
For submission to the Journal of Automata, Languages and Combinatorics
Created on December 16, 2017

SYMBOLIC MANIPULATION OF CODE PROPERTIES

Stavros Konstantinidis(A,C) Casey Meijer(A) Nelma Moreira(B,D)

Rogério Reis(B,D)

(A)Department of Mathematics and Computing Science
Saint Mary’s University, 923 Robie Str.
Halifax, Nova Scotia, B3H 3C3, Canada

s.konstantinidis@smu.ca (S. Konstantinidis)
dylanyoungmeijer@gmail.com (C. Meijer)

(B)CMUP & DCC, Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 4169-007 Porto, Portugal

nam@dcc.fc.up.pt (N. Moreira)
rvr@dcc.fc.up.pt (R. Reis)

ABSTRACT
The FAdo system is a symbolic manipulator of formal languages objects, implemented
in Python. In this work, we extend its capabilities by implementing methods to ma-
nipulate transducers and we go one level higher than existing formal language systems
and implement methods to manipulate objects representing classes of independent lan-
guages (widely known as code properties). Our methods allow users to define their own
code properties and combine them between themselves or with fixed properties such as
prefix codes, suffix codes, error detecting codes, etc. The satisfaction and maximality
decision questions are solvable for any of the definable properties. The new online
system LaSer allows to query about code properties and obtain the answer in a batch
mode. Our work is founded on independence theory as well as the theory of rational
relations and transducers, and contributes with improved algorithms on these objects.

Keywords: algorithms, automata, codes, FAdo, implementation, independence,
LaSer, maximal, regular languages, transducers, program generation

1. Introduction

Several programming platforms exist providing methods to transform and manipulate
various formal language objects: Grail/Grail+ [28,35], Vaucanson [6,36], FAdo [2,10],
OpenFST [20], JFLAP [20]. Some of these systems allow one to manipulate such ob-
jects within simple script environments. Grail for example, one of the oldest systems,
provides a set of filters manipulating automata and regular expressions on a UNIX

(C)Research supported by NSERC.
(D)Research supported by CMUP (UID/MAT/00144/2013), FCT through FEDER and PT2020.

2 S. Konstantinidis, C. Meijer, N. Moreira, R. Reis

command shell. Similarly, FAdo provides a set of methods manipulating such ob-
jects on a Python shell [27]. Software environments for symbolic manipulation of
formal languages are widely recognized as important tools for theoretical and applied
research. They allow easy prototyping of new algorithms, testing algorithm perfor-
mance with large datasets, corroborate or disprove descriptional complexity bounds
for manipulations of formal systems representations, etc. A typical example is, for
a given operation on regular languages, to find an upper bound for the number of
states of a minimal deterministic finite automaton (DFA) for the language that results
from the operation, as a function of the number of states of the minimal DFAs of the
operands. Due to the combinatorial nature of formal languages representations, this
kind of calculations are almost impossible without computational aid.

In this work, we extend the capabilities of FAdo and LaSer [9,18] by implementing
transducer methods and by going to the higher level of implementing objects repre-
senting classes of independent formal languages, also known as code properties. More
specifically, the contributions of the present paper are as follows.

(I) Implementation of transducer objects and associated methods: rational
transducer operations, product constructions between transducers and between
transducers and automata, as well as a transducer functionality test. (II) Def-
initions of objects representing code properties and methods for their manip-
ulation, which to our knowledge is a new development in software related to
formal language objects. (III) Enhancement and implementation of decision
algorithms for code properties of regular languages. In particular, many such
algorithms have been implemented and enhanced so as to provide witnesses
(counterexamples) in case of a negative answer, for example, when the given
regular language does not satisfy the property, or is not maximal with respect
to the property. To our knowledge such implementations are not openly avail-
able. (IV) A mathematical definition of what it means to simulate (and hence
implement) a hierarchy of properties and the proof that there is no complete
simulation of the set of error-detecting properties. (V) Generation of executable
Python code based on the user’s requested question about a given code property.

Our work is founded on dependence theory [15, 34] as well as the theory of rational
relations and transducers [4, 30].

The paper is organized as follows. Section 2 contains basic terminology about various
formal language concepts as well as a few examples of manipulating FAdo automata.
Section 3 describes our implementation of transducer objects, rational transducer
operations, and product constructions. Section 4 describes an existing decision al-
gorithm for transducer functionality, and then our enhancement so as to provide
witnesses when the transducer in question is not functional. Section 5 describes our
implementation of code property objects and their manipulation, as well as a math-
ematical approach to defining simulations of infinite sets of properties and proving
that a simulation of all error-detecting properties exists, but no complete such sim-
ulation is possible. Section 6 continues on code property methods by describing our
implementation of the satisfaction and maximality methods. Again, we describe our
enhancements so as to provide witness version of these questions. Section 7 concerns

Symbolic Manipulation of Code Properties 3

the unique decodability (or decipherability) property and its satisfaction and max-
imality algorithms. Section 8 discusses briefly the new version of LaSer. Section 9
contains a few concluding remarks including directions for future research.

2. Terminology and Background

Sets, alphabets, words, languages. We write N,N0 for the sets of natural numbers
(not including 0) and non-negative integers, respectively. If S is a set, then |S| denotes
the cardinality of S, and 2S denotes the set of all subsets of S. An alphabet is a finite
nonempty set of symbols. In this paper, we write Σ,∆ for any arbitrary alphabets.
The set of all words, or strings, over an alphabet Σ is written as Σ∗, which includes
the empty word ε. A language (over Σ) is any set of words. Let L be a language and
let u, v, w, x be any words. If w ∈ L then we say that w is an L-word. When there
is no risk of confusion, we write a singleton language {w} simply as w. For example,
L∪w and v∪w mean L∪{w} and {v}∪{w}, respectively. We use standard operations
and notation on words and languages [13,22,29,38]. If w is of the form uv then u is a
prefix and v is a suffix of w. If w is of the form uxv then x is an infix of w. If u 6= w
then u is called a proper prefix of w—the definitions of proper suffix and proper infix
are similar.

Codes, properties, independent languages, maximality. A property (over Σ)
is any set P of languages. If L is in P then we say that L satisfies P. A code property,
or independence, [15], is a property P for which there is n ∈ N ∪ {ℵ0} such that

L ∈ P, if and only if L′ ∈ P, for all L′ ⊆ L with 0 < |L′| < n,

that is, L satisfies P exactly when all nonempty subsets of L with less than n elements
satisfy P. In this case, we also say that P is an n-independence. In the rest of the
paper we only consider properties P that are code properties. A language L ∈ P is
called P-maximal, or a maximal P code, if L ∪ w /∈ P for any word w /∈ L. Every
language satisfying P is included in some P-maximal language [15]. To our knowledge,
all known code related properties in the literature [5, 7, 9, 11, 15, 25, 33, 40] are code
properties as defined here. For example, consider the ‘prefix code’ property: L is a
prefix code if no word in L is a proper prefix of a word in L. This is a code property
with n = 3. As we shall see further below the focus of this work is on 3-independence
properties that can also be viewed as independent with respect to a binary relation
in the sense of [34].

Automata and regular languages [30, 39]. A nondeterministic finite automa-
ton with empty transitions, for short automaton or ε-NFA, is a quintuple a =
(Q,Σ, T, I, F) such that Q is the set of states, Σ is an alphabet, I, F ⊆ Q are the
sets of start (or initial) states and final states, respectively, and T ⊆ Q× (Σ∪ ε)×Q
is the finite set of transitions. If (p, x, q) is a transition, then x is the label of the
transition, and we say that p has an outgoing transition (with label x). A path of a is
a finite sequence (p0, x1, p1, . . . , x`, p`), for some ` ∈ N0, such that each (pi−1, xi, pi) is
a transition of a. The word x1 · · ·x` is called the label of the path. The path is called

4 S. Konstantinidis, C. Meijer, N. Moreira, R. Reis

accepting if p0 is a start state and p` is a final state. The language accepted by a,
denoted as L(a), is the set of labels of all the accepting paths of a. The automaton a
is called trim, if every state appears in some accepting path of a. It is called an NFA,
if no transition label is empty, that is, T ⊆ Q × Σ × Q. It is called a deterministic
finite automaton, or DFA for short, if I is a singleton set and there is no state p
having two outgoing transitions with equal labels. The size |a| of the automaton a
is |Q|+ |T |. The automaton aε results when we add ε-loops in a, that is, transitions
(p, ε, p) for all states p ∈ Q. Then L(a) = L(aε).

Transducers and (word) relations [4, 30, 39]. A (word) relation over Σ and ∆
is a subset of Σ∗ ×∆∗, that is, a set of pairs (x, y) of words over the two alphabets
(respectively). The inverse of a relation ρ, denoted as ρ−1, is the relation {(y, x) |
(x, y) ∈ ρ}. A transducer is a sextuple t = (Q,Σ,∆, T, I, F) such that Q, I, F are
exactly the same as those in ε-NFAs, Σ is now called the input alphabet, ∆ is the
output alphabet, and T ⊆ Q × Σ∗ × ∆∗ × Q is the finite set of transitions. We
write (p, x/y, q) for a transition—the label (x/y) consists of the input label x and the
output label y. The concepts of path, accepting path, and trim transducer are similar
to those in ε-NFAs. In particular, the label of a path (p0, x1/y1, p1, . . . , x`/y`, p`) is
the pair (x1 · · ·x`, y1 · · · y`) made by concatenating the input labels, and the output
labels occurring in the path. The relation realized by the transducer t, denoted as
R(t), is the set of labels of all the accepting paths of t. We write t(x) for the set of
possible outputs of t on input x, that is, y ∈ t(x) iff (x, y) ∈ R(t). For any language
L, t(L) is the language ∪x∈Lt(x). The domain of t is the set of all words w such that
t(w) 6= ∅. The inverse of t, denoted as t−1, is the transducer that results from t by
simply switching the input with the output alphabet of t and also switching the input
with the output label in each transition of t. Then, t−1 realizes the relation

(
R(t)

)−1.
The transducer t is said to be in standard form, if each transition (p, x/y, q) is such
that x ∈ (Σ ∪ ε) and y ∈ (∆ ∪ ε). It is in normal form if it is in standard form and
exactly one of x and y is equal to ε. We note that every transducer is effectively
equivalent to one (realizing the same relation, that is) in standard form and one in
normal form. As in the case of automata, the transducer tε results when we add
ε-loops in t, that is, transitions (p, ε/ε, p) for all states p ∈ Q. Then, R(t) = R(tε).
The size of a transition (p, x/y, q) is the number 1 + |x| + |y|. The size |t| of the
transducer t is the sum of the number of states and sizes of transitions in T . If s
and t are transducers, then there is a transducer s ∨ t of size O(|s| + |t|) realizing
R(s) ∪ R(t).

Automata and finite languages in FAdo [10]. FAdo contains the modules fa
for automata, fl for finite languages, and fio for input/output of formal language
objects, which can be imported in a standard Python manner. The FAdo object
classes FL, DFA and NFA manipulate finite languages, DFAs and ε-NFAs, respectively.

Example 1. The following code uses the class name FL of the module fl to define
the finite language L from the given list of strings, and then defines an NFA object a
accepting the language L, which is {a, ab, aab}.

import FAdo.fl as fl

Symbolic Manipulation of Code Properties 5

import FAdo.fio as fio
from FAdo.fa import * # import all fa methods for readability
lst = [’a’, ’ab’, ’aab’]
L = fl.FL(lst)
a = L.toNFA()
st = ’@NFA 1 * 0\n0 a 0\n0 b 1\n’
b = fio.readOneFromString(st)

The second last line defines a string st containing the description of an automaton in
FAdo format, [10,18], which accepts a∗b, and then uses st to define the NFA object b.
The string st contains three lines: the first indicates the type of object followed by
the final states (in this case 1) and the start states after * (in this case 0); the second
line contains the transition 0 a 0; and the third line contains the transition 0 b 1.
One can also use fio.readOneFromFile(file) to read an automaton, or transducer,
from file. 2

Example 2. Assume that a is a FAdo automaton and w is a string (a word). The
method a.evalWordP(w) returns whether a accepts w. The following code shows a
quick implementation of a.evalWordP(w)

b = fl.FL([w]).toNFA()
c = a & b
return not c.emptyP()

One verifies that w is accepted by a if and only if a intersected with any automaton
accepting {w} accepts something. Here, a & b returns an NFA accepting L(a)∩L(b).
Both a and b must be NFAs with no ε-transitions. Method c.emptyP() returns
whether the language accepted by c is empty. 2

3. Transducer Object Classes and Methods

In this section we discuss some aspects of the implementation of transducer objects
and some of their methods: product constructions and rational operations. We discuss
the method for testing functionality in Section 4. The module containing all that is
discussed in this and the next section is called transducers.py.

Transducer objects and basic methods We implement the class GFT, for General
Form Transducer, as a subclass of NFA. A transducer t = (Q,Σ,∆, T, I, F) is imple-
mented as an object t with six instance variables States, Sigma, Output, delta,
Initial, Final corresponding to the six components of t. Standard form transduc-
ers are objects of the FAdo class SFT, which is a subclass of GFT. The class SFT is very
important from an algorithmic point of view, as most product constructions require
a transducer to be in standard form. The conversion from GFT to SFT is done us-
ing the method t.toSFT() which returns an SFT transducer equivalent to t. The
implementation of Normal Form Transducers is via the FAdo class NFT. This form of
transducers is convenient in proving mathematical statements about transducers [30].

6 S. Konstantinidis, C. Meijer, N. Moreira, R. Reis

Example 3. The following code defines a string s containing a transducer descrip-
tion, and then constructs an SFT transducer from the string s. The transducer, on
input x, returns any proper suffix of x—see also Fig 1.

s = ’@Transducer 1 * 0\n’\
’0 a @epsilon 0\n0 b @epsilon 0\n’\
’0 a @epsilon 1\n0 b @epsilon 1\n’\
’1 a a 1\n1 b b 1\n’

t = fio.readOneFromString(s)
a = t.runOnWord(’ababb’)
n = len(’ababb’)
print a.enumNFA(n)

Method t.runOnWord(w) assumes that t is an SFT object and returns an automaton
accepting the language t(w)—recall, this is the set of possible outputs of t on input
w. The last statement prints the set of all proper suffixes of the word ababb. 2

0 1

σ/ε

σ/ε

σ/σ

0 1 2

4 3

σ/σ

σ/ε

σ/σ

σ/ε

σ/σ

σ/ε

σ/ε
σ/σ σ/ε

Figure 1: On input x, the left transducer outputs any proper suffix of x.
The right transducer outputs any proper infix of x. Note: In this and the
following transducer figures, the input and output alphabets are equal. An
arrow with label σ/σ represents a set of transitions with labels σ/σ, for all
alphabet symbols σ; and similarly for an arrow with label σ/ε. An arrow
with label σ/σ′ represents a set of transitions with labels σ/σ′ for all distinct
alphabet symbols σ, σ′.

Assuming again that t is an SFT object, we have the following methods.
t.inverse(): returns the inverse of the transducer t.
t.evalWordP((u,v)): returns whether the pair (u,v) belongs to the relation real-
ized by t, or equivalently whether v ∈ t(u). Other useful methods are as follows.
t.nonEmptyW(): returns some word pair (u, v) which belongs to the relation real-
ized by t, if nonempty, else it returns the pair (None, None). t.toInNFA(): returns
the NFA that results if we remove the output alphabet and the output labels of the
transitions in t. t.toOutNFA(): returns the NFA that results if we remove the input
alphabet and the input labels of the transitions in t.

Product constructions [4, 16, 39] The following methods are available in FAdo.
They are adaptations of the standard product construction [13] between two NFAs

Symbolic Manipulation of Code Properties 7

which produces an NFA with transitions ((p1, p2), σ, (q1, q2)), where (p1, σ, q1) and
(p2, σ, q2) are transitions of the two NFAs, such that the new NFA accepts the inter-
section of the corresponding languages. We assume that t and s are SFT objects
and a is an NFA object.

t.inIntersection(a): returns a transducer realizing all word pairs (x, y) such that
x is accepted by a and (x, y) is realized by t.
t.outIntersection(a): returns a transducer realizing all word pairs (x, y) such that
y is accepted by a and (x, y) is realized by t.
t.runOnNFA(a): returns an automaton that accepts t

(
L(a)

)
=
⋃

x∈L(a) t(x).
t.composition(s): returns a transducer realizing the composition R(t)◦R(s) of the
relations realized by the transducers t and s.
Rational operations [4] A relation ρ is a rational relation, if it is equal to ∅, or to
{(x, y)} for some words x and y, or it can be obtained from other ones by using a finite
number of times any of the three (rational) operators: union, concatenation, Kleene
star. We have implemented those rational operators as t.union(s), t.concat(s),
t.star(). A classic result on transducers says that a relation is rational if and only
if it can be realized by a transducer.

4. Witness of Transducer non-functionality

A transducer t is called functional if, for every word w, the set t(w) is either empty or a
singleton. A triple of words (w, z, z′) is called a witness of t’s non-functionality, if z 6=
z′ and z, z′ ∈ t(w). In this section we present the SFT method t.nonFunctionalW(),
which returns a witness of t’s non-functionality, or the triple (None,None,None) if
t is functional. The method is an adaptation of the decision algorithms in [1, 3]
that return whether a given transducer in standard form is functional. Although
there are some differences in the two algorithms, we believe that conceptually the
algorithmic technique is the same. We first describe in two phases that algorithmic
technique following the presentation in [3], and then we modify it in order to produce
the method t.nonFunctionalW(). We also note that, using a careful implementation
and assuming fixed alphabets, the time complexity of the decision algorithm can be
quadratic with respect to the size of the transducer [1].
Given a standard form transducer t = (Q,Σ,∆, T, I, F), the first phase is to construct
the square machine u, which is defined by the following process.

Phase 1
(I) First define an automaton u′ as follows: states Q×Q, initial states I × I, and

final states F × F .
(II) If t contains ε-input transitions, that is, transitions with labels of the form ε/u

then we let t be tε. The transitions of u′ are all the triples

((p, p′), (x, x′), (q, q′))

such that (p, v/x, q) and (p′, v/x′, q′) are transitions of t.

8 S. Konstantinidis, C. Meijer, N. Moreira, R. Reis

(III) Return u = a trim version of u′.
Note that any accepting path of u has a label (x1, x

′
1) · · · (xn, x

′
n) such that the words

x1 · · ·xn and x′1 · · ·x′n are outputs (possibly equal) of t on the same input word. The
next phase is to perform a process that starts from the initial states and assigns a delay
value to each state, which is either ZERO or a pair of words in {(ε, ε), (ε, u), (u, ε)},
with u being nonempty. A delay (y, y′) on a state (p, p′) indicates that there is a path
in u from I × I to (p, p′) whose label is a word pair of the form (fy, fy′). This means
that there is an input word that can take the transducer t to state p with output fy
and also to state p′ with output fy′. A delay ZERO at (p, p′) means that there is an
input word that can take t to state p with output of the form fσg and to state p′
with output of the form fσ′g′, where σ and σ′ are distinct alphabet symbols.

Phase 2
(IV) Assign to each initial state the delay value (ε, ε).
(V) Starting from the initial states, visit all transitions in breadth-first search mode

such that, if (p, p′) has delay value (y, y′) and a transition ((p, p′), (x, x′), (q, q′))
is visited, then the state (q, q′) gets a delay value D as follows:
• If y′x′ is of the form yxu then D = (ε, u). If yx is of the form y′x′u then
D = (u, ε). If y′x′ = yx then D = (ε, ε). Else, D = ZERO.

(VI) The above process stops when a delay value is ZERO, or a state gets two different
delay values, or every state gets one delay value.

(VII) If every state has one delay value and every final state has the delay value (ε, ε)
then return True (the transducer is functional). Else, return False.

Next we present our witness version of the transducer functionality algorithm. First,
the square machine u is revised such that its transitions are of the form

((p, p′), (v, x, x′), (q, q′)),

that is, we now record in u information about the common input v (see Step 2 in
Phase 1). Then, to each state (q, q′) we assign not only a delay value but also a path
value (α, β, β′) which means that, on input α, the transducer t can reach state q with
output β and also state q′ with output β′—see Fig. 2.

Definition 4. Let (q, q′) be a state of the revised square machine u. The set of
delay-path values of (q, q′) is defined as follows.
• If (q, q′) is an initial state then ((ε, ε), (ε, ε, ε)) is a delay-path value of (q, q′).
• If ((p, p′), (v, x, x′), (q, q′)) is a transition in u and (p, p′) has a delay-path value

(C, (w, z, z′)), then (D, (wv, zx, z′x′)) is a delay-path value of (q, q′), where D
is defined as follows.
(I) If C = (y, y′) 6= ZERO and y′x′ is of the form yxu then D = (ε, u).
(II) If C = (y, y′) 6= ZERO and yx is of the form y′x′u then D = (u, ε).
(III) If C = (y, y′) 6= ZERO and y′x′ = yx then D = (ε, ε)
(IV) Else, D = ZERO.

For (q, q′), we also define a suffix triple (wqq′ , zqq′ , z
′
qq′) to be the label of any path

from (q, q′) to a final state of u.

Symbolic Manipulation of Code Properties 9

sit :

p q

· · ·

p′ q′

fj· · ·

v/x

v/x′

si, si′u : p, p′ q, q′· · · fj , fj′· · ·
v, x, x′

delay (y, y′)
path (w, z, z′)

delay D
path (wv, zx, z′x′)

Figure 2: The transducer t and the corresponding (revised) square machine u.

Remark 5. The above definition implies that if a state (p, p′) has a delay-path value
(C, (w, z, z′)), then there is a path in u whose label is (w, z, z′). Moreover, by the
definition of u, the transducer t on input w can reach state p with output z and also
state p′ with output z′. Thus, if (p, p′) is a final state, then z, z′ ∈ t(w).

Algorithm nonFunctionalW
(I) Define a function completePath(q, q′) that follows a shortest path from (q, q′)

to a final state of u and returns a suffix triple (see Definition 4).
(II) Construct the revised square machine u, as in Phase 1 above but now use

transitions of the form ((p, p′), (v, x, x′), (q, q′))—see step 2 in Phase 1.
(III) Assign to each initial state the delay-path value ((ε, ε), (ε, ε, ε)).
(IV) Starting from the initial states, visit all transitions in breadth-first search

mode. If (p, p′) has delay-path value ((y, y′), (w, z, z′)), and a transition
((p, p′), (v, x, x′), (q, q′)) is visited, then compute the delay value D of (q, q′)
as in steps 1–4 of Definition 4, and let R = (wv, zx, z′x′). Then,
(A) if D is ZERO, then invoke completePath (q, q′) to get a suffix triple

(wqq′ , zqq′ , z
′
qq′) and return (wvwqq′ , zxzqq′ , z

′x′z′qq′).
(B) if (q, q′) is final and D 6= (ε, ε), return (wv, zx, z′x′).
(C) if (q, q′) already has a delay value 6= D and, hence, a path value

P = (w1, z1, z
′
1), then invoke completePath (q, q′) to get a suffix triple

(wqq′ , zqq′ , z
′
qq′). Then,

• If zxzqq′ 6= z′x′z′qq′ return (wvwqq′ , zxzqq′ , z
′x′z′qq′).

• Else return (w1wqq′ , z1zqq′ , z
′
1z
′
qq′).

(D) else assign (D,R) to (q, q′) as delay-path value and continue the breadth-
first process.

(V) Return (None,None,None), as the breadth-first process has been completed.

10 S. Konstantinidis, C. Meijer, N. Moreira, R. Reis

Terminology. Let A = (w1, . . . , wk) be a tuple consisting of words. The size |A| of
A is the number

∑k
i=1 |wi| + (k − 1). For example, |(0, 01, 10)| = 7. If {Ai} is any

set of word tuples then a minimal element (of that set) is any Ai whose size is the
minimum of {|Ai|}.

Theorem 6. If algorithm nonFunctionalW is given as input a standard form trans-
ducer t, then it returns either a size O(|t|2) witness of t’s non-functionality, or the
triple (None,None,None) if t is functional.

Before we proceed with the proof of the above result, we note that there is a sequence
(ti) of non-functional transducers such that |ti| → ∞ and any minimal witness of
ti’s non-functionality is of size Θ(|ti|2). Indeed, let (pi) be the sequence of primes in
increasing order and consider the transducer ti shown in Fig. 3. It has size Θ(pi) and
every output word w of ti has length equal to that of the input used to get w. The
relation realized by ti is

{(0mpi , 0mpi), (0n(pi+1), 10n(pi+1)−1) : m,n ∈ N}.

Any minimal witness of ti’s non-functionality is of the form wi =
(0mpi , 0mpi , 10n(pi+1)−1) such thatmpi = n(pi+1). Using standard facts from number
theory, we have that n ≥ pi. Hence, |wi| ≥ 2 + 3× pi(pi + 1), that is, |wi| = Θ(|ti|2).

0ti = 1′ · · · · · · p′
i

1 · · · · · · pi + 1

0/0

0/1

0/0

0/0

0/0

0/0

0/0

0/0

Figure 3: Transducers with quadratic size minimal witnesses of non-functionality.

The following lemma is useful for establishing the correctness of the algorithm
nonFunctionalW.

Lemma 7. If a state (q, q′) has a delay-path value ((s, s′), (α, β, β′)) then there is a
word h such that β = hs and β′ = hs′.

Proof. We use induction based on Definition 4. If the given delay-path value
is ((ε, ε), (ε, ε, ε)) the statement is true. Now suppose that there is a transition
((p, p′), (v, x, x′), (q, q′)) such that the statement is true for state (p, p′) (induction
hypothesis) and ((s, s′), (α, β, β′)) results from a delay-path value (C, (w, z, z′)) of
(p, p′). As (s, s′) 6= ZERO then also C 6= ZERO, so C is of the form (y, y′) and one of

Symbolic Manipulation of Code Properties 11

the three cases 1–3 of Definition 4 applies. Moreover, by the induction hypothesis on
(p, p′) we have z = gy and z′ = gy′, for some word g, hence, β = gyx and β′ = gy′x′.
Now we consider the three cases. If y′x′ = yxu then (s, s′) = (ε, u). Also, for h = gyx
we have β = hs and β′ = hs′, as required. If yx = y′x′u then (s, s′) = (u, ε) and one
works analogously. If yx = y′x′ then (s, s′) = (ε, ε). Also, β = β′ and the statement
follows using h = β. 2

Proof. (of Theorem 6) First note that the algorithm returns a triple other than
(None,None,None) exactly the first time when one of the following occurs (i) a ZERO
value for D is computed, or (ii) a value of D other than (ε, ε) is computed for a
final state, or (iii) a value of D, other than the existing delay value, of a visited
state is computed. Thus, the algorithm assigns at most one delay value to each state
(q, q′). If the algorithm assigns exactly one delay value to each state and terminates
at step 5, then its execution is essentially the same as that of the decision version
of the algorithm, except for the fact that in the decision version no path values are
computed. Hence, in this case the transducer is functional and the algorithm correctly
returns (None,None,None) in step 5.

In the sequel we assume that the algorithm terminates in one of the three subcases
(a)—(c) of step 4. So let (q, q′) be a state at which the algorithm computes some
delay value D and path value R = (α, β, β′)—see step 4. It is sufficient to show the
following statements.
S1 If D is ZERO then (αwqq′ , βzqq′ , β

′z′qq′) is a witness of t’s non-functionality.
S2 If (q, q′) is final and D ∈ {(ε, u), (u, ε)}, with u nonempty, then (α, β, β′) is a

witness of t’s non-functionality.
S3 If D is of the form (s, s′) and ((s1, s

′
1), (α1, β1, β

′
1)) is the existing delay-path

value of (q, q′) with (s1, s
′
1) 6= (s, s′), then one of the following triples is a witness

of t’s non-functionality: (αwqq′ , βzqq′ , β
′z′qq′), (α1wqq′ , β1zqq′ , β

′
1z
′
qq′).

For statement S1, by Remark 5, it suffices to show that βzqq′ 6= β′z′qq′ . First
note that D is ZERO exactly when there is a transition ((p, p′), (v, x, x′), (q, q′)) such
that state (p, p′) has a delay-path value ((y, y′), (w, z, z′)) and yx, y′x′ are of the form
fσg and fσ′g′, respectively, with σ, σ′ being distinct letters, and α = wv, β = zx,
β′ = z′x′. By the above lemma, there is a word h such that
βzqq′ = zxzqq′ = hyxzqq′ = hfσgzqq′ and
β′z′qq′ = z′x′z′qq′ = hy′x′z′qq′ = hfσ′g′z′qq′ ,

which implies βzqq′ 6= β′z′qq′ , as required.
For statement S2, by Remark 5, it suffices to show that β 6= β′. By symmetry, we

only consider the case of D = (ε, u). First note that D is (ε, u) exactly when there
is a transition ((p, p′), (v, x, x′), (q, q′)) such that state (p, p′) has a delay-path value
((y, y′), (w, z, z′)) and y′x′ = yxu, and α = wv, β = zx, β′ = z′x′. By the above
lemma, there is a word h such that β = zx = hyx and β′ = z′x′ = hy′x′ = hyxu,
which implies β 6= β′, as required.

For statement S3, we assume that βzqq′ = β′z′qq′ and we show that β1zqq′ 6= β1z
′
qq′ .

Assume for the sake of contradiction that also β1zqq′ = β1z
′
qq′ . By the above lemma,

12 S. Konstantinidis, C. Meijer, N. Moreira, R. Reis

there is a word h such that β = hs, β′ = hs′, β1 = h1s1, β
′
1 = h1s

′
1. Also by

the assumptions we get hszqq′ = hs′z′qq′ and h1s1zqq′ = h1s
′
1z
′
qq′ , implying that

szqq′ = s′z′qq′ and s1zqq′ = s′1z
′
qq′ . If zqq′ = z′qq′ then s = s′ = ε and s1 = s′1 = ε,

which is impossible as (s, s′) 6= (s1, s
′
1). If zqq′ is of the form z1z

′
qq′ (or vice versa),

then we get that (s, s′) = (s1, s
′
1), which is again impossible.

Regarding the size of the witness returned, consider again statements S1–S3 above.
Then, the size of the witness is |(x, y, z)|+ |(wqq′ , zqq′ , z

′
qq′)|−2, where (wqq′ , zqq′ , z

′
qq′)

could be (ε, ε, ε) and (x, y, z) is a path value of state (q, q′): (α, β, β′) or (α1, β1, β
′
1).

As (wqq′ , zqq′ , z
′
qq′) is based on a shortest path from (q, q′) to a final state of u, we

have |(wqq′ , zqq′ , z
′
qq′)| < |u|. As the algorithm visits each transition of u at most once,

and (x, y, z) is built by concatenating transition labels starting from label (ε, ε, ε), we
have that the size of (x, y, z) is bounded by the sum of the sizes of the transitions of
u. Hence, the size of the witness is O(|u|). The claim about the size of the witness
follows by the fact that |u| = Θ(|t|2). 2

5. Object Classes Representing Code Properties

In this section we discuss our implementation of objects representing code properties.
The set of all code properties is uncountable, but any formal method can describe only
countably many properties. Three formal methods are the implicational conditions
of [14], where a property is described by a first order formula of a certain type, the
regular trajectories of [7], where a property is described by a regular expression over
{0, 1}, and the transducers of [9], where a property is described by a transducer. The
formal methods of regular trajectories and transducers are implemented here, as the
transducer formal method follows naturally our implementation of transducers, and
every regular expression of the regular trajectory formal method can be converted
efficiently to a transducer object of the transducer formal method.

Regular trajectory properties [7]. In this formal method a regular expression
ē over {0, 1} describes a code property denoted by Pē. For example, the infix code
property is described by the regular expression 1∗0∗1∗, which says that by deleting
consecutive symbols at the beginning and/or at the end of an L-word u, one cannot
get a different L-word. Equivalently, L is an infix code if no L-word is an infix of
another L-word. Note that 1∗0∗1∗ describes all infix codes over all possible alphabets.

Input-altering transducer properties [9]. A transducer t is input-altering if, for
all words w, w /∈ t(w). In this formal method such a transducer t describes the code
property Pal

t consisting of all languages L over the input alphabet of t such that

t(L) ∩ L = ∅. (1)

The transducer in Example 3 is input-altering and describes the suffix code property
over the alphabet {a, b}: L is a suffix code if no L-word is a proper suffix of an L-
word. Similarly, we can define the infix code property by making another transducer
that, on input w, returns any proper infix of w. We note that, for every regular

Symbolic Manipulation of Code Properties 13

expression ē over {0, 1} and alphabet Σ, one can construct in linear time an input-
altering transducer t with input alphabet Σ such that Pē = Pal

t [9]. Thus, every
regular trajectory property is an input-altering transducer property.

Error-detecting properties via input-preserving transducers [9,16]. A trans-
ducer t is input-preserving if, for all words w in the domain of R(t), w ∈ t(w). Such
a transducer t is also called a channel transducer, in the sense that an input message
w can be transmitted via t and the output can be, either w (no transmission error),
or a word other than w (error). In this formal method the transducer t describes
the error-detecting for t property Ped

t consisting of all languages L over the input
alphabet of t such that

t(w) ∩ (L− w) = ∅, for all words w ∈ L. (2)

If L is error-detecting for t, then t cannot turn an L-word into a different L-word.
We note that, for every input-altering transducer t, one can make in linear time a
channel transducer t′ such that Pal

t = Ped
t′ [9]. Thus, every input-altering transducer

property is an error-detecting property.

Example 8. Consider the property 1-substitution error-detecting code over {a, b},
where error means the substitution of one symbol by another symbol. A classic
characterization is that, L is such a code if and only if the Hamming distance between
any two different words in L is at least 2 [11]. The following channel transducer defines
this property—see also Fig 4. The transducer will substitute at most one symbol of
the input word with another symbol.

s1 = ’@Transducer 0 1 * 0\n’\
’0 a a 0\n0 b b 0\n0 b a 1\n’\
’0 a b 1\n1 a a 1\n1 b b 1\n’

t1 = fio.readOneFromString(s1)
2

The transducer approach to defining error-detecting code properties is very powerful,
as it allows one to model insertion and deletion errors, in addition to substitution
errors—see Fig 4. Codes for such errors are actively under investigation [25].

0t1sub : 1 0t1id : 1

σ/σ

σ/σ′

σ/σ

σ/ε

ε/σ

σ/σ σ/σ

Figure 4: On input x, the transducer t1sub outputs either x, or any word that
results by substituting exactly one symbol in x. On input x, the transducer
t1id outputs either x, or any word that results by deleting, or inserting, exactly
one symbol in x. Note: The use of labels on arrows is explained in Fig. 1.

14 S. Konstantinidis, C. Meijer, N. Moreira, R. Reis

Remark 9. All input-altering and error-detecting properties are 3-independences.

5.1. Implementation in FAdo.

We have defined the Python classes TrajProp, IATProp, ErrDetectProp corre-
sponding to the three types of properties discussed above. Properties of these types
are described, respectively, by regular trajectory expressions, input-altering transduc-
ers, input-preserving transducers. An object p of the class IATProp is defined via
some SFT t and represents a particular code property, that is, the set of languages
satisfying Eq. (1). The class ErrDetectProp is a superclass of the others. These
classes and all related methods are in the module codes.py. We have defined a set
of what we call build functions as a user interface for creating code property objects.
These build functions are shown next with examples.

Example 10. Consider the strings s and s1 (see Examples 3 and 8) containing,
respectively, the proper suffixes transducer and the transducer permitting up to 1
substitution error. The following object definitions are possible in FAdo.

import FAdo.codes as codes
icp = codes.buildTrajPropS(’1*0*1*’, {’a’, ’b’})
scp = codes.buildIATPropS(s)
s1dp = codes.buildErrorDetectPropS(s1)
pcp = codes.buildPrefixProperty({’a’, ’b’})
icp2 = codes.buildInfixProperty({’a’, ’b’})

The object icp represents the infix code property over the alphabet {a, b} and is
defined via the trajectory expression 1*0*1*. In the next two statements, scp, s1dp
represent, respectively, the suffix code property and the 1-substitution error-detecting
property. In the last two statements the objects pcp and icp2 represent the prefix
code and infix code properties, respectively (see ‘Fixed properties’ below). 2

Fixed properties. For some well-known properties in the theory of codes we have
created specific classes and, therefore, FAdo users need not write transducers, or
trajectory regular expressions, for creating these properties. These properties are
prefix codes, suffix codes, infix codes, outfix codes, and hypercodes. As before, users
need only to know about the build-interfaces for creating objects of these classes.
Combining code properties. In practice we need to talk about languages satisfying
more than one property. For example, most of the 1-substitution error-detecting codes
used in practice are infix codes. We have defined the operation & between any two
error-detecting properties independently of how they were created. This operation
returns an object representing the class of all languages satisfying both properties.
This object is constructed via the transducer that results by taking the union of the
two transducers describing the two properties—see Rational Operations in Section 3.

Example 11. Using the properties icp, s1dp created in Example 10, we can create
the conjunction p1 of these properties, and using the properties pcp, scp we can
create their conjunction bcp which is known as the bifix code property.

Symbolic Manipulation of Code Properties 15

p1 = icp & s1dp
bcp = pcp & scp

The object p1 represents the property Pē ∩ Ped
s1 , where ē = 1*0*1*. It is of type

ErrDetectProp. If, however, the two properties involved are input-altering then our
implementation makes sure that the object returned is also of type input-altering—
this is the case for bcp. This is important as the satisfaction problem for input-altering
transducer properties can be solved more efficiently than the satisfaction problem for
error-detecting properties. 2

5.2. Aspects of Code Hierarchy Implementation

As stated above, our top Python superclass is ErrDetectProp. When viewed as a set
of (potential) objects, this class implements the set of properties

Ped = {Ped
t | t is an input-preserving transducer}. (3)

For any ErrDetectProp object p, let us denote by [p] the property in Ped represented
by p. If p and q are any ErrDetectProp objects such that [p] ⊆ [q] and we know
that a language satisfies [p] then it follows logically that the language also satisfies
[q] and, therefore, one does not need to execute the method q.notSatsfiesW on the
automaton accepting that language. Similarly, as [p&q] = [p] the method invocation
p&q should simply return p. It is therefore desirable to have a method ‘≤’ such that
if p ≤ q returns true then [p] ⊆ [q]. In fact, for ErrDetectProp objects, we have
implemented methods for ‘&’ and ‘≤’ in a way that the triple (ErrDetectProp,&,≤)
constitutes a syntactic hierarchy (see further below) which can be used to simulate
all properties in (3). In practice this means that ‘&’ simulates intersection between
properties and ‘≤’ simulates subset relationship between two properties such that the
following desirable statements hold true, for any ErrDetectProp objects p, q

p & p returns p

p ≤ q if and only if p & q returns p

We note that the syntactic simulation of the properties in Eq. (3) is not complete
(in fact it cannot be complete): for any ErrDetectProp objects p, q defined via
transducers t and s with Ped

t ⊆ Ped
s it does not always hold that p ≤ q. On the

other hand, our implementation of the set of the five fixed properties constitutes a
complete simulation of these properties, when the same alphabet is used. This implies,
for instance, that pcp & icp2 returns icp2, where we have used the notation of
Example 10. Our implementation associates to each object p of type ErrDetectProp
a nonempty set p.ID of names. If p is a fixed property object, p.ID has one hardcoded
name. If p is built from a transducer t, p.ID has one name, the name of t—this name
is based on a string description of t. If p = q&r, then p.ID is the union of q.ID and
r.ID minus any fixed property name N for which another fixed property name M
exists in the union such that the M -property is contained in the N -property.

Next we give a mathematical definition of what it means to simulate a set of code
properties Q = {Qj}j∈J via a syntactic hierarchy (G,&,≤), which can ultimately be

16 S. Konstantinidis, C. Meijer, N. Moreira, R. Reis

implemented (as is the case here) in a standard programming language. The idea is
that each g ∈ G represents a property [g] = Qj , for some index j, and G is the set
of generators of the semigroup (〈G〉,&) whose operation ‘&’ simulates the process of
combining properties in Q, that is [x&y] = [x]∩[y], and the partial order ‘≤’ simulates
subset relation between properties, that is x ≤ y implies [x] ⊆ [y], for all x, y ∈ 〈G〉.
Theorem 15 says that there is a simulation of the set Ped in Eq. (3). Theorem 16
says that there can be no complete simulation of that set of properties, that is, a
simulation such that [x] ⊆ [y] implies x ≤ y, for all x, y ∈ 〈G〉.

Definition 12. A syntactic hierarchy is a triple (G,&,≤) such that G is a nonempty
set and
(I) (〈G〉,&) is the commutative semigroup generated by G with computable oper-

ation ‘&’.
(II) (〈G〉,≤) is a decidable partial order (reflexive, transitive, antisymmetric).
(III) For all x, y ∈ 〈G〉, x ≤ y implies x&y = x.
(IV) For all x, y ∈ 〈G〉, x&y ≤ x.

Next we list a few properties of the operation ‘&’ and the order ‘≤’.

Lemma 13. The following statements hold true, for all x, y, z ∈ 〈G〉,
(I) x ≤ x and x&x = x

(II) x ≤ y if and only if x = y&z for some z ∈ 〈G〉.
(III) x = x&y if and only if x ≤ y.
(IV) If x ≤ y and x ≤ z then x ≤ y&z.
(V) If x = g1& · · ·&gn, for some g1, . . . , gn ∈ G, with all gi’s distinct and n ≥ 2,

then x < g1 or x < g2, and hence x is not maximal.
(VI) x is maximal if and only if x is prime (meaning, x = u&v implies x = u = v).

Proof. The proof of correctness is based on Definition 12 using standard logical argu-
ments. We prove only the second and fourth statements. The ‘if’ part of the second
statement follows from the fourth part of Definition 12, and the ‘only if’ part follows
from the third part of that definition. For the fourth statement, using the fact that
x&(y&z) ≤ y&z, it is sufficient to show that x = x&(y&z). This follows when we
note that x ≤ y implies x = x&y and x ≤ z implies x = x&z. 2

Definition 14. Let Q = {Qj}j∈J be a set of properties. A (syntactic) simulation
of Q is a quintuple (G,&,≤, [], ϕ) such that (G,&,≤) is a syntactic hierarchy and
(I) [] is a surjective mapping of 〈G〉 onto Q;
(II) for all x, y ∈ 〈G〉, x ≤ y implies [x] ⊆ [y];
(III) for all x, y ∈ 〈G〉, [x&y] = [x] ∩ [y];
(IV) ϕ is a computable function of J into 〈G〉 such that [ϕ(j)] = Qj .
The simulation is called complete if, [x] ⊆ [y] implies x ≤ y, for all x, y.

Theorem 15. There is a simulation of the set of properties Ped.

Symbolic Manipulation of Code Properties 17

Proof. Let G = {{t} | t is an input-preserving transducer}, and let T be the set
consisting of all finite sets of transducers. For any T1, T2 ∈ T, we define
T1&T2 = T1 ∪ T2 and T1 ≤ T2, if T2 ⊆ T1.

The above definitions imply that 〈G〉 consists of all T , where T is a finite nonempty set
of input-preserving transducers, and that indeed (〈G〉,&) is a commutative semigroup
and (〈G〉,≤) is a partial order. Moreover one verifies that the last two requirements
of Definition 12 are satisfied. Thus (G,&,≤) is a syntactic hierarchy.

Next we use the syntactic hierarchy (G,&,≤) to define the required simulation.
First, let ϕ(t) = {t}, for any input-preserving transducer t. Then, let [T] = Ped

∨T ,
which is equal to

⋂
t∈T Ped

t . One verifies that the requirements of Definition 14 are
satisfied. 2

The proof of the next result is based on the undecidability of the Post Correspon-
dence Problem (PCP) and uses methods for establishing the undecidability of basic
transducer problems [4].

Theorem 16. There is no complete simulation of the set of properties Ped.

Before we present the proof, we establish a few necessary auxiliary results.

Lemma 17. For any input-preserving transducers t, s we have that Ped
t ⊆ Ped

s if
and only if R(s ∨ s−1) ⊆ R(t ∨ t−1).

Proof. First note that Eq. (2) is equivalent to “(w, v) ∈ R(t) implies w = v, for
all v, w ∈ L.” This implies that, for all input-preserving transducers t, s, we have
Ped

s = Ped
s−1 and “R(s) ⊆ R(t) implies Ped

t ⊆ Ped
s ” and Ped

s = Ped
s∨s−1 . The statement

to prove follows from these observations using standard set theoretic arguments. 2

Lemma 18. The following problem is undecidable.
Input: input-preserving transducers t, s
Answer: whether R(s ∨ s−1) ⊆ R(t ∨ t−1)

Proof. We reduce PCP to the given problem. Consider any instance
(
(ui)p

i=1, (vi)p
i=1
)

of PCP which is a pair of sequences of p nonempty words over some alphabet B, for
some positive integer p. As in [4], we have that the given instance is a YES instance
if and only if U+ ∩ V + 6= ∅, where

U = {(abi, ui) | i = 1, . . . , p} and V = {(abi, vi) | i = 1, . . . , p},

and we make no assumption about the intersection of the alphabets B and {a, b}.
Here we define the following objects

C = {ab, ab2, . . . , abp} (4)
diag(L) = {(x, x) | x ∈ L}, for any language L (5)

D = diag(C+) ∪ diag(aaB+) (6)
X = (ε, aa)U+ ∪D (7)
Y = ((C+ × aaB+)− (ε, aa)V +) ∪D (8)

18 S. Konstantinidis, C. Meijer, N. Moreira, R. Reis

Let t and s be any transducers realizing, respectively, X and Y . We shall prove the
following three claims, which establish the required problem reduction.

C1: X and Y are rational relations

C2: t and s are input preserving

C3: U+ ∩ V + 6= ∅ if and only if (X ∪X−1) ⊆ (Y ∪ Y −1)

Claim C1: As C+ and aaB+ are regular languages, D is a rational relation. Also, [4]
shows that U+ and ((C+ ×B+)− V +) are rational relations. It follows then that X
is a rational relation. Similarly, rational is also the relation

(ε, aa)((C+ ×B+)− V +) = ((C+ × aaB+)− (ε, aa)V +),

which implies that Y is rational as well.

Claim C2: From the previous claim there are transducers (in fact effectively con-
structible) t and s realizing X and Y , respectively. Note that the domains of both
transducers are equal to C+ ∪ aaB+. The fact that (x, x) ∈ R(t) ∩ R(s) for all
x ∈ C+ ∪ aaB+ implies that both transducers are indeed input-preserving.

Claim C3: First note that X−1 ⊆ Y −1 if and only if X ⊆ Y (for any relations
X and Y). Then, C+ ∩ aaB+ = ∅ implies that (ε, aa)U+ is disjoint from the
sets ((ε, aa)U+)−1, D, ((C+ × aaB+)− (ε, aa)V +)−1 and similarly ((C+ × aaB+)−
(ε, aa)V +) is disjoint from the same sets. The above observations imply that

(X ∪X−1) ⊆ (Y ∪ Y −1) if and only if

(ε, aa)U+ ⊆ ((C+ × aaB+)− (ε, aa)V +) if and only if

(ε, aa)U+ ∩ ({a, b}∗ ×B∗)− ((C+ × aaB+)− (ε, aa)V +) = ∅ if and only if

(ε, aa)U+ ∩ (ε, aa)V + = ∅ if and only if U+ ∩ V + = ∅, as required. 2

Proof. (of Theorem 16.) For the sake of contradiction, assume there is a complete
simulation (G,&,≤, [], ϕ) of Ped. Then, [x] ⊆ [y] implies x ≤ y, for all x, y ∈ 〈G〉. We
get a contradiction by showing that the problem in Lemma 18 is decided as follows.

1. Let x = ϕ(t)
2. Let y = ϕ(s)
3. if y ≤ x: return YES
4. else: return NO

The correctness of the ‘if’ clause is established as follows: y ≤ x implies [y] ⊆ [x],
which implies Ped

t ⊆ Ped
s , and then R(s ∨ s−1) ⊆ R(t ∨ t−1), as required. The

correctness of the ‘else’ clause is established as follows: first note y 6≤ x. We need to
show R(s ∨ s−1) 6⊆ R(t ∨ t−1). For the sake of contradiction, assume the opposite.
Then, Ped

t ⊆ Ped
s , which implies [y] ⊆ [x], and then (by completeness) y ≤ x, which

is a contradiction. 2

Symbolic Manipulation of Code Properties 19

6. Methods of Code Property Objects

In the context of the research on code properties, we consider the following three
algorithmic problems as fundamental. Satisfaction problem: Given the description
of a code property and the description of a language, decide whether the language
satisfies the property. In the witness version of this problem, a negative answer is also
accompanied by an appropriate list of words showing how the property is violated.
Maximality problem: Given the description of a code property and the description of a
language L, decide whether the language is maximal with respect to the property. In
fact we allow the more general problem, where the input includes also the description
of a second language M and the question is whether there is no word w ∈M \L such
that L ∪ w satisfies the property. The default case is when M = Σ∗. In the witness
version of this problem, a negative answer is also accompanied by any word w that
can be added to the language L. Construction problem: Given the description of a
code property and two positive integers n and `, construct a language that satisfies
the property and contains n words of length ` (if possible).

In the above problems, and in the rest of the section, it is assumed that the code
property is implemented as an object p via a transducer t (whether input-altering
or input-preserving). In the first two problems, the language is given via an NFA a.
In the maximality problem, the second language M is given via an NFA b. Next we
discuss the implementation of methods for the satisfaction and maximality problems.
Aspects of the construction problem are discussed in [17].

Methods p.maximalP(a, b), p.notMaximalW(a, b) The maximality problem is
decidable but PSPACE-hard [9]. In particular, for the case of both input-altering
transducer and error-detecting properties, the decision algorithm is very simple: the
language L(a) is p-maximal (within L(b)) if and only if

L(b) \ (L(a) ∪ t(a) ∪ t−1(a)) = ∅. (9)

The above test is implemented in the method p.maximalP(a, b), using standard
NFA methods and the transducer methods t.inverse() and t.runOnNFA(a). In
fact, [9], any word belonging to the set on the left-hand side of Eq. (9) can be added
to L(a) without violating the property (that word can serve as a witness of the non-
maximality of L(a)). This is implemented in p.notMaximalW(a, b). If no such word
exists, the method returns None.

Methods p.satisfiesP(a), p.notSatisfiesW(a) The satisfaction problem is
decidable in time O(|t||a|2), if p is an input-altering transducer property—this follows
from Eq. (1). If p is an error-detecting property, the transducer t is input-preserving
and Eq. (2) is decided via a transducer functionality test, [16]. The witness version
of the method p.satisfiesP(a) returns either (None, None), or a pair of different
words u, v ∈ L(a) violating the property, that is, v ∈ t(u) or u ∈ t(v). In the latter
case, the pair (u, v) is called a witness of the non-satisfaction of p by the language
L(a). Next we discuss how to accomplish this.
Case 1: For input-altering transducer properties, we have the code

20 S. Konstantinidis, C. Meijer, N. Moreira, R. Reis

return t.inIntersection(a).outIntersection(a).nonEmptyW()
Recall from Section 3, the above returns (if possible) a witness for the nonemptiness
of the transducer t when the input and output parts of t are intersected by the
language L(a). This witness corresponds to the emptiness test in Eq. (1), as required.
Case 2: For error-detecting properties p , the defining transducer is a channel
(input-preserving) and, therefore, we use the method nonFunctionalW() instead of
nonEmptyW(). More specifically, we use the code

u, v, w = t.inIntersection(a).outIntersection(a).nonFunctionalW()
if u == v: return u, w
else: return u, v

If nonFunctionalW() returns a triple of words (u, v, w) then, by Proposition 6 and the
definitions of the in/out intersection methods, we have that v 6= w, v ∈ t(u), w ∈ t(u)
and all three words are in L(a). This implies that at least one of u 6= v and u 6= w must
be true and, therefore, the returned value is the pair (u, v) or (u,w). Moreover, the
returned pair indeed violates the property. Conversely, if nonFunctionalW() returns
a triple of Nones then the constructed transducer is not functional. Then L(a) must
satisfy the property, otherwise any different words v, w ∈ L(a) violating the property
could be used to make the triple (v, v, w), or (w,w, v), which would serve as a witness
of the non-functionality of the transducer.

The above discussion establishes the following consequence of Proposition 6 and of
the definitions of product constructions in Section 3.

Proposition 19. The algorithms implemented in the two forms (input-altering
transducer, error-detecting) of the method p.notSatisfiesW(a) correctly return a
witness of the non-satisfaction of the property p by the language L(a).

Example 20. The following Python interaction shows that the language a∗b is a
prefix and 1-error-detecting code. Recall from previous examples that the strings st,
s1 contain, respectively, the descriptions of an NFA accepting a∗b, and a channel
transducer that performs up to one substitution error when given an input word.
>>> a = fio.readOneFromString(st)
>>> pcp = codes.buildPrefixProperty({’a’,’b’})
>>> s1dp = codes.buildErrDetectPropS(s1)
>>> p2 = pcp & s1dp
>>> p2.notSatisfiesW(a)
(None, None)
2

7. Uniquely Decodable/Decipherable Codes

The property of unique decodability or decipherability, UD code property for short,
is probably the first historically property of interest from the points of view of both
information theory [31] as well as formal language theory [24, 32]. A language L is
said to be a UD code if, for any two sequences (ui)n

1 and (vj)m
1 of L-words such that

Symbolic Manipulation of Code Properties 21

u1 · · ·un = v1 · · · vm, we have that n = m and ui = vi for all i; that is, every word in
L∗ can be decomposed in exactly one way as a sequence of L-words. In this section
we discuss our implementation of the satisfaction and maximality methods for the
UD code property—this property is not an n-independence for any n ∈ N, [15], so it
cannot be described by any transducer.
The method p.notSatisfiesW(a) The satisfaction problem for this property was
discussed first in the well known paper [31], where the authors produce a necessary
and sufficient condition for a finite language to be a UD code—some feel that that
condition does not clearly give an algorithm, as for instance the papers [19,21]. Over
the years people have established faster algorithms and generalized the problem to
the case of regular languages. The asymptotically fastest algorithms for regular lan-
guages appear to be the ones in [12, 23], both of quadratic time complexity. Our
implementation follows the algorithm in [12], which makes use of a certain transducer
functionality test. Again we have enhanced that algorithm to produce a witness of
non-satisfaction which, given an NFA object a, it either returns (None, None) if L(a)
is a UD code, or a pair of two different lists of L(a)-words such that the concatenation
of the words in each list produces the same word (if L(a) is not a UD code).

Example 21. The following Python interaction produces a witness of the non-
satisfaction of the UD code property by the language {ab, abba, bab}.
>>> L = fl.FL([’ab’, ’abba’, ’bab’])
>>> a = L.toNFA()
>>> p = codes.buildUDCodeProp(a.Sigma)
>>> p.notSatisfiesW(a)
([’ab’, ’bab’, ’abba’, ’bab’], [’abba’, ’bab’, ’bab’, ’ab’])
The two word lists are different, but the concatenation of the words in each list
produces the same word. 2

The method p.maximalP(a) This method is based on the theorem of Schützenberger
[5] that a regular language L is a UD code if and only if the set of all infixes of L∗
is equal to Σ∗. Using the tools implemented in FAdo this test can be performed as
follows, where t is a transducer that returns any proper infix of the input.

b = a.star()
return (~(t.runOnNFA(b))).emptyP()

The first statement returns an NFA accepting L(a)∗, and the last statement returns
whether there is no word in the complement of all infixes of L(a)∗.

8. New version of LaSer and Program Generation

The first version of LaSer [9] was a self-contained set of C++ automaton and trans-
ducer methods as well as a set of Python and HTML documents with the following
functionality: a user uploads a file containing an automaton in Grail format and a file
containing either a trajectory automaton, or an input altering-transducer, and LaSer
responds with an answer to the witness version of the satisfaction problem. The new

22 S. Konstantinidis, C. Meijer, N. Moreira, R. Reis

version is based on the FAdo set of automaton and transducer methods and allows
users to request a response about the witness versions of the satisfaction and max-
imality problems for input-altering transducer, error-detecting and error-correcting
properties. We call the above type of functionality, where LaSer computes and re-
turns the answer, the online service of LaSer. Another feature of the new version
of LaSer, which we believe to be original in the community of software on automata
and formal languages, is the program generation service. This is the capability to
generate a self-contained Python program that is downloaded on the users side and
executed on their machine returning thus the desired answer. This feature is useful
as the execution of certain algorithms, even of polynomial time complexity, can be
too time consuming to do on the server side.

9. Some Test Runs of the Implemented Methods

We present a few test runs of the method p.notSatisfiesW(a) and the method
p.notMaximalW(a, b), where the property p is input-altering or error-detecting.

In Fig. 5, we consider three input-altering transducers describing infix codes, suffix
codes, prefix codes—see Fig. 1—and the regular languages Ln = 01∗0+1n, for various
values of n ∈ N. For each n, the language Ln is not an infix code, but it is both a
prefix and suffix code. We ran satisfaction and maximality tests for several values of
n ∈ [10, 1000] and step 10. Maximality testing is relative to Σ∗.

In Fig, 6, we consider the input-preserving transducers tk-sub describing the k-
substitution error-detecting properties, for various k ∈ N (see Fig. 4 for k = 1) . We
also consider the even parity code En = all binary words wb with |w| = n − 1 and
b being the bit that makes the total number of 1’s in wb even. It is well-known that
En is a maximal 1-substitution error-detecting code, where maximality is relative to
Σn. On the other hand, En is not k-substitution error-detecting for any k ≥ 2.

All experiments were performed with PyPy, which implements the Python language
version 2.7.13 [26], on a Mac Pro 2.5 GHz Intel Core i7, with 16 GB of memory. A
few related experiments have been done in [17]. Our experiments show that the
implemented methods can handle automata of moderate size. More thorough testing
is needed to find out average empirical running times.

10. Concluding Remarks

We have presented a simple to use set of methods that allow one to define and combine
many natural code properties, and obtain answers to the satisfaction and maximality
problems. This capability relies on our implementation of basic transducer methods,
including our witness version of the non-functionality transducer method, in the FAdo
package. We have also produced a new version of LaSer that allows users to inquire
about error-detecting and -correcting properties, and to generate programs that can
be executed and provide answers at the user’s site.

There are a few important directions for future research. First, the existing format
of transducer objects is not always efficient when it comes to describing code prop-
erties. For example, the transducer t1 in Example 8 consists of 6 transitions. If the

Symbolic Manipulation of Code Properties 23

Figure 5: Input-altering tests for Ln. Prefix maximality tests runned as faster as suffix
satisfaction tests. A fitting of the curves show a quadratic behaviour in all cases.

10 200 400 600 800 1,0000

0.2

0.4

0.6

0.8

1

1.2

·104

n

T
im

e
in

se
co
nd

s

infix
suffix
prefix

alphabet is of size s, then that transducer would require s + s(s − 1) + s = s2 + s
transitions. A symbolic notation for transitions would be more compact and can pos-
sibly be employed by modifying the appropriate transducer methods. We note that
a general method for symbolic transducers is already investigated in [37].

Formal methods for defining code properties need to be better understood or new
ones need to be developed, with the aim of ultimately implementing these properties
and answering efficiently related problems. These formal methods should allow one
to express properties that cannot be expressed with transducer methods, such as the
comma-free code property [33]. The method of [14] is quite expressive, using certain
first order formulae to describe properties. It could perhaps be further worked out
in a way that some of these formulae can be mapped to finite-state machine objects
that are, or can be, implemented in available formal language packages like FAdo.
We also note that if the method is too expressive then even the satisfaction problem
could become undecidable—e.g., the method of multiple sets of trajectories [8].

24 S. Konstantinidis, C. Meijer, N. Moreira, R. Reis

Figure 6: Error-detecting tests for En. The running times for testing maximality for
k = 1 almost coincide with the ones for the test of satisfaction for k = 2.

10 200 400 600 800 1,0000

50

100

150

200

250

300

n

T
im

e
in

se
co
nd

s

1sat
1max
2sat
3sat
4sat
5sat

References

[1] Cyril Allauzen and Mehryar Mohri. Efficient algorithms for testing the twins property.
Journal of Automata, Languages and Combinatorics, 8(2):117–144, 2003.

[2] André Almeida, Marco Almeida, José Alves, Nelma Moreira, and Rogério Reis. FAdo
and GUItar: Tools for automata manipulation and visualization. In Sebastian Maneth,
editor, Proceedings of CIAA 2009, Sydney, Australia, volume 5642 of Lecture Notes in
Computer Science, pages 65–74, 2009.

[3] Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch. Squar-
ing transducers: An efficient procedure for deciding functionality and sequentiality.
Theoretical Computer Science, 292(1):45–63, 2003.

[4] Jean Berstel. Transductions and Context-Free Languages. B.G. Teubner, Stuttgart,
1979.

[5] Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Automata.
Cambridge University Press, 2009.

[6] Akim Demaille, Alexandre Duret-Lutz, Sylvain Lombardy, and Jacques Sakarovitch.
Implementation concepts in vaucanson 2. In Stavros Konstantinidis, editor, Proceedings
of CIAA 2013, volume 7982 of Lecture Notes in Computer Science, pages 122–133, 2013.

Symbolic Manipulation of Code Properties 25

[7] Michael Domaratzki. Trajectory-based codes. Acta Informatica, 40:491–527, 2004.

[8] Michael Domaratzki and Kai Salomaa. Codes defined by multiple sets of trajectories.
Theoretical Computer Science, 366:182–193, 2006.

[9] Krystian Dudzinski and Stavros Konstantinidis. Formal descriptions of code proper-
ties: decidability, complexity, implementation. International Journal of Foundations of
Computer Science, 23:1:67–85, 2012.

[10] FAdo. Tools for formal languages manipulation. URL address:
http://fado.dcc.fc.up.pt/ Accessed in December of 2017.

[11] Richard W. Hamming. Error detecting and error correcting codes. The Bell System
Technical Journal, 26(2):147–160, 1950.

[12] Tom Head and Andreas Weber. Deciding code related properties by means of finite
transducers. In R. Capocelli, A. de Santis, and U. Vaccaro, editors, Sequences II,
Methods in Communication, Security, and Computer Science, pages 260–272. Springer-
Verlag, 1993.

[13] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

[14] Helmut Jürgensen. Syntactic monoids of codes. Acta Cybernetica, 14:117–133, 1999.

[15] Helmut Jürgensen and Stavros Konstantinidis. Codes. In Rozenberg and Salomaa [29],
pages 511–607.

[16] Stavros Konstantinidis. Transducers and the properties of error-detection, error-
correction and finite-delay decodability. Journal of Universal Computer Science, 8:278–
291, 2002.

[17] Stavros Konstantinidis, Nelma Moreira, and Rogério Reis. Generating error control
codes with automata and transducers. In Henning Bordihn, Rudolf Freund, Benedek
Nagy, and György Vaszil, editors, Proceedings of NCMA 2016, number 321 in Österre-
ichische Computer Gesellschaft, pages 211–226, 2016.

[18] LaSer. Independent LAnguage SERver. URL address:
http://laser.cs.smu.ca/independence/ Accessed in December of 2017.

[19] Vladimir I. Levenshtein. Certain properties of code systems. Cybernetics and Control
Theory, Soviet Physics Doklady, 6:858–860, 1962. English translation of paper in Dokl.
Akad. Nauk. SSSR, volume 140, pages 1274–1277, 1961.

[20] OpenFst Library. Google Research and NYU’s Courant Institute. URL address:
http://www.openfst.org/ Accessed in December of 2017.

[21] Alexander A. Markov. Nonrecurrent coding. Problems of Cypernetics, 8:169–180, 1962.
In Russian.

[22] Alexandru Mateescu and Arto Salomaa. Formal languages: an introduction and a
synopsis. In Rozenberg and Salomaa [29], pages 1–39.

[23] Robert McCloskey. An O(n2) time algorithm for deciding whether a regular language
is a code. Journal of Computing and Information, 2:79–89, 1996.

[24] Maurice Nivat. Elements de la théorie générale des codés. In E. Caianiello, editor,
Automata Theory, pages 278–294. 1966.

http://fado.dcc.fc.up.pt/
http://laser.cs.smu.ca/independence/
http://www.openfst.org/

26 S. Konstantinidis, C. Meijer, N. Moreira, R. Reis

[25] Filip Paluncic, Khaled Abdel-Ghaffar, and Hendrik Ferreira. Insertion/deletion detect-
ing codes and the boundary problem. IEEE Trans. Information Theory, 59(9):5935–
5943, 2013.

[26] PyPy. The official home of the pypy. URL address: https://pypy.org/ Accessed in
December of 2017.

[27] Python. The official home of the python programming language. URL address: https:
//www.python.org/ Accessed in December of 2017.

[28] Darrell Raymond and Derick Wood. Grail: A C++ library for automata and expres-
sions. Journal of Symbolic Computation, 17(4):341 – 350, 1994.

[29] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages, Vol.
I. Springer-Verlag, Berlin, 1997.

[30] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press,
Berlin, 2009.

[31] August Albert Sardinas and George W. Patterson. A necessary and sufficient condition
for the unique decomposition of coded messages. IRE Intern. Conven. Rec., 8:104–108,
1953.

[32] Marcel Schützenberger. Une théorie algébrique du codage. In Séminaire Dubreil-Pisot,
page Expose No. 15. 1955-56.

[33] H. J. Shyr. Free Monoids and Languages. Hon Min Book Company, Taichung, second
edition, 1991.

[34] H. J. Shyr and Gabriel Thierrin. Codes and binary relations. In Marie Paule Malliavin,
editor, Séminaire d’Algèbre Paul Dubreil, Paris 1975–1976 (29ème Année), volume 586
of Lecture Notes in Mathematics, pages 180–188, 1977.

[35] Western University. Grail+. URL address:
http://www.csit.upei.ca/~ccampeanu/Grail/ Accessed in February, 2016.

[36] Vaucanson. The vaucanson project. URL address:
http://vaucanson-project.org/ Accessed in December of 2017.

[37] Margus Veanes. Applications of symbolic finite automata. In S. Konstantinidis, editor,
Proceedings of CIAA 2013, volume 7982 of Lecture Notes in Computer Science, pages
16–23, 2013.

[38] Derick Wood. Theory of Computation. Harper & Row, New York, 1987.
[39] Sheng Yu. Regular languages. In Rozenberg and Salomaa [29], pages 41–110.
[40] Shyr Shen Yu. Languages and codes. Tsang Hai Book Publishing, Taichung, 2005.

https://pypy.org/
https://www.python.org/
https://www.python.org/
http://www.csit.upei.ca/~ccampeanu/Grail/
http://vaucanson-project.org/

	1 Introduction
	2 Terminology and Background
	3 Transducer Object Classes and Methods
	4 Witness of Transducer non-functionality
	5 Object Classes Representing Code Properties
	5.1 Implementation in FAdo.
	5.2 Aspects of Code Hierarchy Implementation

	6 Methods of Code Property Objects
	7 Uniquely Decodable/Decipherable Codes
	8 New version of LaSer and Program Generation
	9 Some Test Runs of the Implemented Methods
	10 Concluding Remarks

