
For submission to the Journal of Automata, Languages and Combinatorics
Created on March 5, 2018

POSITION AUTOMATA FOR SEMI-EXTENDED
EXPRESSIONS

Sabine Broda António Machiavelo Nelma Moreira Rogério Reis

CMUP & DCC & DM
Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre 1021, 4219-007, Portugal

sbb@dcc.fc.up.pt,ajmachia@fc.up.pt,{nam,rvr}@dcc.fc.up.pt

ABSTRACT
Positions and derivatives are two essential notions in the conversion methods from
regular expressions to equivalent finite automata. Partial derivative based methods
have recently been extended to regular expressions with intersection (semi-extended).
In this paper, we present a position automaton construction for those expressions. This
construction generalizes the notion of position, making it compatible with intersection.
The resulting automaton is homogeneous and has the partial derivative automaton as
a quotient.

1. Introduction

The position automaton (Apos), introduced by Glushkov [14], permits the conver-
sion of a simple regular expression (involving only the union, concatenation and star
operations) into an equivalent nondeterministic finite automaton (NFA) without ε-
transitions. The states in the position automaton correspond to the positions of
letters in the corresponding regular expression plus an additional initial state. Mc-
Naughton and Yamada [17] also used the positions of a regular expression to define
an automaton, however they directly computed a deterministic version of the position
automaton. The position automaton has been well studied [4, 10] and it is considered
the standard automaton simulation of a regular expression [18]. Some of its interest-
ing properties are: homogeneity, i.e. for each state, all in-transitions have the same
label (letter); whenever deterministic, these automata characterize certain families of
unambiguous regular expressions; and can be computed in quadratic time [6]; other
automata simulations of regular expressions are quotients of the Apos, e.g. the partial
derivative automata (Apd) [11] and the follow automata [16].

Many authors observed that the position automaton construction could not di-
rectly be extended to regular expressions with intersection [4, 8], as intersection (and

This work was partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT
(Portugal) with national (MEC) and European structural funds through the programs FEDER,
under the partnership agreement PT2020.

2 Broda, Machiavelo, Moreira, Reis

also complementation) is not compatible with the notion of position. In fact, consid-
ering the positions of letters in the expression (ab?) ∩ a, whose language is {a}, we
obtain the regular expression (a1b

?
2)∩ a3. Interpreting a1 and a3 as distinct alphabet

symbols, the language described by this expression is empty and there is no longer a
correspondence between the languages of (ab?)∩a and (a1b

?
2)∩a3, as it is the case for

expressions without intersection. However, the various conversions from expressions
to automata based on the notions of derivative or partial derivative can still be ex-
tended to regular expressions with intersection [7, 9, 2, 3]. In this paper, we present
a position automaton construction for regular expressions with intersection by gen-
eralizing the notion of position. Instead of positions, sets of positions are considered,
such that marking a regular expression is made compatible with the intersection op-
eration. We also show that the partial derivative automaton is a quotient of this new
position automaton. A preliminary and shorter version of this paper was previously
published [5].

The rest of the paper is organised as follows. Section 2 recalls some basic notions on
semi-extended regular expressions and finite automata, and presents a partial deriva-
tive automaton for those expressions, Apd. In Section 3, the notions of indexed regular
expressions, well-indexed regular expressions and indexed languages are introduced.
Based on these concepts, the position automaton for semi-extended expressions, Apos,
is presented in Section 4. To calculate Apos we give recursive definitions of supersets
of first, last and follow sets. It is proved that the trimmed version of the resulting au-
tomaton is Apos. For simple regular expressions, the position automaton is isomorphic
to a continuation automaton used to prove that it has Apd as a quotient. Following a
similar path, in Section 5 we define a c-continuation automaton for semi-extended ex-
pressions and in Section 6 we show that Apd is a quotient of Apos. Section 7 concludes
the paper with some final remarks.

2. Preliminaries

In this section we recall the basic definitions to be used throughout this paper and
the notation. For further details we refer to [15, 19].

2.1. Regular Expressions, Languages and Finite Automata

Let Σ be an alphabet (set of letters). A word over Σ is a finite sequence of letters,
where ε is the empty word. The size of a word x, |x|, is the number of alphabet
symbols in x. Σ? denotes the set of all words over Σ, and a language over Σ is any
subset of Σ?. If x = uv then v is a suffix of x and let suff(x) denote the language
of all suffixes of x. The concatenation of two languages L1 and L2 is defined by
L1 · L2 = { xy | x ∈ L1, y ∈ L2 }, and L? denotes the set { x1x2 · · ·xn | n ≥ 0, xi ∈
L }. The left quotient of a language L ⊆ Σ? w.r.t. a word x ∈ Σ? is the language
x−1L = { y | xy ∈ L }.

The set RE∩ of regular expressions with intersection or semi-extended expressions
over Σ is defined by the following grammar

α, β := ∅ | ε | a ∈ Σ | (α+ β) | (α ∩ β) | (α · β) | (α?), (1)

Position Automaton for Semi-extended Expressions 3

where the concatenation operator · is often omitted. We consider RE∩ expressions
modulo the standard equations for ∅ and ε, i.e. α + ∅ = ∅ + α = α · ε = ε · α = α,
α · ∅ = ∅ · α = α ∩ ∅ = ∅ ∩ α = ∅, and ∅? = ε. Throughout this paper we often
refer to regular expressions with intersection just as regular expressions. The set of
alphabet symbols with occurrences in α is denoted by Σα. Expressions containing no
occurrence of the operator ∩ are called simple regular expressions. A linear regular
expression is a regular expression in which every alphabet symbol occurs at most
once. We let |α|, |α|Σ and |α|∩ denote for α ∈ RE∩ the number of symbols (size),
the number of occurrences of alphabet symbols and the number of occurrences of the
binary operator ∩, respectively.

Definition 1. The language L(α) associated to an expression α ∈ RE∩ is inductively
defined as follows.

L(∅) = ∅, L(α · β) = L(α) · L(β),
L(ε) = {ε}, L(α+ β) = L(α) ∪ L(β),
L(a) = {a}, L(α ∩ β) = L(α) ∩ L(β),
L(α?) = L(α)?.

The language of S ⊆ RE∩ is L(S) = ∪α∈SL(α). Given an expression α ∈ RE∩,
we define ε(α) = ε if ε ∈ L(α), and ε(α) = ∅ otherwise. A recursive definition of
ε : RE∩ −→ {∅, ε} is given by the following: ε(a) = ε(∅) = ∅, ε(ε) = ε(α?) = ε,
ε(α+ β) = ε(α) + ε(β), and ε(αβ) = ε(α ∩ β) = ε(α) · ε(β).

A nondeterministic finite automaton (NFA) is a tuple A = 〈S,Σ, S0, δ, F 〉, where S
is a finite set of states, Σ is a finite alphabet, S0 ⊆ S a set of initial states, δ : S×Σ −→
P(S) the transition function, and F ⊆ S a set of final states. The extension of δ to
sets of states and words is defined by δ(X, ε) = X and δ(X, ax) = δ(∪s∈Xδ(s, a), x).
A word x ∈ Σ? is accepted by A if and only if δ(S0, x) ∩ F 6= ∅. The language of A,
L(A), is the set of words accepted by A. The right language of a state s, Ls, is the
language accepted by A if S0 = {s}. Two automata are equivalent if they accept the
same language. If two automata A and B are isomorphic, we write A ' B.

An NFA is initially connected or accessible if each state is reachable from an initial
state and it is trimmed if, moreover, the right language of each state is non-empty.
Given A, we denote by Aac and At the result of removing unreachable states from A
and trimming A, respectively. It is clear that L(A) = L(Aac) = L(At).

An equivalence relation ≡ over S is right invariant w.r.t. A iff
(I) ∀s, t ∈ S, s ≡ t ∧ s ∈ F =⇒ t ∈ F ;
(II) ∀s, t ∈ S, ∀a ∈ Σ, s ≡ t =⇒ ∀s1 ∈ δ(s, a) ∃t1 ∈ δ(t, a), s1 ≡ t1.
If ≡ is right invariant, then we can define the quotient automaton A/≡ in the usual
way, and L(A/≡) = L(A).

A standard conversion from a simple regular expression α to an equivalent NFA
is the position/Glushkov automaton. Given a simple regular expression α, one can
mark each occurrence of a letter with its position in α, considering reading it from left
to right. The resulting regular expression is a marked regular expression α with all

4 Broda, Machiavelo, Moreira, Reis

symbols distinct and over an alphabet denoted by Σα. Then, a position i ∈ [1, |α|Σ]
corresponds to the symbol ai in α, and consequently to exactly one occurrence of a
in α. Let pos(α) = {1, 2, . . . , |α|Σ} and let pos0(α) = pos(α) ∪ {0}. For α and
i ∈ pos(α), let the sets first, last and follow be First(α) = { i | ∃w ∈ Σ?α, σiw ∈
L(α) }, Last(α) = { i | ∃w ∈ Σ?α, wσi ∈ L(α) } and Follow(α, i) = { j | ∃u, v ∈
Σ?α, uσiσjv ∈ L(α) }, respectively. The position/Glushkov automaton for a simple
regular expression α is Apos(α) = 〈pos0(α),Σ, 0, δpos, F 〉, with δpos = { (0, aj , j) | j ∈
First(α) } ∪ { (i, aj , j) | j ∈ Follow(α, i) } and F = Last(α) ∪ {0} if ε(α) = ε, and
F = Last(α), otherwise.

2.2. Partial Derivatives and the Partial Derivative Automaton

The notions of partial derivatives and partial derivative automata were introduced by
Antimirov [1] for simple regular expressions. Bastos et al. [2, 3] presented an extension
of the Antimirov construction from RE∩ expressions.

Definition 2. For α ∈ RE∩ and a ∈ Σ, the set ∂a(α) of partial derivatives of α w.r.t.
a is defined by:

∂a(∅) = ∂a(ε) = ∅,

∂a(b) =
{
{ε}, if a = b

∅ otherwise,
∂a(α?) = ∂a(α)� α?,

∂a(α+ β) = ∂a(α) ∪ ∂a(β),

∂a(αβ) =
{

(∂a(α)� β) ∪ ∂a(β), if ε(α) = ε

∂a(α)� β, otherwise,
∂a(α ∩ β) = ∂a(α) ∩· ∂a(β),

where for S, T ⊆ RE∩ and β ∈ RE∩, S � β = { αβ | α ∈ S }, β � S = { βα | α ∈ S },
and S ∩· T = { α ∩ β | α ∈ S, β ∈ T }.

This definition is extended to any word w by ∂ε(α) = {α}, ∂wa(α) =⋃
αi∈∂w(α) ∂a(αi), and ∂w(R) =

⋃
αi∈R ∂w(αi), where R ⊆ RE∩. The set of par-

tial derivatives of an expression α is ∂(α) =
⋃
w∈Σ? ∂w(α). As for simple regular

expressions, the partial derivative automaton of an expression α ∈ RE∩ is defined
by Apd(α) = 〈∂(α),Σ, {α}, δpd, Fpd〉, where Fpd = { γ ∈ ∂(α) | ε(γ) = ε } and
δpd(γ, a) = ∂a(γ).

It follows that L(Apd(α)) is exactly L(α) and by construction Apd(α) is accessible.
An illustrative example can be found in Figure 2. Bastos et al. showed also that
|∂(α)| ≤ 2|α|Σ−|α|∩−1 +1 and on average an asymptotical upper bound for the number
of states is (1.056 + o(1))n, where n is the size of the expression.

3. Indexed Expressions

Given an alphabet Σ and a nonempty set of indexes J ⊆ N, let ΣJ = { aj | a ∈ Σ, j ∈
J }. An indexed regular expression is a regular expression over the alphabet ΣJ such
that for all ai, bj ∈ ΣJ occurring in the expression, a 6= b implies i 6= j. We let
ρ, ρ1, ρ2, . . . denote indexed regular expressions. If ρ is an indexed expression, then ρ
is the regular expression over the alphabet Σ obtained by removing the indexes. The

Position Automaton for Semi-extended Expressions 5

set of all indexes occurring in ρ is denoted by ind(ρ) = { i | ai ∈ Σρ }. Given an
indexed expression ρ and i ∈ ind(ρ), `ρ(i) is the (unindexed) letter indexed by i in ρ.
From now on, we will simply write `(i) for `ρ(i) since it will always be clear that we
are referring to a specific expression ρ. Given an indexed expression ρ, let

Iρ = { I ⊆ ind(ρ) | I 6= ∅ and ∀i1, i2 ∈ I, `(i1) = `(i2) }.

For I ∈ Iρ, the definition of ` is extended to `(I) = `(i), i ∈ I. Finally, one says that ρ
is well-indexed if for all subterms of ρ of the form ρ1∩ρ2 one has ind(ρ1)∩ ind(ρ2) = ∅.

Example 3. For ρ = a1(a4b
?
5 ∩ a4) one has ρ = a(ab? ∩ a), ind(ρ) = {1, 4, 5},

`(4) = `({1, 4}) = a and Iρ = {{1}, {4}, {5}, {1, 4}}. However, this expression is not
well-indexed, since a4 occurs on both sides of an intersection.

Definition 4. Consider an indexed expression ρ. For L ⊆ I?ρ and x = I1 · · · In ∈ L,
we define `(x) = `(I1) · · · `(In) and `(L) = { `(x) | x ∈ L }. The indexed intersection
of two words x = I1 · · · Im, y = J1 · · · Jn ∈ I?ρ is defined by x∩Iy = (I1∪J1) · · · (In∪Jn)
if `(x) = `(y)1, and undefined otherwise. Then, the indexed intersection of two
languages L1, L2 ∈ I?ρ is defined as follows:

L1 ∩I L2 = { x ∩I y | x ∈ L1, y ∈ L2 }.

The index-language LI(ρ) ⊆ I?ρ associated with ρ is defined as follows.

LI(∅) = ∅, LI(ε) = {ε},
LI(ρ?) = LI(ρ)?, LI(ai) = {{i}},

LI(ρ1 + ρ2) = LI(ρ1) ∪ LI(ρ2), LI(ρ1 · ρ2) = LI(ρ1) · LI(ρ2),
LI(ρ1 ∩ ρ2) = LI(ρ1) ∩I LI(ρ2).

Example 5. For ρ = (a1a2 + b3 + a4)? ∩ (a5 + b6)?, we have LI(ρ) = {{4, 5}, {3, 6},
{1, 5}{2, 5}, {4, 5}{4, 5}, {4, 5}{3, 6}, . . .}, and `(LI(ρ)) = {a, b, aa, ab, . . .} (since
`({1, 5}{2, 5}) = `({4, 5}{4, 5}) = aa).

Proposition 6. Given an indexed expression ρ, one has `(LI(ρ)) = L(ρ).

Proof. It is easy to show by induction on the structure of ρ that x ∈ LI(ρ) implies
`(x) ∈ L(ρ), and that for every y ∈ L(ρ) there is some x ∈ LI(ρ) such that `(x) = y.

�

4. A Position Automaton for RE∩ Expressions

Given α ∈ RE∩, the indexed expression α is always linear (thus well-indexed), and
also pos(α) = ind(α). For an indexed linear expression ρ, we define the following

1Note that `(x) = `(y) implies that m = n and that `(x ∩I y) = `(x) = `(y).

6 Broda, Machiavelo, Moreira, Reis

subsets of Iρ:
First′(ρ) = { I | ∃x, Ix ∈ LI(ρ) },
Last′(ρ) = { I | ∃x, xI ∈ LI(ρ) },

Follow′(ρ) = { (I, J) | ∃x, y, xIJy ∈ LI(ρ) }.
Then, given α ∈ RE∩, we define First(α) = First′(α), Last(α) = Last′(α), and

Follow(α) = Follow′(α).

Definition 7. The position automaton of an expression α ∈ RE∩ is

Apos(α) = 〈Spos,Σ, {{0}}, δpos, Fpos〉,

where
Spos = {{0}} ∪ { I ∈ Iα | xIy ∈ LI(α) for some x, y ∈ I?α },
δpos = { (I, `(J), J) | (I, J) ∈ Follow(α) } ∪ { ({0}, `(I), I) | I ∈ First(α) },

Fpos =
{

Last(α) ∪ {{0}}, if ε(α) = ε;
Last(α), otherwise.

The following proposition is a consequence of Proposition 6 and the corresponding
result for simple regular expressions [14].

Proposition 8. Given an expression α ∈ RE∩, one has L(Apos(α)) = L(α).

Note that for regular expressions without intersection (simple regular expressions)
the automaton is, by the definition of LI , isomorphic to the classic position automa-
ton, with the difference that now states are labelled with singletons {i} instead of
i ∈ pos(α) ∪ {0}.

4.1. Recursive Definitions

We now give definitions for recursively computing sets corresponding to First, Last and
Follow. These definitions lead to supersets of the corresponding sets but we will prove
that extra elements can be discarded and if we trim the resulting NFA we obtain Apos.
Again, considering simple regular expressions these recursive definitions coincide with
the ones for the sets First, Last and Follow.

Definition 9. Given a well-indexed expression ρ, let Fst(ρ) ⊆ Iρ be inductively
defined as follows,

Fst(∅) = Fst(ε) = ∅, Fst(ρ1 + ρ2) = Fst(ρ1) ∪ Fst(ρ2),

Fst(ai) = {{i}}, Fst(ρ1 · ρ2) =
{

Fst(ρ1) ∪ Fst(ρ2), if ε(ρ1) = ε;
Fst(ρ1), otherwise,

Fst(ρ?) = Fst(ρ), Fst(ρ1 ∩ ρ2) = Fst(ρ1)⊗ Fst(ρ2),

where for F1, F2 ⊆ Iρ, F1 ⊗ F2 = { I1 ∪ I2 | `(I1) = `(I2) and I1 ∈ F1, I2 ∈ F2 }.

Position Automaton for Semi-extended Expressions 7

By construction, all elements I ∈ Fst(ρ) are non-empty and such that `(i1) = `(i2) for
all i1, i2 ∈ I, guaranting that ⊗ is well defined and Fst(ρ) ⊆ Iρ.

Example 10. We have Fst(a?1b?2 ∩ a3) = Fst(a?1b?2)⊗ Fst(a3) = {{1}, {2}} ⊗ {{3}} =
{{1, 3}}.

Definition 11. Given a well-indexed expression ρ, the set Lst(ρ) ⊆ Iρ is defined as
Fst(ρ), with the difference that for concatenation we have:

Lst(ρ1 · ρ2) =
{

Lst(ρ1) ∪ Lst(ρ2), if ε(ρ2) = ε;
Lst(ρ2), otherwise.

The set Fol(ρ) ⊆ Iρ × Iρ is inductively defined as follows,

Fol(∅) = Fol(ε) = Fol(ai) = ∅
Fol(ρ?) = Fol(ρ) ∪ Lst(ρ)× Fst(ρ)

Fol(ρ1 + ρ2) = Fol(ρ1) ∪ Fol(ρ2)
Fol(ρ1 ∩ ρ2) = Fol(ρ1)⊗ Fol(ρ2)

Fol(ρ1 · ρ2) = Fol(ρ1) ∪ Fol(ρ2) ∪ Lst(ρ1)× Fst(ρ2).

where, for S1, S2 ⊆ Iρ × Iρ,

S1 ⊗ S2 = { (I1 ∪ I2, J1 ∪ J2) | (I1, J1) ∈ S1, (I2, J2) ∈ S2 and
`(I1) = `(I2), `(J1) = `(J2) }.

In the next definition we will use the standard projection functions on the first and
second coordinates, π1 and π2, respectively.

Definition 12. Given α ∈ RE∩, let Aposi(α) = 〈Sposi,Σ, {{0}}, δposi, Fposi〉 be the
NFA where Sposi = {{0}}∪Fst(α)∪Lst(α)∪π1(Fol(α))∪π2(Fol(α)), and δposi and Fposi
are defined as δpos and Fpos, in Definition 7 , substituting the functions First, Last and
Follow, by Fst, Lst and Fol, respectively.

We will now show that L(Apos(α)) = L(Aposi(α)), and that Apos(α) is obtained by
trimming Aposi(α), as the result of the two following lemmas. An example is presented
at the end of this section. The first lemma ensures that L(Apos(α)) ⊆ L(Aposi(α)).

Lemma 13. Given an indexed linear expression ρ, one has:
(I) First′(ρ) ⊆ Fst(ρ);
(II) Last′(ρ) ⊆ Lst(ρ);
(III) Follow′(ρ) ⊆ Fol(ρ).

Proof. We proceed by induction on the structure of the expression.
(I) We only present the case of expressions of the form ρ1∩ρ2. If I ∈ First′(ρ1∩ρ2),

then there is x ∈ I?ρ1∩ρ2
such that Ix ∈ LI(ρ1 ∩ ρ2). Thus, there exist I1x1 ∈

LI(ρ1), I2x2 ∈ LI(ρ2) such that I = I1 ∪ I2 and x = x1 ∩I x2. One has
I1 ∈ First′(ρ1) and I2 ∈ First′(ρ2), and by the induction hypothesis, I1 ∈ Fst(ρ1)
and I2 ∈ Fst(ρ2). By the definition of Fst we conclude that I ∈ Fst(ρ1 ∩ ρ2).

8 Broda, Machiavelo, Moreira, Reis

(II) This case is analogous to the previous one.
(III) We also only present the case of intersection. If (I, J) ∈ Follow′(ρ1 ∩ ρ2),

then there are x, y ∈ I?ρ1∩ρ2
such that xIJy ∈ LI(ρ1 ∩ ρ2). Thus, there

exist x1I1J1y1 ∈ LI(ρ1) and x2I2J2y2 ∈ LI(ρ2) such that I = I1 ∪ I2,
J = J1 ∪ J2, x = x1 ∩I x2 and y = y1 ∩I y2. One has (I1, J1) ∈ Follow′(ρ1) and
(I2, J2) ∈ Follow′(ρ2), and by the induction hypothesis, (I1, J1) ∈ Fol(ρ1) and
(I2, J2) ∈ Fol(ρ2). By the definition of Fol we conclude that (I, J) ∈ Fol(ρ1 ∩ ρ2).

�

The following example shows that in general the reverse inclusion does not hold.

Example 14. For ρ = (a1 ∩ b2)c3d4, we have ({3}, {4}) ∈ Fol(ρ), but ({3}, {4}) 6∈
Follow(ρ). Thus, Fol(ρ) 6⊆ Follow′(ρ).

The previous lemma shows that for any α ∈ RE∩, Apos(α) is a subautomaton of
Aposi(α), and thus L(Apos(α)) ⊆ L(Aposi(α)). The following lemma will be needed to
show that both recognize the same language and can be made isomorphic by trimming
Aposi.

Lemma 15. Given an indexed linear expression ρ and some n ≥ 1, if In ∈ Lst(ρ)
and there exist I1, . . . , In ∈ Iρ such that

({0}, `(I1), I1), (I1, `(I2), I2), . . . , (In−1, `(In), In) ∈ δposi,

then I1 · · · In ∈ LI(ρ).

Proof. We proceed by induction on the structure of the expression. For the base
cases of ∅, ε and ai it is obvious.

Let ρ be of the form ρ1 + ρ2. Then, I1 ∈ Fst(ρ1 + ρ2) and (Ij , Ij+1) ∈ Fol(ρ1 + ρ2),
for 1 ≤ j ≤ n − 1. Since ρ is linear, and therefore ind(ρ1) ∩ ind(ρ2) = ∅, this
implies that I1 ∈ Fst(ρi) and (Ij , Ij+1) ∈ Fol(ρi), for 1 ≤ j ≤ n − 1, where i is
either 1 or 2. Also, In ∈ Lst(ρi). Then, it follows from the induction hypothesis that
I1 · · · In ∈ LI(ρi) ⊆ LI(ρ).

Let ρ be of the form ρ1ρ2. Then, I1 ∈ Fst(ρ1ρ2) and (Ij , Ij+1) ∈ Fol(ρ1ρ2), for
1 ≤ j ≤ n− 1. Since ρ is linear, there exists l ∈ {1, . . . , n+ 1} such that Ij ∈ Iρ1 for
1 ≤ j ≤ l−1, Ij ∈ Iρ2 for l ≤ j ≤ n+1, and (Il−1, Il) ∈ Lst(ρ1)×Fst(ρ2). By the same
arguments as in the previous case, we conclude that I1 · · · Il−1 ∈ LI(ρ1), Il · · · In ∈
LI(ρ2), thus I1 · · · In ∈ LI(ρ1)LI(ρ2) ⊆ LI(ρ). Note that for l = 1 (resp. l = n+1) the
pair (Il−1, Il) does not exist and the whole sequence I1 · · · In is in LI(ρ2) (resp. LI(ρ1)).

Let ρ be of the form ρ?1. Then I1 ∈ Fst(ρ1) and (Ij , Ij+1) ∈ Fol(ρ1)∪Lst(ρ1)×Fst(ρ1),
for 1 ≤ j ≤ n − 1. There exist 1 ≤ k1 < · · · < km = n, m ≥ 1, such that
(Iki , Iki+1) ∈ Lst(ρ1)× Fst(ρ1), for 1 ≤ i < m, and for j 6= ki, (Ij , Ij+1) ∈ Fol(ρ1). It
follows from the induction hypothesis that I1 · · · Ik1 , . . . , Ikm−1 · · · Ikm ∈ LI(ρ1). Thus,
I1 · · · In ∈ LI(ρ?1) = LI(ρ). If k1 = 1 (resp. km = n) the pair (Iki−1, Iki) does not
exist but I1 ∈ Fst(ρ1) (resp. In ∈ Lst(ρ1)).

Let ρ be of the form ρ1 ∩ ρ2. Then, I1 ∈ Fst(ρ1 ∩ ρ2) and (Ij , Ij+1) ∈ Fol(ρ1 ∩ ρ2),
for 1 ≤ j ≤ n − 1. Since ρ is linear, we can write each Ij uniquely as Ij = I1

j ∪ I2
j

Position Automaton for Semi-extended Expressions 9

with I1
j ⊆ ind(ρ1) and I2

j ⊆ ind(ρ2), for 1 ≤ j ≤ n. Furthermore, Ik1 ∈ Fst(ρk),
(Ikj , Ikj+1) ∈ Fol(ρk), and Ikn ∈ Lst(ρk), for 1 ≤ j ≤ n − 1 and k = 1, 2. The result
follows from the induction hypothesis. �

From the above, one has

Theorem 16. For any α ∈ RE∩, L(Apos(α)) = L(Aposi(α)).

From these results, it follows that if we trim the automaton Aposi we obtain exactly
Apos.

Corollary 17. Apos(α) = Aposi(α)t.

Example 18. Consider α = (ba?b + a) ∩ (aa + b)?. Then α = (b1a?2b3 + a4) ∩
(a5a6 + b7)?, Fst(α) = {{1, 7}, {4, 5}}, Lst(α) = {{3, 7}, {4, 6}}, and Fol(α) =
{({2, 5}, {2, 6}), ({2, 6}, {2, 5}), ({2, 6}, {3, 7}), ({1, 7}, {2, 5}), ({1, 7}, {3, 7})}.

The automaton Aposi(α) is represented in Figure 1. The trimmed automaton,
Aposi(α)t, is obtained removing the states labeled by {4, 5} and {4, 6}, and the corre-
sponding transitions.

{0} {1, 7}

{4, 5}

{2, 5} {2, 6}

{3, 7}{4, 6}

b

a

a

b

a

a b

Figure 1: Aposi((ba?b+ a) ∩ (aa+ b)?)

5. A c-Continuation Automaton for RE∩ Expressions

In the case of simple regular expressions, Champarnaud and Ziadi [11] defined
a nondeterministic automaton isomorphic to the position automaton, called the
c-continuation automaton, in order to show that the partial derivative automaton
can be seen as a quotient of the position automaton. With the same purpose, in
this section, we present a c-continuation automaton for expressions with intersection.
Moreover, instead of considering derivatives of regular expressions [7], we use partial
derivatives to restate some known results for simple regular expressions.

5.1. Partial Index-Derivatives for RE∩ Expressions

The notion of continuation was defined by Berry and Sethy [4], and developed by
Champarnaud and Ziadi [11], by Ilie and Yu [16], and by Chen and Yu [12]. Given
a ∈ Σ and a linear simple expression α, the set of partial derivatives ∂xa(α), for any
word x ∈ Σ?, is either ∅ or has a unique element γ called the continuation of a in

10 Broda, Machiavelo, Moreira, Reis

α. Note that using partial derivatives, continuations and non-null c-continuations
coincide. Furthermore, the continuation can be obtained by some refinement of the
inductive definition of partial derivatives, exploring the linearity of α. In order to
establish similar results for linear well-indexed expressions, we introduce the notion
of partial index-derivative of a well-indexed expression ρ w.r.t. an index I ∈ Iρ.

Given a well-indexed expression ρ, a subexpression τ of ρ, and a set of indexes
I ∈ Iρ, let I

∣∣
τ
denote the set of indexes in I that occur in τ . This definition is

naturally extended to words x = I1 · · · In ∈ I?ρ by x
∣∣
τ

= I1
∣∣
τ
· · · In

∣∣
τ
, for n ≥ 0. In the

next definitions, we use the operators � and ∩· defined in Definition 2.

Definition 19. The set of partial index-derivatives of a well-indexed expression ρ
by I ∈ Iρ ∪ {∅}, ∂I(ρ), is defined by

∂I(∅) = ∂I(ε) = ∅,
∂I(ρ?) = ∂I(ρ)� ρ?,

∂I(ρ1 + ρ2) = ∂I(ρ1) ∪ ∂I(ρ2),

∂I(ai) =
{
{ε}, if I = {i};
∅, otherwise,

∂I(ρ1 · ρ2) =
{

(∂I(ρ1)� ρ2) ∪ ∂I(ρ2), if ε(ρ1) = ε;
∂I(ρ1)� ρ2, otherwise,

∂I(ρ1 ∩ ρ2) =
{
∂I|ρ1 (ρ1) ∩· ∂I|ρ2 (ρ2), if I = I

∣∣
ρ1
∪ I
∣∣
ρ2

;
∅, otherwise.

The set of partial index-derivatives of ρ by a word x ∈ I?ρ is then inductively
defined by ∂ε(ρ) = {ρ} and ∂xI(ρ) =

⋃
ρ′∈∂x(ρ) ∂I(ρ′). If S is a set of well-indexed

expressions, ∂x(S) =
⋃
ρ∈S ∂x(ρ).

Example 20. We have ∂{1,3}(a?1b?2 ∩ a3) = ∂{1}(a?1b?2) ∩· ∂{3}(a3) = {a?1b?2 ∩ ε}.

It is straightforward to see that ∂∅(ρ) = ∅ for all ρ. Although ∅ 6∈ Iρ, the notion of
partial index-derivative includes the derivative by an empty set of indexes, in order
to guarantee that the derivative of an intersection is well-defined. Also note that the
partial index-derivative of a well-indexed expression is still well-indexed.

Finally, the set of partial index-derivatives of ρ by all I ∈ Iρ can be calculated
simultaneously using an extension of the linear form defined by Antimirov [1], i.e.
considering pairs (I, ρ′) where ρ′ ∈ ∂I(ρ). This form is suited for an efficient imple-
mentation, specially in the case of intersection as the sets of indexes to be considered
are unions of the ones of the operands.

Definition 21. Given a well-indexed expression ρ, the linear form of ρ, f(ρ), is

Position Automaton for Semi-extended Expressions 11

defined inductively by

f(∅) = f(ε) = ∅, f(ai) = {({i}, ε)},
f(ρ?) = f(ρ)� ρ?,

f(ρ1 + ρ2) = f(ρ1) ∪ f(ρ2), f(ρ1ρ2) =
{

(f(ρ1)� ρ2) ∪ f(ρ2) if ε(ρ1) = ε;
f(ρ1)� ρ2 otherwise,

f(ρ1 ∩ ρ2) = { (I1 ∪ I2, ρ
′
1 ∩ ρ′2) | (I1, ρ

′
1) ∈ f(ρ1), (I2, ρ

′
2) ∈ f(ρ2), `(I1) = `(I2)},

such that, as before, Γ� ρ = { (I, ρ′ρ) | (I, ρ′) ∈ Γ }.

It easily follows that
∂I(ρ) = { ρ′ | (I, ρ′) ∈ f(ρ) }.

Example 22. Consider α = (b1a?2b3 + a4)∩ (a5a6 + b7)? as in Example 18. One has
f(b1a?2b3 + a4) = {({1}, a?2b3), ({4}, ε)}
f((a5a6 + b7)?) = {({5}, a6(a5a6 + b7)?), ({7}, (a5a6 + b7)?)}

f(α) = {({1, 7}, a?2b3 ∩ (a5a6 + b7)?), ({4, 5}, ε ∩ a6(a5a6 + b7)?)}.
From which the partial derivatives ∂{1,7}(α) and ∂{4,5}(α) can be obtained.

The following lemma characterises some non-null partial derivatives and will be
used in Proposition 26.

Lemma 23. If x = I1 · · · In and ∂x(ρ) 6= ∅, then x = x
∣∣
ρ
.

Proof. The proof is trivial by induction on n. �

Proposition 24. Consider a well-indexed expression ρ and I ∈ Iρ. Then,
I−1LI(ρ) = LI(∂I(ρ)) and LI(ρ) = LI

(⋃
I∈Iρ (I� ∂I(ρ)) ∪ ε(ρ)

)
.

Proof. The proof of the first equality is by induction on the structure of ρ. We present
the case of an expression of the form ρ1 ∩ ρ2 and I = I

∣∣
ρ1
∪ I
∣∣
ρ2
, I
∣∣
ρ1
, I
∣∣
ρ2
6= ∅. First

note that
(I
∣∣
ρ1
∪ I
∣∣
ρ2

)−1LI(ρ1 ∩ ρ2) = (I
∣∣
ρ1
∪ I
∣∣
ρ2

)−1(LI(ρ1) ∩I LI(ρ2))

= { x ∩I y | I
∣∣
ρ1
x ∈ LI(ρ1), I

∣∣
ρ2
y ∈ LI(ρ2) }

= I
∣∣
ρ1

−1LI(ρ1) ∩I I
∣∣
ρ2

−1LI(ρ2).
Now,

I−1LI(ρ1 ∩ ρ2) = I
∣∣
ρ1

−1LI(ρ1) ∩I I
∣∣
ρ2

−1LI(ρ2)
= LI(∂I|ρ1 (ρ1)) ∩I LI(∂I|ρ2 (ρ2))
= LI(∂I|ρ1 (ρ1) ∩ ∂I|ρ2 (ρ2))
= LI(∂I(ρ1 ∩ ρ2)).

12 Broda, Machiavelo, Moreira, Reis

The second equality follows trivially from the first one. �

Corollary 25. For every well-indexed expression ρ ∈ RE∩ and word x ∈ I?ρ , one has
x−1LI(ρ) = LI(∂x(ρ)) and LI(ρ) = LI(

⋃
x∈I?ρ

(x� ∂x(ρ)) ∪ ε(ρ)).

Proof. The finiteness of the operands in the second equality follows from the fact
that the derivatives for a regular language are finite [7]. �

The following is an adaptation, for partial index-derivatives and intersection, of a
result due to Berry and Sethi [4].

Proposition 26. Consider a linear indexed expression ρ ∈ RE∩ and xI ∈ I?ρ . The
partial index-derivative ∂xI(ρ) of ρ satisfies:

∂xI(∅) = ∂xI(ε) = ∅,

∂xI(ai) =
{
{ε}, if xI = {i},
∅, otherwise,

∂xI(ρ1 + ρ2) =

∂xI(ρ1), if xI = (xI)

∣∣
ρ1
,

∂xI(ρ2), if xI = (xI)
∣∣
ρ2
,

∅ otherwise

∂xI(ρ1 · ρ2) =

∂xI(ρ1)� ρ2, if xI = (xI)

∣∣
ρ1
,

∂zI(ρ2), if x = yz, ε(∂y(ρ1)) = ε, zI = (zI)
∣∣
ρ2
,

∅, otherwise,

∂xI(ρ?) ⊆
⋃

v∈suff(x)

∂vI(ρ)� ρ?,

∂xI(ρ1 ∩ ρ2) =
{
∂(xI)|ρ1 (ρ1) ∩· ∂(xI)|ρ2 (ρ2), if xI = (xI)

∣∣
ρ1
∩I (xI)

∣∣
ρ2
,

∅, otherwise.

Proof. We proceed by induction on ρ. The cases ∅, ε, and ai are trivial. Let ρ
be ρ1 + ρ2. We prove the result by induction on the length of x ∈ I?ρ . For x =
ε, ∂I(ρ1 + ρ2) = ∂I(ρ1) ∪ ∂I(ρ2). If ∂I(ρ1 + ρ2) 6= ∅, then I = I

∣∣
ρ1+ρ2

. Since ρ
is linear, either I = I

∣∣
ρ1

and I
∣∣
ρ2

= ∅, or I = I
∣∣
ρ2

and I
∣∣
ρ1

= ∅. In the former
case ∂I(ρ1 + ρ2) = ∂I(ρ1) and in the latter ∂I(ρ1 + ρ2) = ∂I(ρ2). For x = yI′ and
∂xI(ρ1 + ρ2) 6= ∅, ∂xI(ρ1 + ρ2) = ∂I(∂x(ρ1 + ρ2)) = ∂I(∂x(ρi)), and x = x

∣∣
ρi

for
some i ∈ {1, 2} (otherwise, ∂x(ρ1 + ρ2) = ∅). Thus, ∂xI(ρ1 + ρ2) = ∂xI(ρi), for some
i ∈ {1, 2}.

Consider ρ as ρ1 · ρ2 and xI = I1 · · · IkIk+1 · · · In, where n ≥ 1 and 0 ≤ k ≤ n,
such that I1 ∪ · · · ∪ Ik ⊆ ind(ρ1) and Ik+1 ∪ · · · ∪ In ⊆ ind(ρ2). Then ∂I1···In(ρ1 ·
ρ2) = ∂Ik+1···In(∂I1···Ik(ρ1) � ρ2) because ∂Ii(ρ2) = ∅ for 0 ≤ i ≤ k. If k = n,
then ∂xI(ρ1 · ρ2) = ∂xI(ρ1) � ρ2. Otherwise, either ε(∂I1···Ik(ρ1)) = ε and we have
∂I1···In(ρ1 · ρ2) = ∂Ik+1···In(ρ2), and the second case follows, or ∂I1···In(ρ1 · ρ2) = ∅.

Position Automaton for Semi-extended Expressions 13

Now consider ρ = ρ?1. For x = ε, we have ∂I(ρ?1) = ∂I(ρ1)� ρ?1. For x = yI′,
∂xI(ρ?1) = ∂I(∂yI′(ρ?1))

⊆ ∂I({ ρ′ · ρ1
? | ρ′ ∈ ∂vI′(ρ1), v ∈ suff(y) })

⊆
⋃

v∈suff(y)

⋃
ρ′∈∂vI′ (ρ1)

∂I(ρ′ · ρ1
?) ∪ ∂I′I(ρ?1)

⊆
⋃

v∈suff(y)

∂I(∂vI′(ρ1))� ρ?1 ∪ ∂I′I(ρ1)� ρ?1

=
⋃

v∈suff(x)

∂vI(ρ1)� ρ1
?.

We finally present the case of intersection. For x = ε the result follows from the
definition of index-derivative. Let x = yI′ and suppose that ∂xI(ρ1 ∩ ρ2) 6= ∅. Then,
xI = (xI)

∣∣
ρ1∩ρ2

= (x
∣∣
ρ1
∩I x

∣∣
ρ2

)(I
∣∣
ρ1
∪ I
∣∣
ρ2

). Furthermore,
∂xI(ρ1 ∩ ρ2) = ∂I(∂x(ρ1 ∩ ρ2)) = ∂I(∂x|ρ1 (ρ1) ∩· ∂x|ρ2 (ρ2)) =

=
⋃

ρ′i∈∂x|ρi (ρi)
I=I|ρ′1

∪I|ρ′2

∂I(ρ′1 ∩ ρ′2) =
⋃

ρ′i∈∂x|ρi (ρi)
I=I|ρ1∪I|ρ2

∂I(ρ′1 ∩ ρ′2) =

= ∂I|ρ1 (∂x|ρ1 (ρ1)) ∩· ∂I|ρ2 (∂x|ρ2 (ρ2)) = ∂(xI)|ρ1 (ρ1) ∩· ∂(xI)|ρ2 (ρ2).
For the fourth step note that ind(ρ′i) ⊆ ind(ρi) (i = 1, 2) and I = I

∣∣
ρ′1
∪ I
∣∣
ρ′2

imply
that I = I

∣∣
ρ1
∪ I
∣∣
ρ2
. Otherwise, if I

∣∣
ρ′1
∪ I
∣∣
ρ′2

(I then, by Lemma 23, ∂I(ρ′1 ∩ ρ′2) = ∅.
�

The previous proposition implies that if ∂xI(ρ) 6= ∅, then it has only one element
for every x ∈ I?ρ . This fact is proved in Proposition 28 and the unique element (if
exists) is defined below.

Definition 27. Given a linear indexed expression ρ and a set of indexes I, the c-
continuation cI(ρ) of ρ w.r.t. I is defined by the following rules.

cI(∅) = cI(ε) = ∅,
cI(ρ?) = cI(ρ)ρ?,

cI(ai) =
{
ε, if I = {i};
∅, otherwise,

cI(ρ1 + ρ2) =
{

cI(ρ1), if cI(ρ1) 6= ∅;
cI(ρ2), otherwise,

cI(ρ1 · ρ2) =
{

cI(ρ1) · ρ2, if cI(ρ1) 6= ∅;
cI(ρ2), otherwise,

cI(ρ1 ∩ ρ2) =
{

cI|ρ1 (ρ1) ∩ cI|ρ2 (ρ2), if I = I
∣∣
ρ1
∪ I
∣∣
ρ1

;
∅, otherwise.

14 Broda, Machiavelo, Moreira, Reis

It is easy to verify that cI(ρ) 6= ∅ implies I ⊆ ind(ρ), i.e. I
∣∣
ρ

= I.

Proposition 28. Consider a linear indexed expression ρ and I ∈ Iρ. Then, for
every x ∈ I?ρ such that ∂xI(ρ) 6= ∅, one has ∂xI(ρ) = {cI(ρ)} and cI(ρ) 6= ∅.

Proof. We proceed by induction on the structure of ρ. For ∅ and ε the set of
partial index-derivatives is ∅. Let ρ be ai. We need to prove that ∀I ∈ Iai∀x ∈
I?ai (∂xI(ai) 6= ∅ =⇒ ∂xI(ai) = {cI(ai)} 6= {∅}) . Let ∂xI(ai) 6= ∅, then by Proposi-
tion 26, ∂xI(ai) = {ε} and xI = {i}. Then I = {i} and cI(ai) = ε. Thus, we conclude
that ∂xI(ai) = {cI(ai)} 6= {∅}.

Let us suppose that for ρi, i = 1, 2 we have ∀I ∈ Iρi∀x ∈ I?ρi (∂xI(ρi) 6= ∅ =⇒
∂xI(ρi) = {cI(ρi)} 6= {∅}).

Let ρ = ρ1 + ρ2 be such that ∂xI(ρ1 + ρ2) 6= ∅. Then, ∂xI(ρ1 + ρ2) = ∂xI(ρi) with
xI = (xI)

∣∣
ρi
, for some i ∈ {1, 2}. By the induction hypothesis, ∂xI(ρi) = {cI(ρi)} 6=

{∅}. Thus, cI(ρi) 6= ∅ and cI(ρ1 + ρ2) = cI(ρi).
Let ρ = ρ1ρ2. If ∂xI(ρ1ρ2) 6= ∅ then we have to consider two cases. Let ∂xI(ρ1ρ2) =

∂xI(ρ1)�ρ2 and xI = (xI)
∣∣
ρ1
. Then, ∂xI(ρ1) 6= ∅ and ∂xI(ρ1) = {cI(ρ1)}. We conclude

that cI(ρ1) 6= ∅ and cI(ρ1ρ2) = cI(ρ1). In the second case, ∂xI(ρ1ρ2) = ∂zI(ρ2) 6= ∅,
x = yz, ε(∂y(ρ1)) = ε and zI = (zI)

∣∣
ρ2
. We conclude that y = y

∣∣
ρ1

and I = I
∣∣
ρ2
. Then,

cI(ρ1) = ∅ and cI(ρ1ρ2) = cI(ρ2). By the induction hypothesis, ∂zI(ρ2) = {cI(ρ2)}
and the result follows.

Let ρ = ρ?1. If ∂xI(ρ?1) 6= ∅, we can write ∂xI(ρ?1) = ∂v1I(ρ1)�ρ?1∪· · ·∪∂vnI(ρ1)�ρ?1,
with n ≥ 1, such that for all 1 ≤ i ≤ n, x = uivi and ∂viI(ρ1) � ρ?1 6= ∅. By the
induction hypothesis, each nonempty set of partial index-derivatives ∂viI(ρ1) is equal
to {cI(ρ1)} 6= {∅}. Thus, ∂xI(ρ?1) = {cI(ρ1)ρ?1}.

Finally, let ρ = ρ1 ∩ ρ2 be such that ∂xI(ρ1 ∩ ρ2) 6= ∅. Then ∂xI(ρ1 ∩ ρ2) =
∂(xI)|ρ1 (ρ1) ∩· ∂(xI)|ρ2 (ρ2), xI = (xI)

∣∣
ρ1
∩I (xI)

∣∣
ρ2

and ∂(xI)|ρi (ρi) 6= ∅, for i = 1, 2.
Moreover, ∂(xI)|ρi (ρi) = {cI|ρi (ρi)}. The result follows by the induction hypothesis
and from the definition of cI(ρ1 ∩ ρ2). �

This result guarantees that, given a linear indexed expression ρ and I ∈ Iρ, all
sets of partial index-derivatives ∂xI(ρ) different from ∅ are singletons with an unique
c-continuation cI(ρ) of ρ w.r.t. I.

The next lemmata justify the construction of the c-continuation automaton (Defi-
nition 31) which will be proved to be isomorphic to Aposi.

Lemma 29. Consider a linear indexed expression ρ. Then, I ∈ Lst(ρ) if and only if
ε(cI(ρ)) = ε.

Proof. Since cI(ρ) 6= ∅ is a consequence of ε(cI(ρ)) = ε, it is sufficient to prove the
equivalence of I ∈ Lst(ρ) and ε(cI(ρ)) = ε by structural induction on ρ.

For ρ = ai and I = {i} ∈ Lst(ρ), we have ε(cI(ρ)) = ε(ε) = ε.

Position Automaton for Semi-extended Expressions 15

For ρ = ρ1 + ρ2, we have
I ∈ Lst(ρ) ⇐⇒ I ∈ Lst(ρ1) ∨ I ∈ Lst(ρ2)

⇐⇒ ε(cI(ρ1)) = ε or ε(cI(ρ2)) = ε

⇐⇒ ε(cI(ρ)) = ε.

Now, consider ρ = ρ1 · ρ2. One has
I ∈ Lst(ρ) ⇐⇒ (I ∈ Lst(ρ1) ∧ ε(ρ2) = ε) ∨ I ∈ Lst(ρ2)

⇐⇒ (ε(cI(ρ1)) = ε ∧ ε(ρ2) = ε) ∨ ε(cI(ρ2)) = ε

⇐⇒ ε(cI(ρ1) · ρ2) = ε ∨ ε(cI(ρ2)) = ε

⇐⇒ ε(cI(ρ)) = ε.

The case for ρ = ρ?1 is straightforward. Finally, for ρ = ρ1 ∩ ρ2, we have
I ∈ Lst(ρ1 ∩ ρ2) ⇐⇒ I

∣∣
ρ1
∈ Lst(ρ1) ∧ I

∣∣
ρ2
∈ Lst(ρ2) ∧ I = I

∣∣
ρ1
∪ I
∣∣
ρ2

⇐⇒ ε(cI|ρ1 (ρ1)) = ε ∧ ε(cI|ρ2 (ρ2)) = ε ∧ I = I
∣∣
ρ1
∪ I
∣∣
ρ2

⇐⇒ ε(cI(ρ)) = ε.

�

Lemma 30. Consider a linear indexed expression ρ and sets of indexes I, J ∈ Iρ.
Then, (I, J) ∈ Fol(ρ) if and only if J ∈ Fst(cI(ρ)).

Proof. Throughout the proof, by structural induction on ρ, we will use the fact that
for ρ = ρ1 + ρ2, as well as for ρ = ρ1 · ρ2, at most one of I ⊆ ind(ρi) (i = 1, 2) is true,
and consequently at most one of cI(ρi) 6= ∅ holds. Also note that J ∈ Fst(τ) implies
that τ 6= ∅.

Let ρ = ρ1 + ρ2. Then,
(I, J) ∈ Fol(ρ) ⇐⇒ (I, J) ∈ Fol(ρ1) ∨ (I, J) ∈ Fol(ρ2)

⇐⇒ J ∈ Fst(cI(ρ1)) ∨ J ∈ Fst(cI(ρ2)) ⇐⇒ J ∈ Fst(cI(ρ)).
Now, consider ρ = ρ1 · ρ2. One has

(I, J) ∈ Fol(ρ) ⇐⇒ (I ∈ Lst(ρ1) ∧ J ∈ Fst(ρ2)) ∨ (I, J) ∈ Fol(ρ1) ∨ (I, J) ∈ Fol(ρ2)

⇐⇒
(ε(cI(ρ1)) = ε ∧ J ∈ Fst(ρ2)) ∨ J ∈ Fst(cI(ρ1)) ∨

∨ J ∈ Fst(cI(ρ2))

⇐⇒
(ε(cI(ρ1)) = ε ∧ J ∈ Fst(cI(ρ1)) ∪ Fst(ρ2)) ∨ J ∈ Fst(cI(ρ2)) ∨

∨ (J ∈ Fst(cI(ρ1)) ∧ cI(ρ1) 6= ∅)
⇐⇒ (J ∈ Fst(cI(ρ1) · ρ2) ∧ cI(ρ1) 6= ∅) ∨ J ∈ Fst(cI(ρ2))
⇐⇒ J ∈ Fst(cI(ρ)),

where the third equivalence results from distributing the disjunct J ∈ Fst(cI(ρ1)) over
the first conjunction. For the fourth equivalence the definitions of Fst and cI were
used.

16 Broda, Machiavelo, Moreira, Reis

Now, consider ρ = ρ?1. Then,
(I, J) ∈ Fol(ρ) ⇐⇒ (I, J) ∈ Fol(ρ1) ∨ (I ∈ Lst(ρ1) ∧ J ∈ Fst(ρ1))

⇐⇒ J ∈ Fst(cI(ρ1)) ∨ (ε(cI(ρ1)) = ε ∧ J ∈ Fst(ρ1))
⇐⇒ J ∈ Fst(cI(ρ1)ρ?1) ⇐⇒ J ∈ Fst(cI(ρ)).

Finally, let ρ = ρ1 ∩ ρ2. Note that for every union I = I1 ∪ I2, the condition
`(I1) = `(I2) is true by definition, since I ∈ Iρ. The same holds for J. Then,

(I, J) ∈ Fol(ρ) ⇐⇒
∃I1, J1 ∈ Iρ1∃I2, J2 ∈ Iρ2 ((I1, J1) ∈ Fol(ρ1) ∧

∧ (I2, J2) ∈ Fol(ρ2) ∧ I = I1 ∪ I2 ∧ J = J1 ∪ J2)

⇐⇒
∃I1, J1 ∈ Iρ1∃I2, J2 ∈ Iρ2(J1 ∈ Fst(cI1(ρ1))∧

∧ J2 ∈ Fst(cI2(ρ2)) ∧ I = I1 ∪ I2 ∧ J = J1 ∪ J2)

⇐⇒
∃J1 ∈Iρ1∃J2 ∈ Iρ2(J1 ∈ Fst(cI|ρ1 (ρ1))∧

∧ J2 ∈ Fst(cI|ρ2 (ρ2)) ∧ J = J1 ∪ J2 ∧ I = I
∣∣
ρ1
∪ I
∣∣
ρ1

)

⇐⇒ J ∈ Fst(cI|ρ1 (ρ1) ∩ cI|ρ2 (ρ2)) ∧ I = I
∣∣
ρ1
∪ I
∣∣
ρ2

⇐⇒ J ∈ Fst(cI(ρ)).
�

Definition 31. The c-continuation automaton of an expression α ∈ RE∩ is

Ac(α) = 〈Sc,Σ, {({0}, c{0}(α))}, δc, Fc〉,

where Sc = { (I, cI(α)) | I ∈ Sposi }, Fc = { (I, cI(α)) | ε(cI(α)) = ε }, c{0}(α) =
α, δc = { ((I, cI(α)), `(J), (J, cJ(α))) | J ∈ Fst(cI(α)) }.

By Lemma 29, Lemma 30, and considering ϕ : Sc → Sposi such that ϕ((I, cI(α))) =
I, the following holds.

Theorem 32. For α ∈ RE∩, we have Aposi(α) ' Ac(α).

Example 33. Consider the expression α = (b1a?2b3 + a4) ∩ (a5a6 + b7)?, from
Example 18, and let ρ2 = (a5a6 + b7)?. We have the following c-continuations:
c{1,7}(α) = a?2b3 ∩ ρ2, c{4,5}(α) = ε∩ a6ρ2, c{4,6}(α) = ε∩ ρ2, c{2,5}(α) = a?2b3 ∩ a6ρ2,
c{2,6}(α) = a?2b3 ∩ ρ2, and c{3,7}(α) = ε ∩ ρ2.

6. Apd as a Quotient of Apos

Using Ac we show that the partial derivative automaton Apd is a quotient of Apos.
This extends the corresponding result for simple regular expressions, although the
proof cannot use the same technique. Recall that, for a simple regular expression
α, one builds Apd(α), and then shows that when its transitions are unmarked, the
result Apd(α) is isomorphic to a quotient of Ac(α). However, with α ∈ RE∩, this
method cannot be used because, as mentioned in the introduction, intersection does
not commute with marking. For α ∈ RE∩, we will present a direct isomorphism

Position Automaton for Semi-extended Expressions 17

between Apd(α) and a quotient of Ac(α). The next lemmas will be needed to build
that isomorphism.

Lemma 34. Consider a linear indexed expression ρ and I ∈ Iρ. If I ∈ Fst(ρ), then
cI(ρ) 6= ∅ and cI(ρ) ∈ ∂I(ρ).

Proof. We proceed by structural induction on ρ. For ρ ∈ {ε, ∅} there is nothing to
prove. For ρ = ai the statement is obviously true. Suppose that the statement is true
for ρ1 and ρ2. Let ρ = ρ1 + ρ2. If I ∈ Fst(ρi), ∅ 6= cI(ρ) = cI(ρi) ∈ ∂I(ρi) ⊆ ∂I(ρ),
for either i = 1 or i = 2. Let ρ = ρ1 · ρ2. If I ∈ Fst(ρ1), then cI(ρ1) 6= ∅ and
cI(ρ) = cI(ρ1) · ρ2 ∈ ∂I(ρ1)� ρ2 ⊆ ∂I(ρ). If I ∈ Fst(ρ2), then ε(ρ1) = ε and cI(ρ1) = ∅.
We have ∅ 6= cI(ρ) = cI(ρ2) ∈ ∂I(ρ2) ⊆ ∂I(ρ). For ρ = ρ?1 the result is immediate.
Finally, let ρ = ρ1 ∩ ρ2. If I ∈ Fst(ρ1 ∩ ρ2), then I = I1 ∪ I2 with I1 ∈ Fst(ρ1)
and I2 ∈ Fst(ρ2). The result easily follows from the induction hypothesis and the
definitions. �

Lemma 35. Consider a linear indexed expression ρ and I, J ∈ Iρ, such that J ∈
Fst(cI(ρ)). Then, cJ(ρ) ∈ ∂J(cI(ρ)).

Proof. We proceed by structural induction on ρ. There is nothing to prove for ρ ∈
{∅, ε} ∪ Σρ.

Consider ρ = ρ1 + ρ2 and let cI(ρ) = cI(ρi), for either i = 1 or i = 2. Since J ∈
Fst(cI(ρ)) = Fst(cI(ρi)), we conclude that J ⊆ ind(cI(ρi)) ⊆ ind(ρi) and consequently
cJ(ρ) = cJ(ρi). By the induction hypothesis, cJ(ρi) ∈ ∂J(cI(ρi)), i.e. cJ(ρ) ∈ ∂J(cI(ρ)).

Now, let ρ = ρ1 · ρ2. For cI(ρ1 · ρ2) = cI(ρ1) · ρ2 and J ∈ Fst(cI(ρ1) · ρ2), there
are two cases to consider. First, if J ∈ Fst(cI(ρ1)), then J ⊆ ind(ρ1) and, by the
induction hypothesis, cJ(ρ1) ∈ ∂J(cI(ρ1)). Thus, cJ(ρ) = cJ(ρ1)·ρ2 ∈ ∂J(cI(ρ1))�ρ2 ⊆
∂J(cI(ρ1) · ρ2) = ∂J(cI(ρ)). On the other hand, if J ∈ Fst(ρ2), then ε(cI(ρ1)) = ε and
also J ⊆ ind(ρ2). Then, cJ(ρ) = cJ(ρ2) ∈ ∂J(ρ2) ⊆ ∂J(cI(ρ1) · ρ2) = ∂J(cI(ρ)). Finally,
if cI(ρ) = cI(ρ2) and J ∈ Fst(cI(ρ2)), we have cJ(ρ) = cJ(ρ2) ∈ ∂J(cI(ρ2)) = ∂J(cI(ρ)).

For ρ = ρ?1 and J ∈ Fst(cI(ρ1)), we have cJ(ρ1) ∈ ∂J(cI(ρ1)) and consequently
cJ(ρ) = cJ(ρ1) · ρ ∈ ∂J(cI(ρ1)) � ρ ⊆ ∂J(cI(ρ1) · ρ) = ∂J(cI(ρ)). On the other hand,
if J ∈ Fst(ρ) = Fst(ρ1), then ε(cI(ρ1)) = ε. Thus, cJ(ρ1) ∈ ∂J(ρ1) and cJ(ρ) =
cJ(ρ1) · ρ ∈ ∂J(ρ1)� ρ = ∂J(ρ).

Finally, let ρ = ρ1 ∩ ρ2 and cI(ρ) = cI1(ρ1)∩ cI2(ρ2), where I = I1 ∪ I2 and Ii = I
∣∣
ρi

for i = 1, 2. Since J ∈ Fst(cI(ρ)) = Fst(cI1(ρ1)) ∪ Fst(cI2(ρ2)), we have J = J1 ∪ J2,
where Ji ∈ Fst(cIi(ρi)) and Ji ∈ ind(cIi(ρi)) ⊆ ind(ρi), for i = 1, 2. By the induction
hypothesis cJi(ρi) ∈ ∂Ji(cIi(ρi)), thus cJ(ρ) = cJ1(ρ1) ∩ cJ2(ρ2) ∈ ∂J1(ρ1) ∩· ∂J2(ρ2) =
∂(ρ). �

Lemma 36. Consider well-indexed expressions ρ′, ρ and I ∈ Iρ, such that ρ′ ∈ ∂I(ρ).
Then, ρ′ ∈ ∂`(I)(ρ).

Proof. The proof procedes by induction on the structure of ρ. We only present the
case for ρ = ρ1 ∩ ρ2. If ρ′1 ∩ ρ′2 ∈ ∂I(ρ1 ∩ ρ2), then ρ′i ∈ ∂`(I)(ρi) for i = 1, 2. Thus,

18 Broda, Machiavelo, Moreira, Reis

ρ′1 ∩ ρ′2 = ρ′1 ∩ ρ′2 ∈ ∂`(I)(ρ1) ∩· ∂`(I)(ρ2) = ∂`(I)(ρ1 ∩ ρ2). �

Lemma 37. Consider a well-indexed expression ρ, a ∈ Σ and β ∈ ∂a(ρ). Then,
there exist I ∈ Iρ and ρ′ ∈ ∂I(ρ) with `(I) = a and ρ′ = β. Furthermore, for
x = a1 · · · an ∈ Σ?, if β ∈ ∂x(ρ), there exist I1 · · · In ∈ I?ρ and ρ′ ∈ ∂I1···In(ρ) with
`(I1 · · · In) = x and ρ′ = β.

Proof. The proof is straightforward by induction on the structure of ρ. We present
only the case for ρ = ρ1 ∩ ρ2. Let β1 ∩ β2 ∈ ∂a(ρ1 ∩ ρ2) = ∂a(ρ1) ∩· ∂a(ρ2), for
some letter a. It follows from the induction hypothesis that there are Ii ∈ Iρi and
ρ′i ∈ ∂Ii(ρi), with `(Ii) = a, for i = 1, 2, and such that ρ′1 = β1 and ρ′2 = β2. Thus,
I = I1 ∪ I2 ∈ Iρ, I

∣∣
ρi

= Ii (ρ is well-indexed), `(I) = a, ρ′1 ∩ ρ′2 ∈ ∂I(ρ1 ∩ ρ2) and
ρ′1 ∩ ρ′2 = β1 ∩ β2. �

Given α ∈ RE∩, consider Ac(α) and the equivalence relation ≡` on Sc given by
(I, cI(α)) ≡` (J, cJ(α)) if and only if cI(α) = cJ(α), for I, J ∈ Iα ∪ {{0}}.

Lemma 38. The relation ≡` is right invariant w.r.t. Ac.

Proof. Let (I, cI(α)) ≡` (J, cJ(α)). First, note that ε(cI(α)) = ε if and only if
ε(cI(α)) = ε. Now, let (I1, cI1(α)) ∈ δc((I, cI(α)), `(I1)) with I1 ∈ Fst(cI(α)). By
Lemma 35, we have cI1(α) ∈ ∂I1(cI(α)), and by Lemma 36, cI1(α) ∈ ∂`(I1)(cI(α)) =
∂`(I1)(cJ(α)). Then, there exist I2 ∈ IcJ(α) and ρ′ ∈ ∂I2(cJ(α)) ⊆ ∂I2(∂J(α)) = ∂JI2(α)
with ρ′ = cI1(α) by Lemma 37. But, by Proposition 28, ρ′ = cI2(α). �

Theorem 39. For α ∈ RE∩,

Apd(α) ' Ac(α)ac/≡`.

Proof. Let Ac(α)ac/≡` = (S`,Σ, δ`, [({0}, α)], F`). Consider the map

ϕ : S` −→ ∂(α)
[(I, cI(α))] 7−→ cI(α).

To show that ϕ is an isomorphism we need that:

1) ϕ is well-defined;
2) ϕ is bijective;
3) ϕ(δ`(s, a)) = δpd(ϕ(s), a) for every s ∈ S`, a ∈ Σ;
4) ϕ(F`) = Fpd;
5) ϕ([({0}, c{0}(α))]) = α.

Claim 1) follows from lemmas 34 and 35. For 3) we consider both inclusions.
Consider β ∈ ϕ(δ`(s, a)), for s ∈ S` and a ∈ Σ. Then, there exist I, J ∈ Iα such
that [(I, cI(α))] = s, cJ(α) = β, (J, cJ(α)) ∈ δc((I, cI(α)), `(J)) and `(J) = a, i.e.

Position Automaton for Semi-extended Expressions 19

J ∈ Fst(cI(α)). By Lemma 35, we have cJ(α) ∈ ∂J(cI(α)) and by Lemma 36, cJ(α) ∈
∂a(cI(α)). Thus, cJ(α) ∈ δpd(cI(α), a). Now, let β ∈ δpd(τ, a), where τ = cI(α), for
some I ∈ Iα and a ∈ Σ. Then, there is a sequence of terms τ0 = α, τ1, . . . , τn = τ and
a sequence of letters a1, . . . , an ∈ Σ such that τi+1 ∈ ∂ai+1(τi), for 0 ≤ i ≤ n− 1, and
β ∈ ∂a(τ), i.e. β ∈ ∂a1···ana(α). By Lemma 37, there exist J1, . . . , Jn, J ∈ Iα, with
`(J1 · · · JnJ) = a1 · · · ana, and ρ′ ∈ ∂J1···JnJ(α) such that ρ′ = β. By Proposition 28,
ρ′ = cJ(α). On the other hand, it is straightforward to show by induction on the
structure of a well-indexed expression ρ, that ∂J(ρ) 6= ∅ implies J ∈ Fst(ρ). Thus,
[(J, cJ(α))] ∈ δ`([(I, cI(α))], `(J)) and consequently β = cJ(α) ∈ ϕ(δ`([(I, cI(α))], a)).

�

Example 40. Consider α = (ba?b + a) ∩ (aa + b)? from examples 18, 22, and 33.
Set β = (aa + b)?. For the positions present in Ac(α)ac, we have c{4,5}(α) = ε ∩
aβ, c{3,7}(α) = ε ∩ β, c{2,5}(α) = a?b ∩ aβ, and c{1,7}(α) = c{2,6}(α) = a?b ∩ β.
Merging states ({1, 7}, c{1,7}(α)) and ({2, 6}, c{2,6}(α)) in Ac(α)ac, one obtains an
NFA isomorphic to Apd(α), which is represented in Figure 2.

α

a?b ∩ β

ε ∩ aβ

a?b ∩ aβ ε ∩ β

b

a

a

b

a

Figure 2: Apd((ba?b+ a) ∩ (aa+ b)?)

7. Final Remarks

For simple regular expressions of size n, the size ofApos(α) is O(n2), and usingAc(α) it
is possible to efficiently compute Apd(α) [11]. For regular expressions with intersection
the conversion to NFA’s has exponential computational complexity [13] and both the
size of Apos and Apd can be exponential in the size of the regular expression. On the
average case, however, the size of these automata seem to be much smaller [3], and
thus feasible for practical applications. In this scenario, algorithms for building Apd
using Apos seem worthwhile to develop.

References

[1] V. Antimirov, Partial Derivatives of Regular Expressions and Finite Automaton Con-
structions. Theoret. Comput. Sci. 155 (1996) 2, 291–319.

20 Broda, Machiavelo, Moreira, Reis

[2] R. Bastos, S. Broda, A. Machiavelo, N. Moreira, R. Reis, On the State Com-
plexity of Partial Derivative Automaton for Regular Expressions with Intersection. In:
C. Câmpeanu, F. Manea, J. Shallit (eds.), 18th DCFS . LNCS 9777, Springer, 2016,
45–59.

[3] R. Bastos, S. Broda, A. Machiavelo, N. Moreira, R. Reis, On the Average
Complexity of Partial Derivative Automata for Semi-extended Expressions. Journal of
Automata, Languages and Combinatorics 22 (2017) 1-3, 5–28.

[4] G. Berry, R. Sethi, From Regular Expressions to Deterministic Automata. Theoret.
Comput. Sci. 48 (1986), 117–126.

[5] S. Broda, A. Machiavelo, N. Moreira, , R. Reis, Position Automaton Construction
for Regular Expressions with Intersection. In: S. Brlek, C. Reutenauer (eds.), 20th
DLT . LNCS 9840, Springer, 2016, 51–63.

[6] A. Brüggemann-Klein, Regular Expressions into Finite Automata. Theoret. Comput.
Sci. 48 (1993), 197–213.

[7] J. Brzozowski, Derivatives of Regular Expressions. JACM 11 (1964) 4, 481–494.
[8] P. Caron, J. Champarnaud, L. Mignot, Partial Derivatives of an Extended Regular

Expression. In: A. H. Dediu, S. Inenaga, C. Martín-Vide (eds.), 5th LATA. LNCS
6638, Springer, 2011, 179–191.

[9] P. Caron, J. Champarnaud, L. Mignot, A General Framework for the Derivation
of Regular Expressions. RAIRO - Theor. Inf. and Applic. 48 (2014) 3, 281–305.

[10] P. Caron, D. Ziadi, Characterization of Glushkov Automata. Theoret. Comput. Sci.
233 (2000) 1-2, 75–90.

[11] J. M. Champarnaud, D. Ziadi, Canonical Derivatives, Partial Derivatives and Finite
Automaton Constructions. Theoret. Comput. Sci. 289 (2002), 137–163.

[12] H. Chen, S. Yu, Derivatives of Regular Expressions and an Application. In: M. J.
Dinneen, B. Khoussainov, A. Nies (eds.), Computation, Physics and Beyond, WTCS
2012 . LNCS 7160, Springer, 2012, 343–356.

[13] W. Gelade, Succinctness of Regular Expressions with Interleaving, Intersection and
Counting. Theor. Comput. Sci. 411 (2010) 31-33, 2987–2998.

[14] V. M. Glushkov, The Abstract Theory of Automata. Russian Math. Surveys 16
(1961), 1–53.

[15] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages and
Computation. Addison Wesley, 1979.

[16] L. Ilie, S. Yu, Follow Automata. Inf. Comput. 186 (2003) 1, 140–162.
[17] R. McNaughton, H. Yamada, Regular Expressions and State Graphs for Automata.

IEEE Transactions on Electronic Computers 9 (1960), 39–47.
[18] J. Sakarovitch, Elements of Automata Theory. Cambridge University Press, 2009.
[19] S. Yu, Regular languages. In: G. Rozenberg, A. Salomaa (eds.), Handbook of For-

mal Languages. 1, Springer, 1997, 41–110.

	1 Introduction
	2 Preliminaries
	2.1 Regular Expressions, Languages and Finite Automata
	2.2 Partial Derivatives and the Partial Derivative Automaton

	3 Indexed Expressions
	4 A Position Automaton for RE Expressions
	4.1 Recursive Definitions

	5 A c-Continuation Automaton for RE Expressions
	5.1 Partial Index-Derivatives for RE Expressions

	6 Apd as a Quotient of Apos
	7 Final Remarks

