
Interactive Manipulation of Regular Objects with FAdo ∗

Nelma Moreira
DCC-FC& LIACC, Universidade do Porto

R. do Campo Alegre 823, 4150 Porto, Portugal

nam@ncc.up.pt

Rogério Reis
DCC-FC& LIACC, Universidade do Porto

R. do Campo Alegre 823, 4150 Porto, Portugal

rvr@ncc.up.pt

ABSTRACT
FAdo1 is an ongoing project which aims the development
of an interactive environment for symbolic manipulation of
formal languages. In this paper we focus in the description
of interactive tools for teaching and assisting research on
regular languages, and in particular finite automata and reg-
ular expressions. Those tools implement most standard au-
tomata operations, conversion between automata and regu-
lar expressions, and word recognition. We illustrate their use
in training and automatic assessment. Finally we present a
graphical environment for editing and interactive visualisa-
tion.

Categories and Subject Descriptors
F.1.1 [Computation by abstract devices]: Models of
ComputationAutomata; F.4.3 [Formal Languages]: Cla-
sses defined by grammars or automata; K.3.1 [Computer
Uses in Education]: Computer-assisted instruction; K.3.2
[Computer and Information Science Education]: Com-
puter science education

General Terms
Experimentation,Languages,Theory

Keywords
Automata theory, Regular languages, Interactive visual tools,
e-learning

1. INTRODUCTION
Regular languages are fundamental computer science struc-

tures and efficient software tools are available for their repre-
sentation and manipulation. But for experimenting, study-

∗Work partially funded by Fundação para a Ciência e Tec-
nologia (FCT) and Program POSI.
1FAdo is an acronym of Finite Automata devoted oracle
and also a genre of portuguese popular music; the project
page is http//www.ncc.up.pt/fado.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’05, June 27–29, 2005, Monte de Caparica, Portugal.
Copyright 2005 ACM 1-59593-024-8/05/0006 ...$5.00.

ing and teaching their formal and computational models it
is useful to have tools for manipulating them as first-class
objects. Automata theory and formal languages courses are
mathematical in essence, and traditionally are taught with-
out computers. Well known advantages of the use of com-
puters in education are: interactive manipulation, concepts
visualisation and feedback to the students. We believe that
an automata theory course can benefit from this advantages,
because:

• most of the mathematical concepts can be visualised
graphically. Interactivity can help in the consolida-
tion of the concepts and an easier grasp of the formal
notation.

• most of the theorem proofs are algorithmic and can be
interactively constructed

• automatic correction of exercises provides immediate
feedback to the students, giving counter-examples and
pointing out the errors, thus allowing for a quicker
understanding of the concepts.

In this paper, we describe a collection of tools implemented
in Python [11] that are a first step towards an interactive
environment to teach and experiment with regular and other
formal languages. The use of Python, a high-level object-
oriented language with high-level data types and dynamic
typing, allows us to have a system which is modular, exten-
sible, clear, easy to implement, and portable. Python also
provides several graphical and Web based libraries. Com-
pared with Java language, it also has the advantage of an
elegant syntax, and it is easy to learn, which makes it ideal
for a first taught programming language.

In the next section, we describe the implementation of the
core tools for regular languages symbolic manipulation. For
more technical aspects, some familiarity with the Python
language will be assumed. In Section 3 we show how FAdo
can be used to solve and correct some automata theory prob-
lems. Section 4 briefly introduces a graphical environment
and some interactive visualisations. Some related works are
discussed in Section 5. Ongoing work is summarised in Sec-
tion 6.

2. MANIPULATING REGULAR LANGUA-
GES

We assume basic knowledge of formal languages and au-
tomata theory [7]. The set of regular languages over an
alphabet Σ contains ∅, {ε} where ε is the empty string,

{a} for all a ∈ Σ, and is closed under union, concatena-
tion and Kleene closure. Regular languages can be repre-
sented by regular expressions (regexp) or finite automata
(FA), among other formalisms. Finite automata can be de-
terministic (DFA) or non-deterministic (NDFA). All three no-
tations can represent the same set of languages. In FAdo,
we can manipulate each of these representations and convert
between them, as shown in Figure 1.

MinimalDFA

NDFA

regexp

DFA

Figure 1: Conversions between regular language
representations

2.1 Finite Automata
Formally a deterministic finite automaton is specified by

a 5-tuple (S, Σ, δ, s0, F), where S is the set of states, Σ is the
input alphabet, δ is the transition function δ : S × Σ → S,
s0 the initial state, and F ⊆ S is the set of final states. In
a nondeterministic automata δ is a function from S × Σ to
the set of subsets of S (P(S)), δ : S × Σ → P(S).

The class FA implements the basic structure of finite au-
tomata shared by deterministic and non-deterministic ones.
This class also provides methods for manipulating these
structures: add, set, delete, test, etc. A list of its main at-
tributes and methods can be found in Table 3, Appendix A.

2.1.1 Nondeterministic Automata
The class NDFA inherits from the class FA, and provides

methods to manipulate a NDFA. In the literature, there is
a distinction between NDFA with and without ε-transitions
(NDFA and ε-NDFA). In FAdo, we allowed all NDFA’s to be ε-
NDFA. But we provide methods to test for ε-transitions and
to convert an ε-NDFA to a NDFA. See Table 4, Appendix A,
for more details.

2.1.2 Deterministic Automata
The class DFA inherits from the class FA, and provides

methods to manipulate a DFA. Mathematically DFA’s are
richer than NDFA’s. In the next paragraphs we analyse some
of those features.

A Canonical Form for DFA’s.
It is possible to test if two DFA’s are equivalent, and given a
DFA, to find an equivalent DFA that has a minimum number
of states. The method Minimal() implements DFA minimisa-
tion using the table-filling algorithm [7]. For testing equiv-
alence of two DFA’s, we can minimise the two automata and
verify if the two minimised DFA’s are isomorphic (i.e are the
same up to renaming of states). For verify isomorphism we
developed a canonical form for DFA’s. Given a DFA we can
obtain a unique string that represents it. Let Σ be ordered
(p.e, lexicographically), the set of states is reordered in the
following manner:the initial state is the first state; follow-
ing Σ order, visit the states reachable from initial state in
one transition, and if a state was not yet visited, give it the
next number; repeat the last step for the second state, third
state, . . . until the number of the current state is the total

number of states in the new order. For each state, a list of
the states visited from it is made and a list of these lists
is constructed. The list of final states is appended to that
list. The result is a canonical form. If a DFA is minimal, the
alphabet and its canonical form uniquely represent a regular
language. For test of equivalence it is only needed to check
whether the alphabets and the canonical forms are the same,
thus having linear costing time.

Other DFA Operations.
Regular languages are also closed under other operations,

such as intersection, complement, difference of two languages
and reverse. In the core implementation we choose to de-
fine, in the class DFA, those operations which are closed for
DFA’s (we excluded, concatenation and Kleene closure). See
Table 5, Appendix A, for more details.

Producing a Witness of the Difference of two DFA’s.
Sometimes it is useful to generate a word recognisable by an
automaton. This is the case in correcting exercises where
we have the solution and a wrong answer from a student.
Instead of a simple statement that an answer is wrong, we
can exhibit a word that belongs to the language of the solu-
tion, but not to the language of the answer (or vice-versa).
A witness of a DFA, can be obtained by finding a path from
the initial state to some final state. If no witness is found,
the DFA accepts the empty language. Given A and B two
DFA’s, if ¬A∩B or A∩¬B have a witness then A and B are not
equivalent. If both DFA’s accept the empty language, A and
B are equivalent. This test is implemented by the method
witnessDiff().

2.1.3 Converting NDFA’s to DFA’s
The equivalence of nondeterministic and deterministic au-

tomata is one of the most important facts about regular
languages. Trivially a DFA can be seen as a NDFA. The con-
version of a NDFA to a DFA that describes the same language,
can be achieved by subset construction [7]. This method is
usually taught in automata theory courses, though its illus-
tration and animation are very useful. It is implemented by
the module function NDFA2DFA().

2.1.4 File Format for I/O
We have a very simple format to read and write finite au-

tomata definitions. Each file can contain several definitions
and must obey the following specifications. An # begins a
comment. An @DFA or @NDFA begins a new automata (and
determines its type). It must be followed by the list of the
final states separated by blanks. Each following line repre-
sents a transition. It is a triple that consists of the source
state (name), an input symbol, and the target state (name).
Each of the fields are separated by a blank. The name of a
state can be any string (except #). Finally, the source state
of the first transition is the name of the initial state.

Besides the methods for reading and writing in this native
format, we also have some export/import filters for standard
file formats, e.g., an extension of GraphML [3] and Dot Lan-
guage [4].

2.2 Regular Expressions
A regular expression can be a symbol of the alphabet, the

empty set (∅), the empty string (ε) or the concatenation or
the union (+) or the Kleene star (?) of a regular expression.

The class regexp implements the three base cases and the

complex cases are the subclasses concat, disj and star,
respectively. The constant Epsilon represents the empty
string and the constant Emptyset represents the empty set.
See Table 1 and Table 2, Appendix A, for more details.

Equivalence and simplification of regular expressions is a
major topic of research in automata theory. Minimal equiv-
alent expressions are not unique and no canonical form is
known. Although, complete axiomatizations can be used to
test equivalence and perform simplifications, we currently
implemented very naive simplification rules and conversion
of regular expressions to DFA’s (see Section 2.3). Neverthe-
less, one of our future goals is to implement rewriting sys-
tems to perform regular expressions simplifications.

2.3 Converting Finite Automata to Regular
Expressions

The standard conversion from DFA’s to regular expres-
sions, is based on successively constructing regular expres-

sions r
(k)
ij , that represent the language recognised between

state i and state j, without going through a state number
higher than k [7]. This algorithm is implemented by the
method regexp() of the class DFA. This algorithm is mathe-
matically very instructive, but it is highly inefficient. So we
also implemented a less redundant method of elimination
of states [7]. This algorithm is also easily animated, and,
in the FAdo graphical interface it is possible to choose, in
each step, which state to eliminate.

2.4 Converting Regular Expressions to Finite
Automata

The basic conversion is from regular expressions to ε-
NDFA’s using the Thompson’s construction [7]. The idea
is to recursively build an ε-NDFA for each type of regexp.
Each regexp subclass has a method ndfa() that allows to
construct an NDFA for its type. Due to its applications in
pattern recognition, this conversion is much studied in the
literature and many algorithms are known. In particular,
the Glushkov construction [16], is currently implemented in
FAdo in a separated module.

3. USING FAdo

In this section we illustrate how FAdo can be used for
solving (and correcting) some typical exercises for a first
course in automata theory. In Python interactive mode, we
must first import the package:

>>> from dfa import *

Example 1. Convert to a regular expression the follow-

ing NDFA:
@NDFA 2

0 1 1

1 1 2

2 0 1

2 0 2

2 0 0
2

0 1

0

0 1
0

1

>>> n=readFromFile("examples/e1.fa")[0]

>>> d=NFDA2DFA(n)

>>> print d.regexp().simplify()

((11)+(11))+(1100*1((0+(10))0*1)*(1+1))

Example 2. Convert the regular expression (0+1)?(012)
to a NDFA. Obtain an equivalent minimal DFA and the DFA

canonical form.

>>> a=str2regexp("(0+1)*(012)")

>>> d=NDFA2DFA(a.ndfa())

>>> d.Minimal()

>>> saveToFile("e2.fa",d)

>>> d.uniqueStr()

[[1,0,2],[1,3,2],[2,2,2],[1,0,4],[2,2,2],[4]]

@DFA 3

0 1 0

0 0 1

0 2 4

1 1 2

1 0 1

1 2 4

2 1 0

2 0 1

2 2 3

3 1 4

3 0 4

3 2 4

4 1 4

4 0 4

4 2 4

Example 3. Check whether the following two regular ex-

pressions are equivalent (01 + 0)? and 0(10 + 0)?.

>>> a=str2regexp("(01+0)*")

>>> b=str2regexp("0(10+0)*")

>>> da=NDFA2DFA(a.ndfa())

>>> db=NDFA2DFA(b.ndfa())

>>> da.witnessDiff(db)

@

The two regular expressions are not equivalent: the first one

describes a language that contains the empty string but not

the second one.

In the last example we could have defined a method that
given two (or more) regular expressions would determine if
they were equivalent. The possibility of constructing new
methods from those defined in the package is one of the
advantages of FAdo. Students can use the FAdo directly
for training. For automatic assessment, teachers can use a
Web system, based in simple CGIs or integrated in a Web
learning environment, like Ganesh [10].

4. INTERACTIVE VISUALISATION
Currently the FAdo graphical environment allows the

editing and visualisation of diagrams representing finite au-
tomata and provides an user interface to some conversion
algorithms and string recognition. A diagram can be con-
structed from a finite automata definition, or created (or
transformed) using the edit toolbox (at the right side of the
interface). Figure 2 shows a diagram from the minimal DFA
of Example 2 and its execution with string “11012”. But
more work must be done, improving the visualisation of the
diagrams and the animation of the algorithms.

5. RELATED WORK
There are several projects whose goal is the manipula-

tion of automata theory objects. Until 2000 few projects
included a graphical interface. That was the case of the
Grail+ project [13]. Grail+ operations are accessible either
as individual programs (used as shell filters) or through a C++

Figure 2: FAdo graphical interface

class library. In the Grail’s homepage [2], can be found a
set of links to other automata theory software which includes
AUTOMATE [5], AMoRE [9], Fire Lite [15], etc. In the last few
years several Java applets for finite automata processing
became available on-line, but normally their functionalities
are very limited. JFLAP is one of the projects that shares
most of our goals. Its main motivation is teaching and the
current emphasis is in animation and interactive visualisa-
tion of automata theory concepts [8, 14]. It supports, in par-
ticular, drawing and execution of finite-state machines, con-
versions between deterministic and non-deterministic, and
animated conversions from and to regular expressions. Com-
pared with JFLAP one of the advantages of FAdo is its mod-
ular open source API and the possibility of constructing new
methods. Gaminal is a project for the development of learn-
ing software for compiler design [6]. One of its components
is an environment for processing finite automata. In partic-
ular, an electronic book that illustrates many of the regular
languages manipulations, is available online [1]. Some inter-
esting considerations about algorithms animations are found
in [12].

6. FUTURE WORK
There are several different lines of future work. Because

of space limitations we just highlight some of them. Algo-
rithm animation is easily achieved by a step by step exe-
cution. However, this is not enough as a tool for helping
understanding algorithms. We plan to obtain formal de-
scriptions of the main concepts that are essential for a proof
or an algorithm and to implement a specification language
for a correct interactive manipulation. Besides extending
the current API, theoretical topics as regular expressions
simplification are being addressed. An integrated Web envi-
ronment for publishing exercises and automatic assessment

will be also available, building on previous experience of the
members of the project team.

7. ACKNOWLEDGEMENTS
We thank the referees for their suggestions that helped to

improve this paper.

8. REFERENCES
[1] Ganifa, generating finite automata.

http://rw4.cs.uni-sb.de/~ganimal/GANIFA/,2004.

[2] Links to finite-state machines software.
http://www.csd.uwo.ca/research/grail/,2004.

[3] GraphML file format.
http://graphml.graphdrawing.org/, 2002.

[4] GraphViz.
http://www.graphviz.org/, 2004.

[5] J. M. Champarnaud and G. Hanset. AUTOMATE, a
computing package for automata and finite
semigroups. Journal of Symbolic Computation,
12:197–220, 1991.

[6] S. Diehl and T. Kunze. Visualizing principles of
abstract machines by generating interactive
animations. Future Generation Computer Systems,
16(7):831–839, 2000.

[7] J. E. Hopcroft, R. Motwani, and J. D. Ullman.
Introduction to Automata Theory, Languages and

Computation. Addison Wesley, 2nd edition, 2000.

[8] T. Hung and S. H. Rodger. Increasing visualization
and interaction in the automata theory course.
SIGCSEB: SIGCSE Bulletin, 32, 2000.

[9] V. Jansen, A. Potthoff, W. Thomas, and U. Wermuth.
A short guide to the AMoRE system. Aachener
informatik-berichte (90) 02, Lehrstuhl fur Informatik
II, Universitat Aachen, January 1990.

[10] J. P. Leal and N. Moreira. Using matching for
automatic assessment in computer science learning
environments. In F. Restivo and L. Ribeiro, editors,
Web-Based Lerning Environments, June 2000.

[11] M. Lutz. Programming Python. O’Reilly, 1996.

[12] H. W. P. M. Ayala-Rincón, A. da Fonseca and
J. de Siqueira. A framework to visualize equivalences
between computational models of regular languages.
Information Processing Letters, 84(1):5–16, 2002.

[13] D. Raymond and D. Wood. Grail: A C++ library for
automata and expressions. J.Symbolic Computation,
11, 1995.

[14] T. F. Ryan Cavalcante and S. H. Rodger. A visual
and interactive automata theory course with jflap 4.0.
In Thirty-fifth SIGCSE Technical Symposium on

Computer Science Education, pages 140–144, 2004.

[15] B. W. Watson. The FIRE Lite: FAs and REs in C++.
In Proceedings of the First Workshop on Implementing

Automata, pages 167–188, 1996.

[16] S. Yu. Regular languages. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages,
volume 1. Springer Verlag, 1997.

APPENDIX

A. PACKAGE DESCRIPTION

Constants Printable Description
Epsilon @ empty string and reg-

ular expression ε

EmptySet {} empty set and regu-
lar expression ∅

Table 1: Constants

Class regexp

Class disj, inherits from regexp

Class star, inherits from regexp

Class concat, inherits from regexp

Method/Attribute Description
__cmp__() verifies if the two regexp are

equivalent
ndfa() NDFA equivalent to regexp

type() returns the regexp type or
value

empty() tests if it is ∅
epsilon() tests if it is ε

simplify() applies simplification rules

Table 2: Classes for regular expressions

Class FA

Method/Attribute Description
States a list of states,
Sigma a set of symbols
Initial the initial state
Final the set of final states
delta a nested dictionary that as-

sociates a state to a transi-
tion

addstate() adds a final state
validatestate() checks if a state pertains to

a FA

setinitial() sets the initial state
setfinal() sets a list of final states
setsigma() defines the alphabet
addsigma() adds a new symbol to the al-

phabet
completep() checks if it is a complete FA

complete() transforms in a complete FA

compact() eliminates unused states
__len__() returns the number of states

Table 3: Class for finite automata

Class NDFA, inherits from FA

Method/Attribute Description
addTransition() adds a new transition
EpsilonList() ε-closure of a state
evalWord() tests if the NDFA recognises a

word
evalSymbol() the set of the next possible

states consuming a symbol
regexp() regexp for current NDFA

Table 4: Class for nondeterministic finite automata

Class DFA, inherits from FA

Method/Attribute Description
addTransition() adds a new transition
evalWord() tests if the DFA recognises a

word
evalSymbol() the set of the next possible

states consuming a symbol
Minimal() minimises the DFA

__cmp__() verifies if the two automata
are equivalent

uniqueStr() unique string that gives us a
DFA canonical form

__invert__() DFA that recognises the com-
plementary language

__or__() DFA that recognises the
union of two languages

__and__() DFA that recognises the in-
tersection of two languages

reverse() DFA that recognises the re-
versal language

witness() generates a word recognis-
able by the automata; or
raises an exception

witnessDiff witness for the difference of
two DFA’s or an exception is
raised if theiy are equivalent

regexp() regexp for current DFA

Table 5: Class for deterministic finite automata

Method/Attribute Description
NDFA2DFA() Returns a DFA equivalent

to a NDFA given as argu-
ment. The method proceeds
by subset construction.

isFA() tests if the argument is a FA

isDFA() tests if the argument is a DFA

isNDFA() tests if the argument is a
NDFA

readFromFile() reads finite automata defini-
tions from a file and returns
a list of DFA’s and/or NDFA’s

saveToFile() saves a finite automaton def-
inition to a file

str2regexp() parses a string and returns a
regexp

Table 6: Module methods

