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Antimirov and Mosses proposed a rewrite system for deciding the equivalence of two

(extended) regular expressions. They argued that this method could lead to a better
average-case algorithm than those based on the comparison of the equivalent minimal

deterministic finite automata. In this paper we present a functional approach to that

method, prove its correctness, and give some experimental comparative results. Besides
an improved functional version of Antimirov and Mosses’s algorithm, we present an al-

ternative one using partial derivatives. Our preliminary results lead to the conclusion

that, indeed, these methods are feasible and, most of the time, faster than the classical
methods.
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1. Introduction

Although, for efficiency reasons, finite automata are normally used for regular lan-
guage manipulation, regular expressions provide a particularly good notation for
the representation of this class of languages. The problem of deciding whether two
regular expressions are equivalent is, however, PSPACE-complete [SM73]. This de-
cision problem is normally solved by transforming each regular expression into an
equivalent NFA, converting those automata to equivalent deterministic ones, and
finally minimizing both DFAs, and decide if the resulting automata are isomor-
phic. In the worst case, the complexity of the automata determinization process is
exponential in the number of states.

Antimirov and Mosses [AM94] presented a rewrite system for deciding the equiv-
alence of extended regular expressions based on a new complete axiomatization of
the extended algebra of regular sets. This axiomatization, or any other classical
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complete axiomatization of the standard algebra of regular sets, can be used to con-
struct an algorithm for deciding the equivalence of two regular expressions, but these
deduction systems tend to be quite inefficient. This rewrite system acts as a refu-
tation method that normalizes regular expressions in such a way that testing their
equivalence corresponds to an iterated process of testing the equivalence of their
derivatives. Termination is assured because the set of derivatives to be considered
is finite and possible cycles are detected using memoization. Antimirov and Mosses
suggested that their method could lead to a better average-case algorithm than
those based on the comparison of the equivalent minimal DFAs. In this paper we
present a functional approach to the Antimirov-Mosses method, prove its correct-
ness, and give some experimental comparative results. Besides an improved func-
tional version of Antimirov and Mosses’s algorithm, we present an alternative one
using partial derivatives. Our preliminary results lead to the conclusion that indeed
these methods are feasible and, most of the time, faster than the classical methods.

The paper is organized as follows. Section 2 contains several basic definitions
and facts concerning regular languages and regular expressions. In Section 3 we
present our variant of Antimirov and Mosses’s method for testing the equivalence
of two regular expressions. An improved version using partial derivatives is also
presented. Section 4 gives some experimental comparative results between classical
methods and the one presented in Section 3. Finally, in Section 5 we discuss some
open problems, as ongoing and future work.

2. Regular expressions and automata

Here we recall some definitions and facts concerning regular languages, regular
expressions and finite automata. For further details we refer the reader to the works
of Hopcroft et al. [HMU00], Kozen [Koz97], and Kuich and Salomaa [KS86].

Let Σ be an alphabet and Σ? be the set of all words over Σ. The empty word is
denoted by ε and the length of a word w is denoted by |w|. A language is a subset
of Σ?, and if L1 and L2 are two languages, then L1 ·L2 = {xy | x ∈ L1 and y ∈ L2}.
A regular expression α over Σ represents a (regular) language L(α) ⊆ Σ? and is
inductively defined as follows: ∅ is a regular expression and L(∅) = ∅; ε is a regular
expression and L(ε) = {ε}; a ∈ Σ is a regular expression and L(a) = {a}; if α and β
are regular expressions, (α+β), (α ·β) and (α)? are regular expressions, respectively
with L((α+ β)) = L(α)∪L(β), L((α · β)) = L(α) ·L(β) and L((α)?) = L(α)?. The
operator · is often omitted. We adopt the usual convention that ? has precedence
over ·, which has higher precedence than +. Let RE be the set of regular expressions
over Σ. The size of α is denoted by |α| and represents the number of symbols,
operators, and parentheses in α. We denote by |α|Σ the number of symbols in α.
We define the constant part of α as ε(α) = ε if ε ∈ L(α), and ε(α) = ∅ otherwise.
In the first case we say that α possesses the empty word property. Two regular
expressions α and β are equivalent, and we write α ∼ β, if L(α) = L(β). The
algebraic structure (RE,+, ·, ∅, ε), constitutes an idempotent semi-ring, and, with
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the unary operator ?, a Kleene algebra. There are several well-known complete (non
purely equational) axiomatizations of Kleene algebras [Sal66,Koz94], but we will
essentially consider Salomaa’s axiom system F1 which, besides the usual axioms for
an idempotent semi-ring, contains the following two axioms for the ? operator:

α? ∼ ε+ αα?; α? ∼ (ε+ α)?.

As for rules of inference, system F1 has the usual rule of substitution and the
following rule of solution of equations:

α ∼ βα+ γ, ε(β) = ∅
α ∼ β?γ

(1)

A nondeterministic finite automaton (NFA) A is a tuple (Q,Σ, δ, q0, F ) where Q
is the finite set of states, Σ is the alphabet, δ ⊆ Q × Σ ∪ {ε} × Q the transition
relation, q0 the initial state and F ⊆ Q the set of final states. An NFA without
ε-transitions is deterministic (DFA) if, for each pair (q, a) ∈ Q × Σ there exists at
most one q′ such that (q, a, q′) ∈ δ. Two NFA are equivalent if they accept the same
language. A DFA is called minimal if there is no equivalent DFA with fewer states.
Minimal DFAs are unique up to isomorphism. DFAs, NFAs, and regular expressions
represent the same set of languages, i.e., regular languages.

2.1. Succinct regular expressions

Equivalent regular expressions do not need to have the same size. Irreducible regular
expressions as defined by Ellul et.al [EKSW05] have no redundant occurrences of
∅, ε, ?, and parentheses. A regular expression α is uncollapsible if none of the
following conditions hold:

• α contains the proper sub-expression ∅, and |α| > 1;
• α contains a sub-expression of the form βγ or γβ where L(β) = {ε};
• α contains a sub-expression of the form β + γ or γ + β where L(β) = {ε}

and ε ∈ L(γ).

A regular expression α is irreducible if it is uncollapsible and both the following
conditions are true:

• α does not contain superfluous parentheses (we adopt the usual operator
precedence conventions and omit outer parentheses);

• α does not contain a sub-expression of the form β?
?

.

The previous reductions rely on considering regular expressions modulo some al-
gebraic properties: identity elements of + and ·, annihilator element for ·, and
idempotence of ?.

Let ACI be the set of axioms that includes the associativity, commutativity and
idempotence of disjunction and let ACIA be the set ACI plus the associativity of
concatenation. In this work, besides where otherwise stated, we consider irreducible
regular expressions modulo ACIA (and denote them by RE).
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This allows a more succinct representation of regular expressions, and it is es-
sential for ensuring the termination of the algorithms described in the next section.

2.2. Implementation

As already stated, throughout this paper we always consider irreducible regular
expressions modulo ACIA. Our implementation aims to ensure these properties in
a simple and efficient way. We used an object-oriented approach such that, for each
operation, there is a data structure which enforces the ACIA properties and simpli-
fies the algorithms used to assure that the regular expressions are kept irreducible.

2.2.1. Disjunctions

A disjunction is represented as a set of regular expressions. This gives us a natural
way to enforce the ACI properties.

In order to have an irreducible disjunction, the sub-expression ∅ may not occur,
and, if any of the arguments possesses the empty word property, ε is not allowed
as a sub-expression. The set representation allows for an algorithm which performs
these checks in linear time on the number of arguments. As an example, consider
the regular expression α+ ∅+β?γ+α+ ε, where ε /∈ L(γ). It would be represented
by the set {ε, α, β?γ}.

In order to reduce the complexity of the algorithm that checks the constant
part of a given sub-expression α, we memoize the results. As such, when a regular
expression β is to be constructed, we need only to compute the disjunction (if β is
a sum) or conjunction (if β is a concatenation) of the already computed constant
part of each argument (the constant part of a starred expression will always be ε).
Again, we save this value as a property of β in order to avoid future recursive calls.

2.2.2. Concatenation

Concatenations of regular expressions are kept in a list. This allows us to take
advantage of the associative property and easily apply transformations to any pair
of adjacent regular expressions. This representation also simplifies the application of
the following transformations which are necessary to make the regular expressions
irreducible, as we can simply go through the list and remove each occurrence of ε
in linear time:

α · ε→ α, ε · α→ α, α · ∅ → ∅, ∅ · α→ ∅.

If ∅ is found, we simply return it as the equivalent irreducible regular expression.
These transformations are better illustrated by the following examples:

α · ε · β → [α, β]; α · ∅ · β → ∅; (α · β?) · γ → [α, β?, γ]; α · (β? · γ)→ [α, β?, γ];
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2.2.3. Kleene star

As for the Kleene star, we use a class to represent the ? operator.
In order to keep it irreducible, the constructor of the class does not create regular

expressions of the form α??. This is achieved by checking, in constant time, if the
regular expression passed as an argument is already of the same type. If this is the
case, only the argument is kept, thus avoiding the double star. We also added the
following two simplifications to the star operator representation:

∅? → ε, ε? → ε,

which can be very useful to the system described in Section 3.

2.3. Linear regular expressions

A regular expression α is linear if it is of the form a1α1 + · · ·+anαn for ai ∈ Σ and
αi ∈ RE. The set of all the linear regular expressions is denoted by RElin, and can
be defined by the following context-free grammar G1, where A is the initial symbol,
L(C) = Σ, and L(B) = RE − {ε, ∅}:

A→ C | C ·B | A+A. (G1)

We say that an expression aβ has head a ∈ Σ and tail β. We denote by head(α)
and tail(α), respectively, the multiset of all heads and the multiset of all tails in
a linear regular expression α. A linear regular expression α is deterministic if no
element of head(α) occurs more than once. We denote the set of all deterministic
linear regular expressions by REdet. Every regular expression α can be written as
a disjunction of its constant part and a (deterministic) linear regular expression
[Sal66]. A regular expression is said to pre-linear if it belongs to the language
generated by the following context-free grammar G2 with initial symbol A′, and A

and B are as in G1:

A′ → ∅ | D
D → A | D ·B | D +D.

(G2)

The set of all pre-linear regular expressions is denoted by REplin.

2.4. Derivatives

The derivative [Brz64] of a regular expression α with respect to a symbol a ∈ Σ,
denoted a−1(α), is defined recursively on the structure of α as follows:

a−1(∅) = ∅; a−1(α+ β) = a−1(α) + a−1(β);

a−1(ε) = ∅; a−1(αβ) = a−1(α)β + ε(α)a−1(β);

a−1(b) =

(
ε, if b = a;

∅, otherwise;
a−1(α?) = a−1(α)α?.
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If α is a deterministic linear regular expression, we have:

a−1(α) =

8><>:
β, if a · β is a sub-expression of α;

ε, if α = a;

∅, otherwise.

The derivative of a regular expression α with respect to the word w ∈ Σ?, denoted
w−1(α), is defined recursively on the structure of w:

ε−1(α) = α; (ua)−1(α) = a−1(u−1(α)), for any u ∈ Σ?.

Considering regular expressions modulo the ACI axioms, Brzozowski [Brz64]
proved that, for every regular expression α, the set of its derivatives with respect
to any word w is finite.

3. Regular expression equivalence

The classical approach to the problem of comparing two regular expressions α and
β, i.e., deciding if L(α) = L(β), typically consists of transforming each regular ex-
pression into an equivalent NFA, convert those automata to equivalent deterministic
ones, and minimize both DFAs. Because, for a given regular language, the minimal
DFA is unique up to isomorphism, these can be compared using a canonical repre-
sentation [AMR07b], and thus checked if L(α) = L(β). In this section, we present
two methods to verify the equivalence of two regular expressions. The first method is
a variant of the rewrite system presented by Antimirov and Mosses [AM94], which
provides an algebraic calculus for testing the equivalence of two regular expressions
without the construction of the canonical minimal automata. It is a functional ap-
proach on which we always consider the regular expressions to be irreducible and
not extended (with intersection). The use of irreducible regular expressions allows
us to avoid the simplification step of Antimirov and Mosses’s system with little
overhead. The second method improves this first one by using the notion of partial
derivative.

3.1. Linearization of regular expressions

Let a ∈ Σ, and α, β, γ be arbitrary regular expression. We define the functions
lin = lin2 ◦ lin1, and det as follows:
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lin1 : RE → REplin lin2 : REplin → RElin ∪ {∅}
lin1(∅) = ∅; lin2(α+ β) = lin2(α) + lin2(β);

lin1(ε) = ∅; lin2((α+ β)γ) = lin2(αγ) + lin2(βγ);

lin1(a) = a; lin2(α) = α. (Otherwise)

lin1(α+ β) = lin1(α) + lin1(β);

lin1(α?) = lin1(α)α?; det : RElin ∪ {∅} → REdet ∪ {∅}
lin1(aα) = aα; det(aα+ aβ + γ) = det(a(α+ β) + γ);

lin1((α+ β)γ) = lin1(αγ) + lin1(βγ); det(aα+ aβ) = a(α+ β);

lin1(α?β) = lin1(α)α?β + lin1(β). det(aα+ a) = a(α+ ε);

det(α) = α. (Otherwise)

The function lin linearizes regular expressions. Function lin1 corresponds to the
function f of the original rewrite system which, contrary to what is claimed by
Antimirov and Mosses, returns a pre-linear regular expression, and not a linear
one.

We use the function lin for efficiency reasons because a single call makes all the
derivatives with regard to any symbol of the alphabet readily available.

To show that lin(α) returns either the linear part of α or ∅, it is enough to
observe the following facts, of which we present only the proof for the first. The
remaining proofs can be found in an extended version of the present paper (along
with all other missing proofs) [AMR07a].

• The function lin1 is well defined.
• For α ∈ RE, lin1(α) ∈ L(G2).
• For α ∈ REplin, α ∼ lin2(α).
• For α ∈ RE, lin(α) ∈ L(G1) ∪ {∅}.
• For α ∈ RElin ∪ {∅}, det(α) ∈ REdet and α ∼ det(α).

• For α ∈ RE, L(lin(α)) =

{
L(α), if ε /∈ L(α);

L(α)− {ε}, if ε ∈ L(α).

Lemma 1. The function lin1 is well defined.

Proof. Let a ∈ Σ and α, β, γ be arbitrary regular expressions. We proceed by
induction on the structure of the regular expressions.

It is clear that for ∅, ε, a, α = β + γ, and α = β? the function lin1(α) is
well defined. We need only to show that lin1(α) is also well defined when α is a
concatenation of regular expressions. These are all the possible cases:

∅ · α; α · ∅; ε · α; α · ε; (6)

a · α; (α+ β) · γ; α? · β. (7)
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Because we are dealing with irreducible regular expressions modulo ACIA, ∅ · α ∼
α · ∅ ∼ ∅ and lin1(∅) is well defined. For the same reason, ε ·α ∼ α · ε ∼ α, so we do
not have to consider concatenations with ε. This leaves us with the cases in (7), all
of which are explicitly considered by the function lin1(α).

Thus we have:

Theorem 2. For any regular expression α, α ∼ ε(α) + lin(α), and α ∼ ε(α) +
det(lin(α)).

Considering the definition of derivative (Subsection 2.4), we also have:

Theorem 3. Let a ∈ Σ and α ∈ RE, then a−1(α) = a−1(det(lin(α))).

3.2. Regular expression equivalence

We now present the function equiv that implements the comparison method which
pseudocode is listed as Algorithm 1. The auxiliar function derivatives computes the
set of the derivatives of a pair of deterministic linear regular expressions (α, β), with
respect to each symbol of the alphabet. It is enough to consider only the symbols
in head(α)∪ head(β), and we do that for efficiency reasons. The function is defined
as follows:

derivatives : (REdet ∪ {∅})× (REdet ∪ {∅})→ P(RE ×RE)

derivatives(α, β) = { (a−1(α), a−1(β)) | a ∈ head(α) ∪ head(β) }.

The function equiv, applied to two regular expressions α and β, returns True if
and only if α ∼ β. It is defined in the following way:

equiv : P(RE2)× P(RE2)→ {True, False}
equiv(∅, H) = True;

equiv({(α, β)} ∪ S,H) =

{
False, if ε(α) 6= ε(β);

equiv(S ∪ S′, H ′), otherwise;

where

α′ = det(lin(α));
β′ = det(lin(β));

S′ = { p | p ∈ derivatives(α′, β′), p /∈ H ′ };
H ′ = { (α, β) } ∪H.

At each step the function equiv proceeds by replacing in a set S each pair
of regular expressions by the pairs of its corresponding derivatives. When either
a disagreement pair is found, i.e., a pair of derivatives such that their constant
parts are different, or the set S is empty, the function returns. If α ∼ β the call
equiv({(α, β)}) returns the value True, otherwise returns False. Comparing with
Antimirov and Mosses’s rewrite system TR, we note that in each call to equiv(S,H),
the set S contains only pairs of regular expressions which are not in H, thus ren-
dering the rule (IND) of TR unnecessary. On the other hand, our data structures
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avoid the need of the rule (SIM) by assuring that the regular expressions are always
irreducible.

def equiv (S ,H) :
i f S = ∅ :

return True

S = S \ {(α, β)}
i f ε(α) 6= ε(β) :

return False

H′ = {(α, β)} ∪H
α′ = det(lin((α)))

β′ = det(lin((β)))
S′ = derivatives(α′, β′) \ H′

return equiv (S ∪ S′ ,H′ )

Algorithm 1. An improved functional version of Antimirov and Mosses’s rewrite system.

Theorem 4. The function equiv is terminating.

Proof. It is clear that the function terminates when its first argument, the set S,
is empty. Each call to the function removes one element from S, and appends the
set of the derivatives which have not yet been calculated, S′, to S. By Theorem 3,
we know that the linearization process does not affect the derivation process. This
sequence of derivatives with respect to a symbol is equivalent to a single derivative
with respect to a word w. As we proceed by lexicographical order, all different
derivatives will be considered. Because all operations are performed modulo ACIA,
there is only a finite number of derivatives with respect to any word [Brz64], and,
from a given point on, S ∪ S′ = S. As each call to equiv removes one element from
S, after a finite number of function evaluations, S = ∅ and the function terminates.
In order to assure that the derivatives of the same pair of regular expressions are
not computed more than once, and thus prevent a possible infinite loop, we keep in
the set H the history of all the already processed pairs of regular expressions.

Lemma 5. Given α, β ∈ REdet ∪ {∅},

α ∼ β ⇒ ∀(α′, β′) ∈ derivatives(α, β), α′ ∼ β′.

Lemma 6. Given two regular expressions, α and β, such that α ∼ β,

equiv({(α, β)}, ∅) = True.

Proof. If α = β = ∅,

equiv({(∅, ∅)}, H) = equiv(∅, H ∪ {(∅, ∅)}) = True.

If α ∼ β we know, by Lemma 5, that

ε(α′) = ε(β′) ∀(α′, β′) ∈ derivatives(α, β)

and thus, by iteration, the call to equiv({(α, β)}, ∅) will never return False.
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Lemma 7. Given two regular expressions, α and β, such that α � β,

equiv({(α, β)}, ∅) = False.

Proof. As Brzozowski shows, if w ∈ L(α), ε(w−1(α)) = ε. If α � β, either

∃w ∈ L(α) : ε(w−1(β)) 6= ε or ∃w ∈ L(β) : ε(w−1(α)) 6= ε.

Without loss of generality, suppose the first case is true. We have that

equiv({(w−1(α), w−1(β))} ∪ S,H) = False

and we know that the call to equiv({(α, β)}, ∅), must call equiv({(α′, β′)} ∪ S,H)
such that α′ is w−1(α) and β′ is w−1(β).

Theorem 8. The call equiv({(α, β)}, ∅) returns True if and only if α ∼ β.

Proof. By direct application of Lemmas 6 and 7.

3.3. Improved equivalence method using partial derivatives

Antimirov [Ant96] introduced the notion of the partial derivatives set of a regular
expression α and proved that its cardinality is bounded by the number of alphabetic
symbols that occurs in α. He showed that this set can be obtained directly from
a new linearization process of α. This new process can be easily implemented in
our approach, as a variant of the linearization function, as we already consider
disjunctions as sets. We now briefly review this notion and show how it can be used
to improve the equiv algorithm.

3.3.1. Linear forms

Let Σ×RE be the set of monomials over an alphabet Σ. Let Pfin(A) be the set
of all finite parts of the set A. A linear regular expression a1α1 + · · ·+ anαn can be
represented by a finite set of monomials l ∈ Pfin(Σ×RE), named linear form, and
such that l = {(a1, α1), . . . , (an, αn)}. We define a function σ : Pfin(Σ×RE) →
RElin by σ(l) = a1α1 + · · ·+ anαn.

Concatenation of a linear form l with a regular expression β is defined by lβ =
{(a1, α1β), . . . , (an, αnβ)}.

The linearization of a regular expression α is then defined as follows:

lf : RE → Pfin(Σ×RE)

lf(∅) = ∅; lf(α?) = lf(α) · α?;

lf(ε) = ∅; lf(a · α) = {(a, α)};
lf(a) = {(a, ε)}; lf((α+ β) · γ) = lf(α · γ) ∪ lf(β · γ);

lf(α+ β) = lf(α) ∪ lf(β); lf(α? · β) = lf(α) · α? · β ∪ lf(β).

The following theorem relates the method of linearization presented in Sec-
tion 2.3 with linear forms.
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Theorem 9. For any regular expression α, lin(α) = σ(lf(α)).

3.3.2. Partial derivatives

Given a regular expression α and a symbol a ∈ Σ, a partial derivative of α with
respect to a is a regular expression ρ such that (a, ρ) ∈ lf(α). The set of partial
derivatives of α with respect to a is denoted by ∂a(α). The notion of partial deriva-
tive of α can be extended to words w ∈ Σ?, sets of regular expressions R ⊆ RE,
and sets of words W ⊆ Σ?, as follows:

∂ε(α) = {α}; ∂w(R) =
[
α∈R

∂w(α);

∂ua(α) = ∂a(∂u(α)), for any u ∈ Σ?; ∂W (α) =
[
w∈W

∂w(α).

There is a strong connection between the sets of partial derivatives and the
derivatives of a regular expression. Trivially extending the notion of language
represented by a regular expression to sets of regular expressions, we have that
L(∂w(α)) = L(w−1(α)), for any w ∈ Σ?, α ∈ RE. One of the advantages of using
partial derivatives is that for any α ∈ RE, |PD(α) = ∂Σ?(α)| ≤ |α|Σ, where PD(α)
stands for the set of all the syntactically different partial derivatives.

3.3.3. Improving equiv by using partial derivatives

Let us now consider a determinization process for linear forms. We say that a linear
form is deterministic if, for each symbol a ∈ Σ, there is at most one element of the
form (a, α). Let lfX be an extended version of the linearization function lf, defined
as follows:

lfX(α) = {(a,
∑

(a,α′)∈lf(α)

α′) | a ∈ Σ}.

We can replace the function composition det ◦ lin with the deterministic linear
form obtained with lfX. This new extended linear form allows us to use the pre-
viously defined equiv function with only two slight modifications. We redefine the
derivatives function as follows:

derivatives : Pdetfin(Σ×RE)× Pdetfin(Σ×RE)→ P(RE ×RE)

derivatives(lα, lβ) = {(α′, β′) | (a, α′) ∈ lα, (a, β′) ∈ lβ}.

By making lα = lfX(α), lβ = lfX(β), and

S′ = {p | p ∈ derivatives(lα, lβ), p /∈ H ′}, H ′ = {(α, β)} ∪H

we obtain a new version of the equiv function, which will be called equivP.
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3.3.4. Complexity issues

The worst-case time complexity of the lf function, can be estimated considering
that the associated recurrence is T (n) = 2T (2n/3) + n, where n is the size of
the regular expression given as argument. Then by direct application of the master
theorem [CLRS03], we conclude that T (n) is bounded by Θ(n1.7). As for the equivP
function, let n = max(|α|Σ, |β|Σ). It proceeds by comparing subsets of PD(α) with
PD(β), whose size is bounded by n. This leads to 2n possible comparisons, in the
worst case.

4. Experimental results

We will now present some experimental results. These are the running times for the
two methods for checking the equivalence of regular expressions. One uses the equiv-
alent minimal DFA, the other is the direct regular expression comparison method,
as described in Section 3. All tests were performed on batches of 10, 000 pairs of uni-
formly random generated regular expressions, and the running times do not include
the time necessary to parse each regular expression. Each batch contains regular
expressions of size 10, 50 or 100, with either 2, 5 or 10 symbols. For the uniform
generation of random regular expressions we implemented the method described by
Mairson [Mai94] for the generation of context-free languages. We used a grammar
for almost irreducible regular expressions presented by Shallit [LS05]. As the data
sets were obtained with a uniform random generator, the size of each sample is
sufficient to ensure a 95% confidence level within a 1% error margin. It is calculated
with the formula n = ( z2ε )

2, where z is obtained from the normal distribution table
such that P (−z < Z < z)) = γ, ε is the error margin, and γ is the desired confidence
level.

We tested the equivalence of each pair of regular expressions using both the
classical approach and the direct comparison method. We used Glushkov’s algo-
rithm to obtain the NFAs from the regular expressions, and the well-known subset
construction to make each NFA deterministic. As for the DFA minimization pro-
cess, we applied two different algorithms: Hopcroft and Brzozowski’s. On one hand,
Hopcroft’s algorithm has the best known worst-case running time complexity anal-
ysis, O(kn log n). On the other, it is pointed out by Almeida et. al [AMR07c] that
when minimizing NFAs, Brzozowski’s algorithm has a better practical performance.
As for the direct comparison method, we compared both the original rewriting sys-
tem (AM) and our variant of the algorithm both with (equivP) and without partial
derivatives (equiv).

As shown in Figure 1 (a), when comparing randomly generated regular expres-
sions, any of the direct methods is always faster. Note also that Hopcroft’s algorithm
never achieves shorter running times than Brzozowski’s. Because both Antimirov
and Mosses’s algorithm and our variation try to compute a refutation, we performed
a set of tests for testing the equivalence of two syntactically equal regular expres-
sions. Again, we used batches of 10, 000 pairs of regular expressions. Figure 1 (b)
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Fig. 1. Running times of three different methods for checking the equivalence of regular expressions.

a) 10,000 pairs of random regular expressions; b) 10,000 pairs of syntactically equal random regular

expressions. The missing column corresponds to a larger than reasonable observed runtime.

shows the results of the application of each algorithm to pairs of syntactically equal
random regular expressions. Except for the samples of regular expressions with size
50 or 100, over an alphabet of 2 symbols, the direct regular expressions comparison
methods are still the fastest. Again, Brzozowki’s algorithm always presents better
running times than Hopcroft’s. Among the direct comparison methods, equivP
always performs better, with a speedup of 20%−30%. It is important to note, how-
ever, that by using partial derivatives we memoize intermediate results and thus
avoid the recomputation of some elements of the partial derivatives set.

4.1. More experimental data

We analyzed the time spent on each step of the minimal DFA construction method,
i.e., on the construction of the NFAs (NFA), the determinization process (DFA),
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and Hopcroft’s minimization algorithm (mDFA). The running time for each of
these steps is presented in Table 1. It is clear that, asymptotically, the bottleneck
is the minimization algorithm, which always takes over 50% of the total amount
of time when the size of the regular expressions and/or the alphabet grows. The

k = 2 n = 10 n = 50 n = 100

|Q| time |Q| time |Q| time

NFA (7.35, 7.33) 6.76 (29.02, 29.01) 60.11 (56.22, 56.15) 177.81
DFA (6.56, 6.55) 3.82 (34.82, 34.89) 47.88 (115.79, 114.34) 312.8

mDFA (6.49, 6.45) 9.29 (24.70, 24.78) 203.15 (63.12, 61.50) 6473.63

k = 5 n = 10 n = 50 n = 100

|Q| time |Q| time |Q| time

NFA (8.89, 8.90) 8.46 (36.45, 36.51) 66.12 (70.84, 70.93) 191.42
DFA (8.60, 8.62) 6.2 (35.15, 35.20) 36.08 (69.07, 69.16) 83.99

mDFA (8.42, 8.45) 25.74 (29.35, 29.39) 406.04 (54.33, 54.54) 1700.31

k = 10 n = 10 n = 50 n = 100

|Q| time |Q| time |Q| time

NFA (9.65, 9.63) 8.25 (40.87, 40.87) 68.07 (79.62, 79.64) 191.19
DFA (9.52, 9.51) 8.69 (40.05, 40.04) 52 (77.91, 77.93) 116.47

mDFA (9.54, 9.50) 41.3 (35.10, 35.10) 981.91 (66.03, 66.04) 4341.69

Table 1. Running times (seconds) for each step of the regular expressions comparison with
Hopcroft’s algorithm.

k 2 5 10

n 10 50 100 10 50 100 10 50 100

AM 2.71 3.54 3.73 5.74 9.82 12.45 8.22 14.27 17.97
equiv 2.45 3.20 3.40 4.43 7.01 8.80 6.36 10.42 12.78

equivP 2.44 3.23 3.46 4.43 7.03 8.83 6.36 10.40 12.81

Table 2. Average number of functions calls to AM, equiv, and equivP.

average number of states for the NFAs, the equivalent DFAs and the minimal DFAs
is also presented in Table 1. The average number of recursive calls to AM, equiv,
and equivP is presented in Table 2. The numbers are similar, so the difference on
the running time of the algorithms cannot be justified by the amount of function
calls. To ensure the fairness of the comparison for the methods using NFAs we tried
two other algorithms for computing NFAs from regular expressions. Some statistical
data about the performance of Thompson [Tho68], Glushkov [Glu61, Y u97], and Ilie
and Yu’s [IY 03] algorithms for computing NFAs from regular expressions is given in
Table 3. Glushkov’s algorithm is always the fastest, and produces quite small NFAs,
both in terms of number of states and transitions. As expected, the NFAs produced
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k = 2 n = 10 n = 50 n = 100

Alg. |Q| |δ| time |Q| |δ| time |Q| |δ| time

Thomp. 18.35 17.46 8.79 83.82 82.90 110.47 165.72 164.80 411.42
Glush. 7.45 7.37 4.48 29.45 35.96 33.83 57.05 72.90 98.02
Follow 5.91 6.10 26.75 20.30 25.36 813.64 35.93 46.52 5135.32

k = 5 n = 10 n = 50 n = 100

Alg. |Q| |δ| time |Q| |δ| time |Q| |δ| time

Thomp. 19.54 18.60 10.79 90.38 89.42 133.31 178.38 177.42 484.02
Glush. 8.91 9.19 5.16 36.53 45.83 36.18 70.98 93.55 101.55
Follow 7.54 7.98 41.71 28.63 35.80 1723.54 53.15 68.55 12413.52

k = 10 n = 10 n = 50 n = 100

Alg. |Q| |δ| time |Q| |δ| time |Q| |δ| time

Thomp. 19.85 18.90 11.69 94.03 93.05 153.43 185.64 184.66 554.47
Glush. 9.65 9.70 5.34 40.88 48.03 36.84 79.64 97.13 101.14
Follow 8.60 8.72 51.99 34.67 40.48 2585.59 66.18 78.84 21086.45

Table 3. Running time (seconds), average number of states and transitions for three types of NFAs
obtained from random expressions.

with Thompson’s algorithm are the ones with the highest number of states.

5. Conclusion

We presented a variant method based on a rewrite system for testing the equiva-
lence of two regular expressions, that attempts to refute its equivalence by finding a
pair of derivatives that disagree in their constant parts. While a good behaviour was
expected for some non-equivalent regular expressions, experimental results point to
a good average-case performance for this method, even when feeded with equiv-
alent regular expressions. Some improvement was also achieved by using partial
derivatives. Given the spread of multi-cores and grid computer systems, a parallel
execution of the classic method and our direct comparison method can lead to an
optimized framework for testing regular expressions equivalence. A better theoret-
ical understanding of relationships between the two approaches would be helpful
towards the characterization of their average-case complexity. We have related this
method with the one by Hopcroft and Karp [HK71] for testing the equivalence of
DFAs without minimization [AMR09]. Preliminary results show, however, that any
of the direct methods we presented is likely to perform better.
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