrightarrow & \text { false } \\
& & \text { if } f^{n} \neq g^{k}
\end{array}
$$

Definition 6 (Prenex reduced formulas) A formula is in prenex reduced form if it is a reduced formula in prenex normal form

$$
Q_{1} x_{1} \ldots Q_{n} x_{n} c
$$

where $n \geq 0, c$ is a reduced formula and $Q_{i} \equiv \exists$ or $Q_{i} \equiv \forall$, for $i=1, \ldots, n$.
Definition 7 (Normal formulas) A formula c is a normal formula if it is a prenex reduced formula in disjunctive normal form.

$$
\begin{aligned}
c \quad::= & c c \\
& c c \vee c c \\
& \exists x c \\
& \forall x c \\
c c \quad::= & c i \\
& c i \wedge c i \\
c i \quad::= & s=s^{\prime} \\
& s=a \\
& x \cdot p f^{n} \\
& \neg c i
\end{aligned}
$$

Reduced equalities and path formulas $x . p f^{n}$ will be called positive literals and its negations negative literals.

3 Elimination of existencial quantifiers

Definition 8 Let p be a path and v a value, $p(v)$ is defined inductively by:

1. $\epsilon(v)=v$
2. $f^{n} \cdot \pi_{i} \cdot p(v)=f^{n}\left(z_{1}, \ldots, z_{i-1}, p(v), z_{i+1}, \ldots, z_{n}\right)$ where z_{1}, \ldots, z_{n} are new variables

Note that if v is a term also is $p(v)$.
Definition 9 The compatiblity of Two paths p and $q, p \approx q$ is defined as follows:

1. $\epsilon \approx \epsilon$
2. $f^{n} \pi_{i} p \approx f^{n} \pi_{i} q$ iff $p \approx q$
3. $f^{n} \pi_{i} p \approx f^{n} \pi_{j} q$ and $i \neq j$

If two paths p and q are compatible then the terms $p(z)$ and $q(z)$ are unifiable, where z is a new variable.

3.1 Elimination Algorithm

Let $[v / x] c$ be the formula obtainned from c replacing all free ocurrences of x with v.

Considering the rewriting rules of figure 3.1, the elimination algorithm is as follows:

Input: A formula c
Output: A quantifier free formula or report failure.
Step 1 Put c in normal form.
Step 2 If there exists quantified variables then select the innermost quantification else go to step 4 . If x is universally quantified, $\forall x c$ (with c quantifier free) then proceed to step 3 with $\exists x \neg c$ and in the end of step 3 negate the resulting formula; otherwise go to step 3.

Step 3 If necessary apply Rule I. For every disjunct of the form $\exists x c$:

1. Apply rule II.
2. Or:
(a) find a formula of the form $x=v$ or $v=x$ and apply a rewrite rule of group I (rearranging if necessary the conjuncts).
(b) if not found, find one of the form $x . p=v$ or $v=x . p$ or $x . p f^{n}$ and apply a rewrite rule of group II.
(c) if x only appears in negative literals then, if the Herbrand universe, \mathcal{H} is infinite, either we can reduce that formulas to \neg false or false by applying a rewrite rule group III to each one.

Rule I

$$
\exists x c_{1} \vee c_{2} \longrightarrow \exists x c_{1} \vee \exists x c_{2}
$$

Rule II

$$
\exists x c \longrightarrow c \text { if } x \text { does not occur free in } c
$$

Group I

$\exists x x=u$	$\longrightarrow \neg$ false	if u is atomic or a variable
$\exists x x=y \cdot p f^{n} \pi_{i}$	$\longrightarrow y \cdot p f^{n}$	if $x \not \equiv y$
$\exists x x=u \wedge c$	$\longrightarrow[u / x] c$	if u is atomic or a variable
$\exists x x=y \cdot p f^{n} \pi_{i} \wedge c$	$\longrightarrow\left[y \cdot p f^{n} \pi_{i} / x\right] c \wedge y \cdot p f^{n}$	if $x \not \equiv y$

Group II

$$
\begin{aligned}
& \exists x x . p=u \quad \longrightarrow \quad \neg \text { false } \\
& \text { if } u \not \equiv x \text { and } u \text { is atomic or a variable } \\
& \exists x x . p=x . q \quad \longrightarrow \quad \neg \text { false } \quad \text { if } p \approx q \\
& \exists x x \cdot p=y . q f^{n} \pi_{i} \longrightarrow y \cdot q f^{n} \quad \text { if } x \not \equiv y \\
& \exists x x . p=y . q \wedge c \quad \longrightarrow \quad \exists z \exists z_{1} \ldots \exists z_{m}[p(z) / x](z=y . q \wedge c) \\
& \text { where if } x \equiv y \text { then } p \approx q \\
& \exists x x . p=u \wedge c \quad \longrightarrow \exists z_{1} \ldots \exists z_{m}[p(u) / x] c \\
& \text { if } u \equiv x \text { and } u \text { is atomic or a variable } \\
& \exists x x . p f^{n} \wedge c \quad \longrightarrow \exists z_{1} \ldots \exists z_{m}\left[p\left(f\left(z_{1}, \ldots, z_{n}\right)\right) / x\right] c \quad m \geq n
\end{aligned}
$$

Group III

$$
\begin{array}{ll}
\exists x \neg x=x & \longrightarrow \text { false } \\
\exists x \neg x \cdot p=v & \longrightarrow \neg \text { false if } x \text { does not occur free in } v \\
\exists x \neg x . p f^{n} & \longrightarrow \neg \text { false }
\end{array}
$$

Figure 1: Rewriting rules for quantifier elimination.

In any case perform step 1 to the resulting formula. Go to step 2.
3. Otherwise halt with failure.

Step 4 If rule I has been applied, produce a final normal fomula and halt.
In order to prove the correctness of the algorithm we define a norm on paths, slots and formulas. These norms are related to the number of new variables that can be introduced.

Definition 10 (Norms) 1. Let p be a path, the norm of $p,\|p\|$, is defined as follows:
(a) $\|\epsilon\|=0$
(b) $\left\|p f^{n} \pi_{i}\right\|=(n-1)+\|p\|$
2. Let s be a slot, the norm of $s,\|s\|$, is defined as:
(a) $\|x\|=1$
(b) $\|x \cdot p\|=\|p\|+1$
3. (a) Let c be a positive literal, the norm of $\|c\|$ is define as:
i. $\left\|s=s_{1}\right\|=\|s\|+\left\|s_{1}\right\|$
ii. $\|s=a\|=\|s\|$ where a is atomic
iii. $\left\|x . p f^{n}\right\|=\|x . p\|+n$
(b) Let x be a variable and c be apositive literal the norm of c with respect to $x,\|c: x\|$ is defined by:
i. $\|c: x\|$ if x does not occur in c
ii. $\left\|s=s_{1}\right\|=\|s\|+\left\|s_{1}\right\|$ is x occurs in s and s_{1}
iii. $\left\|s=s_{1}\right\|=\|s\|$ is x occurs only in s
iv. $\left\|s=s_{1}\right\|=\left\|s_{1}\right\|$ is x occurs only in s_{1}
v. $\|x . p=a: x\|=\|x . p\|$ where a is atomic
vi. $\left\|x . p f^{n}\right\|=\|x . p\|+n$
4. (a) Let c be formula and n be the number of positive literals of c, c_{i}. Given a variable x, the norm of c with respect to $x,\|c: x\|$, is defined as follows:

$$
\|c: x\|=\sum_{i=1}^{n}\left\|c_{i}: x\right\|
$$

where some p_{i} can be ϵ.
(b) Let c be a formula, the norm of $c,\|c\|$, is defined by:

$$
\|c\|=\sum_{x \in \operatorname{Vars}(c)}\|c: x\|
$$

The idea of this last definition is that new existencial quantified variables can only be produced by positive literals. The norm of slots in negative literals can be arbitratly great.

Lema 1 Let $c c \equiv \exists x c$ be a formula such that c is a quantifier free formula. The elimination algorithm converts cc to an equivalent quantifier free normal formal c ${ }^{\prime}$.

Proof.

Step 1 produces a normal formula $c c^{\prime} \equiv \exists x c^{\prime}, c^{\prime}$ quantifier free. Rule I transforms $c c^{\prime}$ in a disjunction of formulas $\exists x c_{i}$. It suffices to show that x is eliminate from each one.

The rewriting rules ensure that x is eliminated from c_{i} and that equivalence is preserved. If no rule can be applied then failure is reported (cases where x appears in the right hand of equalities).

As in the elimination process new existencial quantified variables are introduced, we must show that the process always halts.

If rule II is applied, the algorithm halts and the result is a quantifier free formula. In the same way, if a rewrite rule of group I, finitly many of group III or one of the first three rules of group II is applied, x is eliminated, the substitutions do not introduce more variables or positive literals and the algorithm obviously halts with a quantifier free (normal) formula.

Otherwise, let $\left\|c_{i}\right\|=m$ and $\left\|c_{i}: x\right\|=k, k \leq m$.
We prove by induction on k.
If $k=1$ then one of the rules of group I must apply.
Suppose valid for any value less than k.
Let $x \cdot p_{m}=u$ be the first occurence of x in positive literals of c_{i}, where $m=\left\|p_{m}\right\|$.

Suppose, without loss of generality that c_{i} is $\exists x x \cdot p_{m}=u \wedge c_{1}$. Let $c_{j}^{p}, j=$ $1, \ldots, n$ be the positive literals of c_{1} and $p_{m}(u)=t_{x}$. Then,

$$
\begin{aligned}
\exists x x \cdot p_{m}=u \wedge c_{1} & \longrightarrow \exists z_{1} \ldots \exists z_{m}\left[t_{x} / x\right] c_{1} \\
& \longrightarrow \exists z_{1} \ldots \exists z_{m} c_{2}
\end{aligned}
$$

where c_{2} is the resulting reduced formula.
Each $c_{j}^{p}, j=1, \ldots, n$ was rewritten in one of the ways shown in figure 3.1. Then we can ensure that:

$$
\sum_{i=1}^{m}\left\|c_{2}: z_{i}\right\|<\left\|c_{1}: x\right\|+(m+1)=\left\|c_{i}: x\right\|=k
$$

So, every z_{i} has a norm that is less than k and by inductive hypothesis every each z_{i} is eliminated and as no more positive literals are added the process is finite and the algorithm halts.

If the first occurrence of x in positive literals of c_{i}, was in $x . p=y . q$ or $x . p f^{n}$ the proof was similar.

$$
\begin{aligned}
& {\left[t_{x} / x\right] x \cdot p=a \quad \rightarrow \quad t_{x} \cdot p=a} \\
& \rightarrow \quad z_{i} \cdot q_{i}=a \quad\|p\|>\left\|q_{i}\right\| \\
& \rightarrow \quad z_{i}=a \\
& \rightarrow \quad b=a \quad \rightarrow \text { false } \\
& \rightarrow \perp=a \quad \rightarrow \quad \neg \text { false } \\
& {\left[t_{x} / x\right] x \cdot p=y \cdot q \quad \rightarrow \quad t_{x} \cdot p=y \cdot q} \\
& \rightarrow \quad z_{i} \cdot q_{i}=y . q \quad\|p\|>\left\|q_{i}\right\| \\
& \rightarrow \quad z_{i}=y \cdot q \\
& \rightarrow \quad b=y . q \quad \rightarrow \quad y . q=b \\
& \rightarrow \quad \perp=y . q \quad \rightarrow \text { false } \\
& {\left[t_{x} / x\right] x . p f^{n} \rightarrow t_{x} \cdot p f^{n}} \\
& \xrightarrow{\rightarrow} z_{i} \cdot q_{i} f^{n} \quad\|p\|>\left\|q_{i}\right\| \\
& \rightarrow z_{i} \cdot f^{n} \\
& \rightarrow g^{k}\left(z_{i}, \ldots, z_{j}\right) \cdot f^{n} \rightarrow \text { false } \\
& \rightarrow \text { b.fn } \quad \rightarrow \text { false } \\
& \rightarrow \text { L.fn } \quad \rightarrow \text { false }
\end{aligned}
$$

Figure 2: Reducing positive literals

Theorem 1 The elimination algorithm converts any formula c into an equivalent quantifier free formula or halts with failure.

Proof.

As the number of quantified variables is finite, it suffices to sucessively apply lemma 1 to the innermost quantification.

4 Related Work

D.Smith in [7] presents an algorithm for reducing sets of universally quantified disequalities to solved form based on an algorithm for existencially quantified equations do to [5] and [4].

References

[1] Damas, Luís, Nelma Moreira and Giovanni B. Varile, 1991. The Formal and Processing Models of $C L G$, in Proceedings of the EACL'91, Berlim.
[2] Dörre, J. and William Rounds, 1990. On Subsumption and Semiunification in Features Algebras.
[3] Johnson, Mark, 1988. Attribute-Value Logic and the Theory of Grammar, number 16 in CSLI Lecture Notes, Center for the Study of Language and Information, Standford, CA.
[4] Lassez, J-L., M. J. Maher and K.Marriott, 1988. Unification Revisited, in Fundations of Deductive Databases and Logic Programming. M. Kaufmann.
[5] Maher, Micheal J., 1988. Complete axiomatizations of the algebras of finite, rational and infinite trees. Research Report, IBM, Thomas J. Watson Research Center.
[6] Smolka, G., 1989. Feature Constraint Logics for Unification Grammars, LILOG Report 93, IWBS, IBM Deutschland.
[7] Smith, Donald, 1991. Constraint Operations for $\operatorname{CLP}(\mathcal{F} \mathcal{T})$. In Proceedings of the ICLP91, MIT Press.

