
GUItar and FAgoo: Graphical interface for
automata visualization, editing, and interaction?

André Almeida Nelma Moreira Rogério Reis
{bernarduh,nam,rvr}@ncc.up.pt

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

Abstract. GUItar is a graphical environment for graph visualization,
editing, and interaction, that specially focuses in finite automata dia-
grams. The application incorporates mechanisms to facilitate the editing
of these graphs. It also provides a style manager that allows the cre-
ation of rich state and arc styles to be used in the drawing of its ob-
jects. This style manager allows the system to cope with complex styles,
broaden the application scope to graphical representations of other com-
putational models like transducers or Turing machines. GUItar also has a
foreign function call (FFC) mechanism for the easy integration of exter-
nal modules and libraries like automata symbolic manipulators or graph
drawing libraries. For automatic graph drawing we are developing FA-
goo, a package that seeks to provide tools capable of finding pleasant
graph drawings. FAgoo implements graph drawing algorithms that find
embeddings which the user, with minimal manual changes, can adjust
to its aesthetically taste. Both GUItar and FAgoo are on going projects
licensed under GPL.

1 Introduction

GUItar [1] is a graphical environment tool for finite automata visualization and
editing. This application incorporates mechanisms, like the auto adjustment of
the nodes to avoid overlaps and the automatic positioning of the arcs which
assist the user through the graph drawing and visualization. GUItar also provides
powerful styling tools that not only allow the editing of node and arc styles but
also allows the creation of new node structures. Furthermore we present the
foreign function call (FFC) mechanism which is used to access external modules
or libraries as FAdo and FAgoo [1].

FAdo is a tool for symbolic manipulation of formal languages and specially
finite automata that can be incorporated with GUItar. Since most FAdo manipu-
lations result in finite automata diagrams with no embedding, we are developing
FAgoo which is a graph drawing library that specially focuses in that type of
diagrams. Finite automata diagrams require additional aesthetic and graphical

? This work was partially funded by Fundação para a Ciência e Tecnologia (FCT) and
Program POSI, and by project ASA (PTDC/MAT/65481/2006).



constraints over other type of graphs. Finite automata diagrams, for example,
are normally read from the left to the right therefore initial states are placed
on the left and final states more to the right. FAgoo is a Python module written
in C allowing us to maintain good performance and at the same time provide
a high-level interface. In this paper we will describe the main components of
GUItar as well as some algorithms already implemented in FAgoo.

2 Graph Drawing Libraries and Applications

There are several graph drawing libraries available with many layout algorithms
for generic and specific types of graphs. Most of these libraries focus in a spe-
cific type of graphs in order to achieve better drawings. Restricting the type of
graphs that an algorithm have to deal with, results in having graphs with par-
ticular properties which usually facilitates their drawings. Although there are
many applications and libraries as aiSee [2], yED from yWorks [3], Open Graph
Drawing Framework (OGDF) [4] and Graphviz [5] for automatic graph drawing,
the algorithms implemented by these software do not fit the drawing conventions
of finite automata drawings. This is because they were not specially designed to
deal with finite automata drawings. JFLAP [6] is an application that aims to
provide a way to experiment with formal languages representations, in particu-
larly finite automata. Clearly JFLAP do not focus its work on the visualization
and layout of the finite automata, thus, the available layout algorithms are very
basic and simple.

3 GUItar

GUItar is an ongoing project which aims to provide a software tool for finite
automata visualization and editing. Although GUItar specially focuses in finite
automata diagrams, it supports other types of diagrams. Currently GUItar is
implemented in Python and uses wxPython [7] graphical toolkit. The graphical
interface basic frame is composed by a menu bar, a tool bar and a notebook.
The menu bar is dynamically built from XML [8] configuration files. The note-
book can handle multiple pages, each one containing a canvas. The canvas is
implemented using the wxPython’s FloatCanvas module which provides a set of
graphical objects that can be bound with mouse events. To be able to draw
labeled arcs, a new object called ArrowSpline had to be created.

3.1 Styles

In order to have a good platform for graph visualization and editing, we need
to cope with a wide range of node and arc styles. GUItar provides a node and
arc style manager that not only allows management of multiple styles, but also
provides interactive creation and editing of complex node structures. The graph-
ical representation of a node on GUItar consists in a set of objects from ellipses,



Fig. 1. An automaton created in GUItar.

rectangles, arrow splines and scaled texts. There must exist at least an ellipse
or a rectangle to ensure that the node has a place to dock the incoming and
outgoing arcs. It must also have one scaled text to place the node’s label. This
node structure allows the creation of complex nodes, enriching the graph visual-
ization. For example, in finite automata diagrams we can represent final states
by using two concentric ellipses, or initial states using a arrow and a ellipse. The
Fig. 2 shows the node style manager of GUItar, editing a style that could be used
to represent a state which is initial and final.

The node and arc labels can be either simple or compound. Simple labels are
just text strings, while compound labels have custom fields with values specified
by the user. The user can choose either to display or not each label field, and in
this way, extra data can be associated to nodes and arcs.

These features can accommodate many purposes, expanding GUItar’s scope
to a larger range of graph types such as transducer diagrams, Turing machines,
and others.

3.2 Visualization

Large graphs are difficult to visualize. If we are focusing in a part of a graph and
we want to abstract ourselves from the rest of the graph we can select that part



Fig. 2. GUItar’s node style manager.

of the graph and ask the application to find a specific embedding that favours
its visualization. There is also the case where we may want to have a overview
and simplify some parts of the graph collapsing a subgraph into a node. One
solution is to replace a subgraph by a node and transforming all the external
arcs of the subgraph in the respective arcs to the node.

3.3 Graph Manipulation

In GUItar it is possible to collapse multiple arcs between two nodes. To collapse
multiple arcs their labels must be merged. By default the concatenation opera-
tion is used, but other operations can be defined. As for the resulting style, if
all arcs share the same style then that one is used. If different styles are present,
one is arbitrarily chosen or the user is prompted to do it.

Two or more nodes can be merged into one. To do this there are three aspects
to take in consideration: the labels, the styles, and the arcs. The labels’ merging
and the style selection are done as above. The arcs of the merging nodes are
replaced by arcs to the resulting node, which can lead to the creation of multiple
arcs. Further collapsing of these resulting arcs can then take place.



3.4 FFCs

We do not intend this project to be a new monolithic graph visualization and
editing tool, but we see it more as a hub where graph manipulation libraries can,
together, provide better visualization and manipulation tools. This is achieved
by a FFC mechanism, using a Python interface to access the external tools (see
Fig. 3). There are three types of FFC: module FFC, object FFC and interactive
FFC. In the first case, the FFC calls a function directly from an external Python
module. In the second case, it creates a foreign object and then calls methods
of that object. In the last case, when a specified event occurs, the FFC triggers
the respective handler function from an external Python module that will return
a sequence of actions as script commands. FFCs require an XML configuration
file that specifies the available methods. FFCs can create their own menu entries
which makes its integration in GUItar smooth and practical. Most of the GUItar
tools are implemented using FFCs that interface FAdo and FAgoo.

3.5 Animations

Animation can be a good way to illustrate a complex algorithm behavior. One
application of interactive FFCs is algorithm animation. A simple algorithm as the
one that finds a path between two nodes can be annotated with commands and
events to animate its execution. These annotations allow to control the canvas
behavior and its contents. To control the animation flow, GUItar can provide
a set of interactive controls or the FFC can provide its own external interface.
An example of a more complex animation is the deterministic finite automata
minimization that uses nodes merging to illustrate some of the transformations
during the algorithm execution.

Fig. 3. A FFC mechanism overview.



3.6 Graph Classification

The GUItar classification mechanism allows to test if a graph belongs to a certain
class by checking if the graph verifies a set of properties. These properties can
test graphical properties (e.g. if arcs have arrows) or semantic properties (e.g.
if a finite automaton is deterministic). A few of these methods are predefined
in GUItar to check the most usual graphical properties of a graph. Access to
external libraries with FFCs can be used to test graph properties, broaden the
class range. Biconnectivity and planarity tests can be done, for example, using
FAgoo.

A friendly interface is available for graph classification (see Fig. 4). This
interface lists the graph properties and identifies the ones that are verified for
the current graph. The user can create his own classes by stating the properties
that the class must comply. It is also possible to export and import these class
definitions.

Fig. 4. GUItar’s interface for graph classification.



3.7 Semaphores

When editing a graph it can be useful to constraint the actions performed such
that the resulting graph does not leave a certain class. The GUItar Semaphore tool
assists this task by warning the user, or even restricting his actions. For example,
suppose that we have a deterministic finite automata (DFA) as the result of some
manipulation, and we want to edit it. We can enable the semaphore for DFAs to
ensure that the changes that we apply to the graph do not compromise the DFA
class definition.

New Semaphores can be created by extending the Semaphore base class and
declaring them in a XML configuration file. An image of a traffic sign is associated
to each semaphore which its light color represent the current state of the graph
evaluation. There is also an image of a small padlock that when closed means
that actions are restricted, i.e., do not allow actions that compromise the desired
graph properties.

3.8 Import and Export

GUItar store its graphs using GUItarXML [9], which is an XML format specially
designed for this application and based on GraphML [10]. GUItar also imports
and exports to other formats, converting from and to GUItarXML. Currently
the available exporting formats are GraphML, dot [11], Vaucanson-G [12] and
FAdo. It is also possible to import from all these formats with the exception of
Vaucanson-G. The Xport mechanism provides an easy way to add new export
and import methods to GUItar. These methods can be coded in Python or use
XSL transformations [13].

3.9 Object Library

Automata manipulation involves many operations with automata which result in
large sets of new automata. What Object Library offers is a way of tracing these
operations (methods) and all the objects involved. With this information it is
possible to maintain an history of these operations and know the origins of each
object, as well as recreate them from the original object. This information can
be used to enrich an automata database by adding complementary information
about the automata origins. Another feature is the possibility of create scripts
with these operations, which the user can save and then apply to other objects.
An interesting application for this tool is the creation of scripts with sequences
of graph drawing algorithms, to generate specific layouts that then could be
applied to several graphs.



4 FAgoo

Graph drawing is an active area of research with a lot of documented algorithms
for generic and specific graph types. However, there are not many specifically
designed for finite automata diagrams. To enhance the readability of each type
of diagrams, they are normally drawn according to a set of conventional rules.
A finite automata is better read if it flows from left to right. Initial states must,
thus, be placed in the left and final states tend to be pushed to the right. The
labels are another particularity of finite automata diagrams. Finite automata
labels can be very complex and large. A single arc can have a label with several
strings attached, each one being complex, like a regular expression. Another
constraint is the arcs and its labels placement. Arcs from the left to the right
are placed above the ones from the right to the left, with labels placed on their
left side. These constraints benefit the readability of these diagrams. Finally
the frequent occurrence of loops which is not so usual in another type graphs,
is another characteristic of finite automata diagrams. Generic graph drawing
algorithms usually discard loops during the layout process and arrange them in
a final stage, but loops are frequent in finite automata diagrams and can have
complex labels which hardens its positioning task.

4.1 Drawing Planar Graphs

When drawing a graph, edge crossing reduces its readability, thus, making this
an important aspect to consider [14]. A planar graph can be drawn on a plane
without edge crossing, in particular it can be drawn only using straight-line
edges. The algorithm implemented for planarity test is the one presented by
Hopcroft and Tarjan [15], which has a linear time execution and can be extended
to either construct a planar embedding (if the graph is planar) or determine the
Kuratowski subgraph (if the graph is non-planar) [16].

The implemented straight-line drawing algorithm assumes that the input
graph is triangulated, i.e., every face has exactly three vertices. To triangulate
a planar graph while minimizing the maximum degree, Kant presented a algo-
rithm that is a good approximation of the optimal solution, but this algorithm
takes as input a triconnected graph. Since FAgoo currently does not implements
a triconectivity augmentation algorithm, the canonical triangulation algorithm
presented by Kant [17] was implemented. This algorithm only requires the input
graph to be biconnected and computes a canonical ordering while triangulating
a planar graph. This algorithm was slightly modified to compute a left most
canonical (lmc) ordering. This ordering is a generalization of the canonical or-
dering of de Fraysseix et al. [18] and it is needed for the straight-line drawing
algorithm.

Most graph drawing algorithms require that the input graph to be bicon-
nected, i.e., a connected graph that remains connected after the removal of any
vertex. FAgoo implements algorithms to test a graph biconnectivity, that with
a few modifications computes the graph biconnectivity tree (BC-Tree), and the
biconnectivity augmentation. There are two types of nodes in a BC-Tree, the



B-Nodes and the C-Nodes. The B-Nodes represent the maximal biconnected
subgraphs and the C-Nodes represent the cutvertices. There is an edge between
a C-Node and a B-Node if that C-Node belongs to the biconnected component
represented by the B-Node. The biconnectivity augmentation algorithm takes a
planar embedding of each biconnected component of the graph and its BC-Tree
to biconnect the graph while preserving its planarity. This is a simple linear time
algorithm [17], which is an adaptation of the one presented by Read [19].

4.2 Drawing Non-Planar Graphs

Finding an embedding for a non-planar graph that minimizes its edge crossing
is NP-hard [20]. One possible approach for non-planar graphs is to remove arcs
from its Kuratowski subgraph, that can be found in linear time, until the graph
is planar. Finding this minimal set of arcs is the hard task. Another approach for
non-planar graphs is to find the maximum planar subgraph. Again, this problem
is NP-hard [21]. These problems have been researched over the last 20 years and
still do not have good solutions for generic graphs. As future work we intend to
develop these approaches and implement them in FAgoo.

4.3 Subgraph Drawings

Some times it is better to visualize a portion of the graph instead of the whole
graph. One way to do this in a straight-line drawing is to do a two step tri-
angulation. The selected subgraph is first triangulated and then the rest of the
graph is added and triangulated. This makes the selected subgraph to be drawn
disregarding the rest of the graph. But this may not always be possible because
of planarity constraints. In these cases another technique can be used to pop the
subgraph from the whole graph. The subgraph is separately drawn and softer
color tones are used in the rest of the graph.

4.4 Multi-arcs

As mentioned before FAgoo specially focuses in finite automata diagrams. These
type of graphs often use multi-arcs in their representation. However general
graph drawing algorithms do not support multi-graphs and simplify them in a
early stage. This may have bad repercussions during the recovery the original
graph. When the original graph is recovered multiple arcs may override other
nodes or even arcs. A way to overcome this problem is to replace every multiple
arc by a new node with arcs to the original arc source and target. The Fig. 5
illustrates this step. Then when recovering the original graph the created nodes
are used as control points for the arcs splines. This way no multiple arcs will
override other nodes or arcs. The graph planarity is also obviously not affected.



Fig. 5. Multi-arcs step illustration.

4.5 Force Directed Model

An interesting approach to the automatic graph drawing problem as been the
simulation of forces. Increasingly force directed algorithms have been adopted by
graph drawing libraries. The model used in FAgoo replaces the arcs with springs
and the nodes with spheres. Between these spheres we introduce a repulsion force.
The spheres are spread in a plane and the simulation stops when a equilibrium
state is reached.

Reading directionality is achieved by fixing the initial states to the plane that
is then lent to the right and gravity does the rest. This cause the other states to
fall into to the right side of the initial states.

A graphical interface for this model is being developed. The idea of this in-
terface is to allow the user to interact in real time with the ongoing simulation.
The user can pause and resume the simulation to manually adjusting some com-
ponents of the graph. For example, the user may want to fix the position of one
or more nodes during a simulation or set specific strength values for some nodes
and springs.

5 Conclusion

In this paper we presented GUItar as a tool for the visualization and editing of
finite automata diagrams that combined with FAdo provides a potential graphical
environment for automaton manipulation. We also presented the FFC mechanism
that allows GUItar’s expansion broaden the application scope to other type of
graphs. We also presented FAgoo: a graph drawing library specialized in finite
automata diagrams. FAgoo is integrated with GUItar using the FFC mechanism.
Both GUItar and FAgoo are ongoing projects. FAgoo still needs improvements in
some of the presented algorithms as well the development and implementation
of many others.

References

1. FAdo Project: FAdo: tools for formal languages manipulation.
http://www.ncc.up.pt/FAdo (Access date:12.06.2010)

2. aiSee Graph Layout Software: aiSee. http://www.aisee.com/ (Access
date:12.06.2010)



3. yWorks GmbH: yWorks. http://www.yworks.com/ (Access date:12.06.2010)
4. Chair of Algorithm Engineering, Juniorprofessorship of Algorithm Engineering,

C.o.P.J., oreas GmbH: Open Graph Drawing Framework.
http://www.ogdf.net/doku.php (Access date:12.06.2010)

5. Labs, A.R.: Graphviz - Graph Visualization Software.
http://www.graphviz.org/ (Access date:12.06.2010)

6. Rodger, S.H., Finley, T.W.: JFLAP: An interactive formal languages and automata
package. Jones & Bartlett Publishers (2006)

7. Smart, J., Roebling, R., Zeitlin, V., Dunn, R.: wxWidgets 2.6.3: A portable C++
and Python GUI toolkit. (2006)

8. WWW Consortium: XML specification WWW page. http://www.w3.org/TR/xml
(Access date:12.06.2010)

9. Alves, J., Moreira, N., Reis, R.: XML description for automata manipulations. In
Simões, A., Cruz, D., Ramalho, J.C., eds.: Actas XATA 2010, XML: aplicações e
tecnologias associadas, ESEIG, Vila do Conde (2010) 77–88

10. GraphML Working Group: The GraphML file format.
http://graphml.graphdrawing.org (Access date:12.06.2010)

11. Graph Visualization Software: The dot language. http://www.graphviz.org (Ac-
cess date:12.06.2010)

12. Lombardy, S., Sakarovitch, J.: Vaucanson-G.
http://igm.univ-mlv.fr/~lombardy (Access date:1.12.2009)

13. WWW Consortium: XSLT specification WWW page.
http://www.w3.org/TR/xslt (Access date:12.06.2010)

14. Purchase, H.C., Cohen, R.F., James, M.I.: Validating graph drawing aesthetics.
In: Graph Drawing. (1995) 435–446

15. Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4) (1974)
549–568

16. Mehlhorn, K., Mutzel, P., Naher, S.: An implementation of the Hopcroft and
Tarjan planarity test and embedding algorithm. Technical report, Research Report
MPI-I-93-151, Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 (1993)

17. Kant, G.: Algorithms for Drawing Planar Graphs. PhD thesis, Universiteit Utrecht,
Faculteit Wiskunde en Informatica (1993)

18. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1) (1990) 41–51

19. Read, R.C.: A new method for drawing a planar graph given the cyclic order of
the edges at each vertex. Congressus Numerantium (56) (1987) 31–44

20. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic
Discrete Methods (4(3)) (1983) 312–316

21. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness (1979)


