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Abstract. This work presents a constraint solver for the domain of ra-
tional trees. Since the problem is NP-hard the strategy used by the solver
is to reduce as much as possible, in polynomial time, the size of the con-
straints using a rewriting system before applying a complete algorithm.
This rewriting system works essentially by rewriting constraints using
the information in a partial model. An efficient C implementation of the
rewriting system is described and an algorithm for factoring complex
constraints is also presented.

1 Introduction

The topic of constraints over syntactic domains has raised a considerable interest
in the Computational Linguistics community. As a matter of fact constraints
over the algebra of rational trees can significantly contribute to the reduction of
the search space of problems in NLP while increasing the expressive power of
formalisms for NLP [DMV91,DV89].

Unification-based grammar formalisms ([SUP+83], [Usz86],[KB82], [PS87],
etc.) describe linguistic information by means of constraints over feature struc-
tures, which are basically sets of attribute-value pairs, where values can be atomic
symbols or embedded feature structures, e.g.

[cat = np, agr = [num = sg, pers = 3rd]]

These structures and their combination can be seen as conjunctions of equality
constraints which satisfiability can be tested by efficient unification algorithms.
But the extension of these formalisms to express complex constraints involving
negation and disjunction of equality constraints, besides arising formal theoret-
ical problems leads to a NP-hard satisfiability problem.

From a formal point of view the problem is well understood after the founda-
tional works of [RK86,Smo89] establishing Feature Logics. It turns out that the
standard model for feature logics, namely rational trees, has a close relationship
with the standard algebra of rational trees in Logic Programming and with its
complete axiomatization presented in [Mah88]. As a matter of fact it can be
proved [DMV92] that the satisfiability problem for the complete axiomatization



of feature logics can be reduced to the satisfiability problem for Maher complete
axiomatization of the algebra of rational trees.

From a practical point of view the fact that the satisfiability problem is NP-
hard tends to manifest itself in a dramatic way in practical applications moti-
vated several specialized algorithms to minimize this problem [Kas87,ED88,MK91].

In [DV92] it was argued that any practical approach to the satisfiability prob-
lem should use factorization techniques to reduce the size of the input formulae
to which any complete algorithm for satisfiability is applied, since such factor-
ization can reduce by an exponential factor the overall computational cost of the
process. In that work a rewrite system, working in polynomial time, was used to
factor out deterministic information contained in a complex constraint and sim-
plify the remaining formula using that deterministic information. In [DMV92]
that rewrite system was extended to a complete rewrite system for satisfiability
which avoided as much as possible the multiplication of disjunctions which is
the origin of the NP-hardness of the satisfiability problem.

In this work we present a solver for constraints over the domain of rational
trees using the rewrite system mentioned above.

The rest of this paper proceeds as follows. We start by defining our constraint
language, which was designed to enable the introduction of equality constraints
on terms or rational trees without using any quantifiers, in section 2. In section
3 we define a complete rewrite system for expressions in the constraint language.
In section 4 we present in some detail the low-level implementation of part of
the rewrite system. In section 5 we will present an algorithm for factoring out
of two constraints any deterministic information which is common to both.

2 The Constraint Language

Consider the first order language L built from the countable sets of variables
V ars = {x, y, z, . . .}, function symbols F = {f, g, h, . . .} and equality as the only
predicate symbol. As usual, the functional symbols of arity 0 will be denoted by
a, b, . . . and will be referred to as atoms. For this language Maher presented
a complete axiomatization of the algebra of rational trees, RT , [Mah88]. This
theory of RT is complete in the sense that a sentence is valid in RT if and only
if it is a logical consequence of the theory. We now introduce a quantifier free
constraint language, in which the formulae of L will be encoded. Here function
symbols appear, whenever necessary, with their arities and are then denoted by
fn, while fn

i stands for the ith projection of a function symbol f of arity n. The
letters s and t will always denote variables or atoms. Expressions of the form
x.fn

i will be called slots. We define the constraints of the language by:

c ::= t.fn | t = t | t.fn
i

.= t, 1 ≤ i ≤ n |
false | true | ¬c | c ∧ c | c ∨ c

Note that one can look at each constraint c as an abbreviation for a formula of L,
interpreting t.fn as ∃z1 . . .∃zn t = f(z1, . . . , zn) and t.fn

i
.= s as ∃z1 . . .∃zn t =



f(z1, . . . , zn) ∧ zi = s. On the other hand there exists an equivalent constraint
c for every formula of L. To see this, recall that Maher proves in [Mah88] that
any of these formulae is equivalent to a boolean combination of rational basic
formulae, for which it is easy to find an equivalent constraint. Finally notice the
similarity of this constraint language and the Smolka’s Feature Logics [Smo89]
with fn

i playing the role of features. More recently Smolka and others [ST92]
introduced a Feature Tree Logic which includes sort and arity constraints much
similar to our x.fn constraint.

We call the first five types of constraints defined above atomic constraints
and say that a set of atomic constraints M, denoting their conjunction, is in
solved form if and only if it satisfies the following conditions:

1. every constraint in M is of one of the forms x.fn, x.fn
i

.= t or x = t;
2. if x = t is in M, then x occurs exactly once in M;
3. if x.fn

i
.= t and x.fn

i
.= s are in M, then t is equal to s;

4. if x.fn
i

.= t is in M, then x.fn is also in M;
5. if x.fn is in M, then there is no constraint in M of the form x.gm;
6. if for some x, y and t, both x.fn

i
.= t and y.fn

i
.= t are in M, then for some

j between 1 and n, there is no s, such that x.fn
j

.= s and y.fn
j

.= s are both
in M.

The purpose of the last clause in the previous definition is to force solved
forms to contain x = y, whenever for some fn and every i between 1 and n,
there is si, such that x.fn

i
.= si and y.fn

i
.= si hold.

It is easy to prove that solved forms are satisfiable and that every set of atomic
constraints M can be reduced in quadratic time to an equivalent set, which is
either in solved form or equal to ⊥, using the following set of simplification rules,
that correspond to the Herbrand rules for solving equations in a first order logic.

1. {true} ∪M→M
2. {false} ∪M→ ⊥
3. {t = t} ∪M→M
4. {a = b} ∪M→ ⊥
5. {x = t} ∪M→ {x = t} ∪ [t/x]M if x is not equal to t and x occurs in M
6. {a = x} ∪M→ {x = a} ∪M
7. {x.fn

i
.= t, x.fn

i
.= s} ∪M→ {x.fn

i
.= t, t

.= s} ∪M
8. {a.fn

i
.= t} ∪M→ ⊥

9. {a.fn} ∪M→ ⊥
10. {x.fn

i
.= t} ∪M→ {x.fn, x.fn

i
.= t} ∪M if x.fn 6∈ M

11. {x.fn, x.gm} ∪M→ ⊥
12. if x = y 6∈ M, but for all 1 ≤ i ≤ n there exists ti such that x.fn

i
.= ti ∈ M

and y.fn
i

.= ti ∈M, then M→ {x = y} ∪M.



3 Rewriting System

From now on let M be a solved form and C a finite set of constraints representing
their conjunction. We say thatM is a partial model of C if and only if every model
of C is a model of M. When every model of M is a model of C, but no proper
subset of M satisfies this condition, we will say that M is a minimal model of C.
By using disjunctive forms it can be proved that any set of constraints C admits
at most a finite number of minimal models.

Our rewriting system produces from a set of constraints C0 a partial model
M and a smaller set of constraints C, such that any minimal model of C0 can
be obtained by conjoining (i.e. ”unifying”) a minimal model of C with M and
moreover for any minimal model of C the unionM∪C is satisfiable. The rewriting
system for pairs 〈M, C〉 is defined by the following rules:

〈M, C ∪ {false}〉 → 〈⊥, ∅〉
〈M, C ∪ {true}〉 → 〈M, C〉
〈M, C ∪ {x = t}〉 → 〈M∪ {x = t}, C〉
〈M, C ∪ {x.fn}〉 → 〈M∪ {x.fn}, C〉
〈M, C ∪ {x.fn

i =̇t}〉 → 〈M∪ {x.fn
i =̇t}, C〉

with the convention that after each application of one of the rewrite rules the
new partial model is reduced to solved form and the resulting set of constraints
is closed under −→M as defined below.

The complete set of rewrite rules −→M for terms and constraints follows:

x −→M t if x = t ∈M
x.fn

i −→M t if x.fn
i

.= t ∈M
c −→⊥ false
¬true −→M false
¬false −→M true
¬¬c −→M c
¬(c1 ∧ c2) −→M ¬c1 ∨ ¬c2

¬(c1 ∨ c2) −→M ¬c1 ∧ ¬c2

true ∧ c −→M c
false ∧ c −→M false
c ∧ true −→M c
c ∧ false −→M false
true ∨ c −→M true
false ∨ c −→M c
c ∨ true −→M true
c ∨ false −→M c
(c1 ∧ c2) ∧ c3 −→M c1 ∧ (c2 ∧ c3)
a = b −→M false if a and b are distinct atoms
a = x −→M x = a
t = t −→M true
x.fn −→M true if x.fn ∈M



x.fn −→M false if x.gm ∈M
a.fn −→M false
a.fn

i
.= t −→M false

x = t −→M false if M∪ {x = t} → ⊥
x = t ∧ c −→M x = t ∧ c′ if c −→?

M∪{x=t} c′

x.fn
i

.= t −→M false if M∪ {x.fn
i

.= t} → ⊥
x.fn

i
.= t ∧ c −→M x.fn

i
.= t ∧ c′ if c −→?

M∪{x.fn
i

.
=t} c′

x.fn ∧ c −→M x.fn ∧ c′ if c −→?
M∪{x.fn} c′

x 6= t ∧ c −→M c ∧ x 6= t if any non-negated equality occurs in c
x.fn

i 6 .= t ∧ c −→M c ∧ x.fn
i 6 .= t if any non-negated equality occurs in c

¬x.fn ∧ c −→M c ∧ ¬x.fn if any non-negated equality occurs in c
(c1 ∨ c2) ∧ c3 −→M (c1 ∧ c3) ∨ (c2 ∧ c3) if both c1 and c2

are M-dependent with c3.

Note that in the rules above M ∪ C denotes the solved form of the union of
M and C, if one exists, or ⊥ if that union is not satisfiable. The last rule must
apply only when both c1 and c2 have variables in common with c3, eventually
through “bindings” in M. In order to formalize this notion we need the following
definition. Given two constraints c1 and c2 and a model M, c1 and c2 are M-
dependent if and only if V arM(c1) ∩ V arM(c2) 6= ∅, where V arM(c) is the
smallest set satisfying:

if x ∈ c, then x ∈ V arM(c);
if x ∈ V arM(c) and x.fn

i
.= z ∈M, then z ∈ V arM(c).

Given an initial set of constraints C0 we apply the rewriting system to 〈∅, C0〉
to obtain 〈M, C〉. It is easy to prove that C0 (more precisely the conjunct of all
the constraints in C0) is equivalent to M∪ C. As a matter of fact this follows
from the fact that each rewrite rule is associated with a similar meta-theorem
of First Order Logic and/or the axioms of RT .

A proof that all the minimal models of C0 are obtained by conjoining M with
those of C follows along similar lines as the proof in [DV92] for feature logics.

The other interesting property of the rewriting system above is that it is
complete in the sense that 〈M, C〉 is satisfiable, unless it produces ⊥ as the final
model. The simple (but tedious) proof of this result uses induction. Complete-
ness is achieved mainly by the last rule above for −→M . However, even if this
rule attempts to limit the number of cases where it applies to an essential min-
imum, it causes NP-completeness of the rewriting process since it can lead to
an exponential growth of the constraints. If we omit this rule, then the rewrite
process becomes polynomial, although incomplete. As a technique to decrease
the number of times the rule is used, one can treat disjunctions C1

0 ∨ C2
0 in the

following way: First apply the rewrite system to each Ci
0 obtaining partial mod-

els Mi and smaller sets of constraints Ci. Then push redundancies out of M1

and M2 using the algorithm described in the section 5 and obtain sets COM ,
M̃1 and M̃1, such that each Mi is equivalent to COM ∧M̃i. Finally substitute
C1

0 ∨ C2
0 by COM ∧ (M̃1 ∪ C1 ∨ M̃2 ∪ C2).



4 Implementation

In this section we present a constraint solver based on the rewriting system
described above. Note that given a solved form M, and considering that the
equality is a equivalence relation, M can be partitioned into equivalence classes.
Given an order <T on terms1 we can induce an order in these classes and so, to
each set of satisfiable atomic constraints corresponds a set of normalized classes.
A set N = {l1, . . . , ln}, is a normalized solved form iff:

1. each li is of the form v1 = . . . = vk, where each vi is a variable, an atom or
a slot and vi <T vj , for i < j ∈ {1, . . . , k}, or li is x.fn

i .
2. each li has at most an atom and in that case it is the first element.
3. if v ∈ li then v occurs exactly once in M.
4. if li is x.fn, x does not occur in other lj of this form.
5. if x is in li and the first element of li is an atom then there is no lj of the

form x.fn, for any f and n.
6. if x.fn

i ∈ lk then there is a lj of the form x.fn.

With a slight modification of rule 5 in section 2 to deal with ordered variables,
it is easy to see that each satisfiable constraint can be reduced to an unique
equivalent normalized solved form. We will describe an algorithm that given a
set of atomic constraints returns a solved form as a set of equality classes or false
if the set is not satisfiable. The main features of the algorithm are implemented
in C but an interface to Prolog is provided via a set of basic predicates. The
complete rewrite system was written in Prolog using these predicates. The C
component of the solver implements essentially the unification of solved forms
in a way which is very similar to the Prolog implementation of unification. The
main reason for a detailed presentation is the novel use we made of the trail
mechanism which is not only used to recover a previous state but also to produce,
as a solved form, the “differences” between the current state and the previous
state (see subsection 4.3).

4.1 Rational Tree Representation

The representation of rational trees to be used, allows not only an efficient im-
plementation of unification but also provides an incremental way of obtaining
partial models, which is suitable for the contexted rewrite of inner disjunctions
of a complex constraint. Given a set of atomic constraints, a destructive unifi-
cation algorithm is used, while producing a trail, and then undoing unification,
by also using the trail, we retrieve the associated solved form (partial model).

Besides variables and atoms, the notion of term is extended to objects of the
form fn, denoting a functor (function symbol) f with arity n, and to slots of the
1 Let V ars and F be provided with the lexicographical order and let variables, atoms

and slots be terms. Then consider the following order <T on terms: atoms are less
than variables, and variables less than slots; two atoms or two variables are compared
lexicographically; two slots are first compared by their variables, if equal then by
their functor and arity and finally if every thing else is identical by their projections.



form x.fn
i

2. Terms will be stored in a table where each one is a structure with
the following fields:

kind which can have the values AtomS, V arS, FuncS or SlotS indicating that
the term is an atom, a variable, a functor or a slot respectively. These
values are sorted by increasing order.

name if the term corresponds to an atom or a variable this field is their identifier
(a Prolog atom in the actual implementation); if the term is a slot, it is the
projection identifier.

value a link to the terms in the same equality class or NIL.
daughters if the term is a variable or a slot this field is a link to its subtrees;

otherwise its value is NIL.
base if the term is a slot x.fn

i this is a pointer to the entry corresponding to the
variable x; if the term is a variable, it can be a pointer to a functor term.

next link to the next term in the table.

A partial model is represented on the trail. The trail is a stack that
contains pointers to the terms which value have changed during the rewrite
process. Two pointers TrailOld and TrailPtr will mark the beginning and the
ending of the portion of stack currently in use.

4.2 Solved Form Algorithm

The basic algorithm for the unification of two terms is given in figure 2. As
usual substitutions are replaced by a bind/dereference mechanism, so before any
two terms are unified they must be dereferenced, see figure 1. In the unification
procedure whenever the value of a term is bounded, its pointer is added to the
top of the trail, see figure 1, and in this way the active model is extended.
Whenever two variables v1 and v2 (or a variable and a slot) are unified we must
ensure that all subtrees of v2 share with subtrees of v1. This is done by the
procedure UnifySubTrees, figure 3. As new terms maybe added to the trail,
this can lead to some redundancies which will be eliminated when the solved
form will be retrieved. The rest of the algorithm is basically the implementation
of the simplification rules given in section 2.

The following Prolog predicates are provided to rewrite atomic constraints
(the number after the slash indicates its arity).

add ac va/2 add a constraint of the form x = a

add ac vv/2 add a constraint of the form x = x

add ac fa/5 add a constraint of the form x.fn
i

.= a

add ac fv/5 add a constraint of the form x.fn
i

.= x

add ac f/3 add a constraint of the form x.fn

2 Recall that it represents the ith projection of x which main functor is f of arity n



Deref(Term v)

{ while(v->value) v=v->value;

return v;

}
Bind(Term v1,Term v2)

{ v1->value=v2;

*TrailPtr++=v1;

}

Fig. 1. Dereference of a term and bind of two terms.

Unify(Term v1,Term v2)

{ if(v1->kind>v2->kind) { /* exchange v1 with v2 */

Term t=v1; v1=v2; v2=t; }
if(v1->kind==AtomS)

if(v2->kind==AtomS) return v1==v2;

if(v2->kind==VarS) {
/* test if v2 is not bounded to a functor */

if(IsFunctor(v2)) return 0;

Bind(v2,v1);

return 1;

}
if(v2->kind==SlotS) {

/* test if v2 is not of the form a.fn
i */

if(!IsProper(v2)) return 0;

Bind(v2,v1);

return 1;

}
if(v1->kind==VarS) {

/* v2 is a variable or slot */

if(v1==v2) return 1;

if(!SameFunctor(v1,v2))return 0;

if(!IsProper(v2)) return 0;

/* sort variables */

if(Compare(v2,v1)) { exchange v1 with v2 */

Term t=v1; v1=v2; v2=t; }
Bind(v2,v1);

return UnifySubTrees(v1,v2);

}
}

Fig. 2. Unification algorithm.



UnifySubTrees(Term u, Term v)

{ Term du ,dv;

if(!SameFunctor(v,u))return 0;

/* ensure all daughters of v share with daughters of u */

du =u;

dv = v->daughters;

while(dv!=NIL) {
while(du->daughters!=NIL

&& du->daughters->name < dv->name)

du = du->daughters;

/* if u does not have that subtree it will be create */

if(du->daughters==NIL ||du->daughters->name!=dv->name) {
Term t = (Term) tmp alloc(sizeof(*t));

t->kind = SlotS;

t->name=dv->name;

t->base = u;

t->value = NIL;

t->daughters= du->daughters;

du->daughters= t;

}
/* unify correspondent daughters of u and v */

if(!Unify(Deref(du->daughters),Deref(dv)) return 0;

dv=dv->daughters;

}
return 1;

}
}

Fig. 3. Unification of subtrees.



For each argument the associated term is looked up in the term table and if
not found, is created and added to the table 3. Then the Unify procedure is
called and if it fails, the predicate will fail. The last predicate add ac f is a bit
different because instead of binding the value of x with the term representing
fn we just bind it to the base of x4. The reason is that two different terms can
have the same functor. In this case they will be equal only if all their subtrees
are defined and equal.

When no more constraints are to be added (and no failure has occurred) a call
to the predicate undo ac/1, see figure 4, returns a solved form as a set of equality
classes. According to the rule 12 in section 2, every two terms that agree in all
their subtrees (slots) are unified. Then, beginning at the top of the trail each
term is dereferenced and all the terms that dereference to the same value are
removed from the trail and, joined in the same class. If a term is a slot, its base
must be dereferenced5 and the slot associated to the new base is added to the
class. That is so, because that term could have been inserted in the trail before
its base was bounded to another term. This step can also eliminate redundancies
created by UnifySubTrees, see example below. Finally the values of all terms
are zeroed and the trail is emptied. To illustrated, let M be a satisfiable set
of atomic constraints: {z.f4

1
.= b, z = y, z = x,w = b, x.f4

1
.= u, x.f4

1
.= b}. After

adding these constraints, the trail contains pointers to the terms described in
the following table:

term term.value
z.f4

1 b
z y

y.f4
1 b

y x
x.f4

1 b
w b
u b

where the third and fifth elements are due to unification of subtrees and the last
one is due to the dereference of x.f4

1 . The last conjunct in M was trivially true,
so no more elements were added. This leads to the following normalized solved
form: {b = u = w = x.f4

1 , x.f4, x = y = z}. Note that if the first two constraints
in M were swapped, then the first element will not appear in the trail.

The claim that undo ac returns a normalized solved form of M follows from
the fact that:

– the unification algorithm ensures that M is satisfiable.

3 In this stage some clashes can be detected, namely if a variable earlier bounded to
an atom is now to be bound to a functor or to a different functor. This avoids some
tests done later in the Unify procedure.

4 In the algorithms presented in this paper it is omitted the code concerning the
treatment of these constraints.

5 Function DerefSlot accomplishes that.



– every term in the trail occurred in an equation of M or results from the
unification of subtrees (akin to application of a substitution); and its value is
the other element of the equation or corresponds to one or more applications
of rules 5 and 7 of section 2, which preserve equivalence.

– by construction the result of undo ac is a normalized solved form.

undo ac()

{ Term *p,r0,r1;

SolvForm classes=NIL;

/* apply rule 12 */

check eq terms();

while(1){
*p=TrailPtr;

r0=*--p;

/* find first thing left in the trail;

if a term r has been removed from the

trail marked(r) will succeed */

while(p!=TrailOld && marked(r0)) r0=*--p;

if(p==TrailOld) break; /* nothing left */

r0=Deref(r0);

++p; /* r0 back to the trail */

StartClass();

AddToClass(r0);

/* find another term in the same class */

while(p!=TrailOld){
r1=*--p;

if(marked(r1)) continue;

if(Deref(r1)!=r0) continue;

mark(r1); /* remove r1 from the trail */

/* check slot base */

r1=DerefSlot(r1);

AddToClass(r1);

}
classes=MkClasses(MkAtomicClass(),classes);

}
/* clean trail and term values */

while(TrailPtr!=TrailOld)(*--TrailPtr)->value=NIL;

TrailPtr=TrailOld;

}

Fig. 4. Retrieve of a solved form.

The solved form algorithm for a set of atomic constraints can be summarized
as follows:



solve(C,M):-
clean_ac,
add_constraints(C,C1),
(C1==false -> M=false; undo_ac(M)).

where C is a list of atomic constraints, clean ac initializes the term table and
the trail6 and add constraints for each atomic constraint calls the appropri-
ate predicate and returns false if any of them fails.

4.3 General Algorithm

The above algorithm can be efficiently extended to deal with general constraints
and implement the complete rewriting system. The basic idea is to mark the
model whenever a disjunction or a negation occurs. In this way all conjunctions
of atomic constraints can be treated in a similar manner. Whenever a disjunct
is rewritten the solved form corresponding to its atomic part (set of atomic
constraints) is extracted, if it is satisfiable. Otherwise the model constructed so
far (back to the last mark) must be erased, a new mark must be set and false is
produced (for that disjunct or negation). This mechanism is achieved by having
a stack of choice points which are the trail bounds. To set a choice point the
current beginning of the trail is added to the top of the choice point stack and
the current beginning of the trail is reset to be the current ending. The inverse
operation is done whenever a model is extracted (undo ac only extracts a model
between two trail bounds) or a failure occurs, see figure 5. The following Prolog
predicates are provided:

clean ac/0 set the active model to be the empty model
mark ac/0 set a choice point for the model
undo ac/1 restore previously marked model and returns a solved form
fail ac/0 restore previously marked model

Now the complete rewriting system can be easily implemented in Prolog. Here
we just present a small fragment of the program7.

solve(C,C1):-
clean ac,
rewrite(C,C0)
(C0==C-> C1=C0; solve(C0,C1)).

rewrite(C,C1):-
rewrite atomic(C,C0),
rewrite m(C0,C1),
undo ac(M),and(M,C1,C2).

6 The active model is the empty model.
7 Negations have been pushed down atomic constraints and the elimination of trivial

constraints and earlier detection of failures have been omitted as well as other control
features.



clean ac()

{ if(TrailBase==0)

TrailBase = (Term *) malloc(sizeof(Term)*TRAIL SIZE);

TermTable= 0;

TrailPtr = TrailOld = TrailBase;

ChoicePtr = ChoicePointBase ;

return 1;

}

mark ac()

{ *ChoicePtr++ = TrailOld;

TrailOld = TrailPtr;

return 1;

}

fail ac()

{ while(TrailPtr!=TrailOld) (*--TrailPtr)->value = NIL;

TrailOld = *--ChoicePtr;

return 1;

}

Fig. 5. Set and remove choice points.

...
rewrite m(and(A,B),C):-

rewrite m(A,A1),
rewrite m(B,B1).
and(A1,B1,C).

rewrite m(or(A,B),C):-
mark ac,
rewrite(A,A1),
rewrite tail or(B,B1),
or(A1,B1,C).

rewrite m(not(A),C):-
mark ac,
rewrite(A,A1),
not(A1,C).
...

The predicate rewrite atomic is similar to add constraints but scans a gen-
eral constraint and looks for atomic constraints in the “top conjunction”. The
last rule of the rewrite system −→M in section 3, is applied only when nothing
else applies.



5 Common Factor Detection

We now present an algorithm that, given two partial models A and B, constructs
models COM , Ã and B̃ such that A∨B is equivalent to COM∧(Ã∨B̃), and such
that Ã and B̃ have no common factors. Remember that every partial model is in
particular a solved form. For a solved form M we define the set of equivalence
classes of M by

EQ(M) = {[s] : x = s ∈M},

where
[s] = {s} ∪ {x : x = s ∈M}.

We also define

Proj(M) = {class(x).fn
i = class(t) : x.fn

i
.= t ∈M},

and
Funct(M) = {class(x).fn : x.fn ∈M},

where

class(u) =
{

[s] if u ∈ [s] for some [s] ∈ EQ(M)
{u} otherwise.

After computing EQ(A), EQ(B), Proj(A), Proj(B), Funct(A) and Funct(B)
the algorithm consists of four steps:

(1) First let COM = ∅ and apply as long as possible the following simplifi-
cation rule to EQ(A), EQ(B) and COM :EQ(A) := {{s1, . . . , u, . . . , v, . . . , sn}} ∪Rest(A)

EQ(B) := {{t1, . . . , u, . . . , v, . . . , tm}} ∪Rest(B)
COM

=⇒EQ(A) := {{s1, . . . , v, . . . , sn}} ∪Rest(A)
EQ(B) := {{t1, . . . , v, . . . , tm}} ∪Rest(B)
COM := COM ∪ {u = v}

(2) Now apply as long as possible the next rule to Proj(A), Proj(B) and
COM :Proj(A) := {{x1, . . . , z, . . . , xl}.fn

i = {s1, . . . , u, . . . , sn}} ∪Rest Proj(A)
Proj(B) := {{y1, . . . , z, . . . , yk}.fn

i = {t1, . . . , u, . . . , tm}} ∪Rest Proj(B)
COM

=⇒Proj(A) := Rest Proj(A)
Proj(B) := Rest Proj(B)
COM := COM ∪ {z.fn

i
.= u}



(3) Apply the next rule to Funct(A), Funct(B) and COM :Funct(A) := {{x1, . . . , z, . . . , xl}.fn} ∪Rest Funct(A)
Funct(B) := {{y1, . . . , z, . . . , yk}.fn} ∪Rest Funct(B)
COM

=⇒Funct(A) := Rest Funct(A)
Funct(B) := Rest Funct(B)
COM := COM ∪ {z.fn}

(4) Finally compute Ã and B̃ by

X̃ = {x.fn
i

.= t : class(x).fn
i = class(t) ∈ Proj(X)} ∪

{x.fn : class(x).fn ∈ Funct(X)} ∪
{x = s : x ∈ [s] ∈ EQ(X) and x is different from s}.

Applying this algorithm to

A = {x2 = x1, x1.f
2
2

.= x4, x1.f
2, x5 = x4, x6 = x4, x4.g

1}
B = {x2 = x3, x3.f

2
2

.= x7, x3.f
2, x5 = x7, x6 = x7, x7.g

1}

we conclude that A ∨B is equivalent to

{x2.f
2, x2.f

2
2

.= x5, x6 = x5, x5.g
1} ∧ ({x1 = x2, x4 = x5} ∨ {x3 = x2, x7 = x5}).

Proposition 1 Let A and B be two solved forms. Then the algorithm computes
the sets COM , Ã and B̃, such that there is no common factor in Ã and B̃ and
such that A ∨B is equivalent to COM ∧ (Ã ∨ B̃).

Proof. Note that it is quite obvious that A∨B is equivalent to COM∧(Ã∨B̃),
since A is equivalent to COM ∧ Ã and B is equivalent to COM ∧ B̃. To prove
that there is no common factor left in Ã and B̃ note that the set Ã, computed
by the sets EQ(A), Proj(A) and Funct(A) is such that:

(i) for every X̃ ∈ EQ(Ã) exists X ∈ EQ(A) such that X̃ ⊆ X;
(ii) if X̃.fn

i = Ỹ ∈ Proj(Ã) then there is X.fn
i = Y ∈ Proj(A), such that

X̃ ⊆ X and Ỹ ⊆ Y ;
(iii) if X̃.fn ∈ Funct(Ã) then there is X.fn ∈ Proj(A), such that X̃ ⊆ X.

Obviously B̃ has the same properties. Now suppose that there is Ã |= s = t and
B̃ |= s = t for some variables or atoms s and t. This means that both have to be
in the same equivalence class in EQ(Ã) and in EQ(B̃). But this is impossible by
(i) and since simplification step (1) doesn’t apply to EQ(A) and EQ(B). In a
similar way condition (ii) and the fact that simplification step (2) doesn’t apply
to Proj(A) and to Proj(B), make it impossible to have Ã |= x.fn

i
.= s and

B̃ |= x.fn
i

.= s. The same reasoning goes for factors of the form x.fn. •



6 Final Remarks

The constraint rewriting system and the low-level implementation presented
in this paper have been successfully used in the implementation of a number
of grammar formalisms (called Constraint Logic Grammars). Also they were
easily modified to deal with feature structures, instead of rational trees. Some
improvements in the efficiency of the implementation can be achieved if atomic
negated constraints are considered in the solved form (c.f. [DMV92]). We are
currently studying the extension of the constraint language to cover constraints
over lists and sets.
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