
Incomplete Transition Complexity of some Basic

Operations ⋆

Eva Maia⋆⋆, Nelma Moreira, Rogério Reis

CMUP & DCC, Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 4169-007 Porto, Portugal

e-mail:{emaia,nam,rvr}@dcc.fc.up.pt

Abstract. Y. Gao et al. studied for the first time the transition com-
plexity of Boolean operations on regular languages based on not nec-
essarily complete DFAs. For the intersection and the complementation,
tight bounds were presented, but for the union operation the upper and
lower bounds differ by a factor of two. In this paper we continue this
study by giving tight upper bounds for the concatenation, the Kleene
star and the reversal operations. We also give a new tight upper bound
for the transition complexity of the union, which refutes the conjecture
presented by Y. Gao et al..

1 Introduction

The descriptional complexity of regular languages has recently been extensively
investigated. For deterministic finite automata (DFA), the complexity measure
usually studied is the state complexity (number of states of the complete minimal
DFA) [15, 16, 1, 8, 2, 17], while for nondeterministic finite automata (NFA) both
state and transition complexity were considered [5, 12, 7, 9, 8], being this last one
a more interesting measure. Considering complete DFAs (when the transition
function is total) it is obvious that the transition complexity is the product
of the alphabet size by the state complexity. But in many applications where
large alphabets need to be considered or, in general, when very sparse transition
functions take place, partial transition functions are very convenient. Examples
include lexical analysers, discrete event systems, or any application that uses
dictionaries where compact automaton representations are essential [11, 4, 3].
Thus, it makes sense to study the transition complexity of regular languages
based on not necessarily complete DFAs.

Y. Gao et al. [6] studied for the first time the transition complexity of Boolean
operations on regular languages based on not necessarily complete DFAs. For
the intersection and the complementation, tight bounds were presented, but

⋆ This work was partially funded by the European Regional Development Fund
through the programme COMPETE and by the Portuguese Government through
the FCT under projects PEst-C/MAT/UI0144/2011 and CANTE-PTDC/EIA-
CCO/101904/2008.

⋆⋆ Eva Maia is funded by FCT grant SFRH/BD/78392/2011.

for the union operation the upper and lower bounds differ by a factor of two.
Nevertheless, they conjectured a tight upper bound for this operation.

In this paper, we continue this study by extending the analysis to the con-
catenation, the Kleene star and the reversal operations. For these operations
tight upper bounds are given. We also give a tight upper bound for the transi-
tion complexity of the union, which refutes the conjecture presented by Y. Gao
et al.. The same study was made for unary languages. The algorithms and the
witness language families used in this work, although new, are based on the ones
of Yu et al. [18] and several proofs required new techniques. In the Tables 1
and 2 (page 11) we summarize our results (in bold) as well as some known re-
sults for other descriptional complexity measures. All the proofs not present in
this paper, can be found in an extended version of this work1.

2 Preliminaries

We recall some basic notions about finite automata and regular languages. For
more details, we refer the reader to the standard literature [10, 14, 13].

A deterministic finite automaton (DFA) is a five-tuple A = (Q,Σ, δ, q0, F)
where Q is a finite set of states, Σ is a finite input alphabet, q0 in Q is the initial
state, F ⊆ Q is the set of final states, and δ is the transition function mapping
Q×Σ → Q. The transition function can be extended to sets — 2Q×Σ → 2Q. A
DFA is complete if the transition function (δ) is total. In this paper we consider
the DFAs to be not necessarily complete. For s ∈ Q and τ ∈ Σ, if δ(s, τ) is
defined we write δ(s, τ) ↓, and δ(s, τ) ↑, otherwise, and, when defining a DFA,
an assignment δ(s, τ) =↑ means that the transition is undefined.

The transition function is extended in the usual way to a function δ̂ : Q ×
Σ⋆ → Q. This function can also be used in sets — δ̂ : 2Q × Σ⋆ → 2Q. The
language accepted by A is L(A) = {w ∈ Σ⋆ | δ̂(q0, w) ∈ F}. Two DFAs are
equivalent if they accept the same language. For each regular language, consid-
ering a total transition function or not a total one, there exists a unique minimal
complete DFA with a least number of states. The left-quotient of L ⊆ Σ⋆ by
x ∈ Σ⋆ is DxL = {z | xz ∈ L}. The equivalence relation RL ⊆ Σ⋆×Σ⋆ is defined
by (x, y) ∈ RL if and only if DxL = DyL. The Myhill-Nerode Theorem states
that a language L is regular if and only if RL has a finite number of equivalence
classes, i.e., L has a finite number of left quotients. This number is equal to the
number of states of the minimal complete DFA. The state complexity, sc(L), of
a regular language L is the number of states of the minimal complete DFA of L.
If the minimal DFA is not complete its number of states is the number of left
quotients minus one (the sink state is removed).

The incomplete state complexity of a regular language L (isc(L)) is the num-
ber of states of the minimal DFA, not necessarily complete, that accepts L. Note
that isc(L) is either equal to sc(L) − 1 or to sc(L). The incomplete transition
complexity, itc(L), of a regular language L is the minimal number of transitions

1 http://www.dcc.fc.up.pt/Pubs/TReports/TR12/dcc-2012-02.pdf

over all DFAs that accepts L. Whenever the model is explicitly given we refer
only to state or transition complexity, by omitting the term incomplete2 . When
we talk about the minimal DFA, we refer the DFA with the minimal number of
states and transitions because we have the following result:

Proposition 1. The state-minimal DFA, not necessarily complete, which rec-
ognizes L has the minimal number of transitions of any DFA that recognizes L.

A transition labeled by τ ∈ Σ is named by τ -transition (represented by
δ(s, τ), where s ∈ Q) and the number of τ -transitions of a DFA A is denoted
by t(τ, A). The τ -transition complexity of L, itcτ (L) is the minimal number of
τ -transitions of any DFA recognizing L. In [6, Lemma 2.1] it was showed that the
minimal DFA accepting L has the minimal number of τ -transitions of any DFA
accepting L. From this and Proposition 1 follows that itc(L) =

∑

τ∈Σ
itcτ (L).

The state complexity of an operation on regular languages is the (worst-case)
state complexity of a language resulting from the operation, considered as a
function of the state complexities of the operands. The (worst-case) transition
complexity of an operation is defined in the same way. Usually an upper bound is
obtained by providing an algorithm, which given DFAs as operands, constructs
a DFA that accepts the language resulting from the referred operation. The
number of states or transitions of the resulting DFA are upper bounds for the
state or the transition complexity of the operation, respectively. To prove that
an upper bound is tight, for each operand we can give a family of languages
(parametrized by the complexity measures), such that the resulting language
achieves that upper bound. For determining the transition complexity of a lan-
guage operation, we also consider the following measures and refined numbers
of transitions. Given a DFA A = (Q,Σ, δ, q0, F) and τ ∈ Σ, let f(A) = |F |,
i(τ, A) be the number of τ -transitions leaving the initial state q0, u(τ, A) be the
number of states without τ -transitions, i.e. u(τ, A) = |Q| − t(τ, A), and ū(τ, A)
be the number of non-final states without τ -transitions. Whenever there is no
ambiguity we omit A from the above definitions. If t(τ, A) = |Q| we say that A is
τ-complete, and τ -incomplete otherwise. All the above measures, can be defined
for a regular language L, considering the measure values for its minimal DFA.
Thus, we have, respectively, f(L), iτ (L), uτ (L), and ūτ (L). We also prove that
the upper bounds are maximal when f(L) is minimal.

3 Incomplete Transition Complexity of the Union

It was shown by Y. Gao et al. [6] that itc(L1∪L2) ≤ 2(itc(L1)itc(L2)+ itc(L1)+
itc(L2)). The lower bound itc(L1)itc(L2)+itc(L1)+itc(L2)−1 was given for par-
ticular ternary language families which state complexities are relatively prime.
The authors conjectured, also, that itc(L1 ∪ L2) ≤ itc(L1)itc(L2) + itc(L1) +
itc(L2), when itc(Li) ≥ 2, i = 1, 2.

In this section we present an upper bound for the state complexity and we
give a new upper bound for the transition complexity of the union of two regular

2 In [6] the author refer sc(L) and tc(L) instead of isc(L) and itc(L).

languages. We also present families of languages for which these upper bounds
are reached, witnessing that these bounds are tight.

3.1 An Upper Bound

In the following we describe the algorithm for the union of two DFAs that was
presented by Y. Gao et al. [6, Lemma 3.1.]. Let A = (Q,Σ, δA, q0, FA) and B =
(P,Σ, δB, p0, FB) be two DFAs (−1 /∈ Q and −1 /∈ P). Let C = (R,Σ, δC , r0, FC)
be a new DFA with R = (Q ∪ {−1})× (P ∪ {−1}), r0 = (q0, p0), FC = (FA ×
(Q ∪ {−1})) ∪ ((P ∪ {−1})× FB) and

δC((q
′
A, p

′
B), τ) =

(δA(q
′
A, τ), δB(p

′
B , τ)) if δA(q

′
A, τ) ↓ ∧ δB(p

′
B , τ) ↓,

(δA(q
′
A, τ),−1) if δA(q

′
A, τ) ↓ ∧ δB(p

′
B , τ) ↑,

(−1, δB(p
′
B, τ)) if δA(q

′
A, τ) ↑ ∧ δB(p

′
B , τ) ↓,

↑ otherwise,

where τ ∈ Σ, q′A ∈ Q ∪ {−1} and p′B ∈ P ∪ {−1}. Note that δA(−1, τ) and
δB(−1, τ) are always undefined, and the pair (−1,−1) never occurs in the image
of δC . It is easy to see that DFA C accepts the language L(A) ∪ L(B). We can
determine the number of states and transitions which are sufficient for any DFA
C resulting from the previous algorithm:

Proposition 2 ([6]). For any m-state DFA A and any n-state DFA B, mn+
m+ n states are sufficient for a DFA accepting L(A) ∪ L(B).

Proposition 3. For any regular languages L1 and L2 with isc(L1) = m and
isc(L2) = n, one has

itc(L1 ∪ L2) ≤ itc(L1)(1 + n) + itc(L2)(1 +m)−
∑

τ∈Σ

itcτ (L1)itcτ (L2).

The proof of Proposition 3 follows from Lemma 3.1 in Y. Gao et al..

3.2 Worst-case Witnesses

In this section, we show that the upper bounds given in Proposition 2 and Propo-
sition 3 are tight. We consider two cases, parameterized by the state complexities
of the language operands: m ≥ 2 and n ≥ 2; and m = 1 and n ≥ 2 (or vice
versa). Note that in all that follows we consider automaton families over a bi-
nary alphabet, Σ = {a, b}. Using Myhill-Nerode theorem, it is easy to prove that
these automata are minimal because all their states correspond to different left
quotients.

Theorem 1. For any integers m ≥ 2 and n ≥ 2, exist an m-state DFA A with
r = m transitions and an n-state DFA B with s = 2n − 1 transitions such
that any DFA accepting L(A) ∪ L(B) needs, at least, mn + m + n states and
(r + 1)(s+ 1) transitions.

0 1 · · · m− 1
b b b

a

Fig. 1. DFA A with m states.

0 1 · · · n− 1

b

a

b

a a

b

Fig. 2. DFA B with n states.

Proof. Let A = (Q,Σ, δA, 0, FA) with Q = {0, . . . ,m − 1}, FA = {0}, δA(m −
1, a) = 0, and δA(i, b) = i + 1, 0 ≤ i < m − 1; and B = (P,Σ, δB, 0, FB)
with P = {0, . . . , n − 1}, FB = {n − 1}, δB(i, a) = i + 1, 0 ≤ i < n − 1, and
δB(i, b) = i, 0 ≤ i ≤ n−1 (see Fig. 1 and Fig. 2). Let C be the DFA constructed
by the previous algorithm, which can be proved to be minimal. We only consider
the part of the theorem corresponding to the transitions. We name τ -transitions
of the DFA A by αi (1 ≤ i ≤ t(τ, A)) and the undefined τ -transitions named by
ᾱi (1 ≤ i ≤ u(τ, A) + 1), the τ -transitions of the DFA B by βj (1 ≤ j ≤ t(τ, B))
and the undefined τ -transitions by β̄j (1 ≤ j ≤ u(τ, B)+1). We need to consider
one more undefined transition in each DFA that corresponds to the τ -transition
of the state −1 added to Q and P in the union algorithm. Then, each of the
τ -transitions of DFA C can only have one of the following three forms: (αi, βj),
(ᾱi, βj), or (αi, β̄j). Thus, the DFA C has: mn+n−m+1 a-transitions because
there exist n − 1 a-transitions of the form (αi, βj); 2 a-transitions of the form
(αi, β̄j); and m(n − 1) a-transitions of the form (ᾱi, βj); and mn + m + n − 1
b-transitions because there exist (m− 1)n transitions of the form (αi, βj); m− 1
b-transitions of the form (αi, β̄j); and 2n b-transitions of the form (ᾱi, βj).

As r = m and n = s+1
2 the DFA C has (r + 1)(s+ 1) transitions. ⊓⊔

The referred conjecture itc(L1∪L2) ≤ itc(L1)itc(L2)+ itc(L1)+ itc(L2) fails
for these families because one has itc(L1 ∪ L2) = itc(L1)itc(L2) + itc(L1) +
itc(L2) + 1. Note that r = itc(L1) and s = itc(L2), thus (r + 1)(s + 1) =
(itc(L1) + 1)(itc(L2) + 1) = itc(L1)itc(L2) + itc(L1) + itc(L2) + 1.

Theorem 2. For any integer n ≥ 2, exists an 1-state DFA A with one transition
and an n-state DFA B with s = 2n− 1 transitions such that any DFA accepting
L(A) ∪ L(B) has, at least, 2n+ 1 states and 2(s+ 1) transitions.

Proof (Sketch). Let A = (Q,Σ, δA, 0, FA) with Q = {0}, FA = {0}, δA(0, a) = 0,
and consider the DFA B defined in the previous case. ⊓⊔

4 Incomplete Transition Complexity of the Concatenation

In this section we will show how many states and transitions are sufficient and
necessary, in the worst case, for a DFA to accept the concatenation of two DFAs.

4.1 An Upper Bound

The following algorithm computes a DFA for the concatenation of a DFA A =
(Q,Σ, δA, q0, FA), where−1 /∈ Q and |Q| = n, with a DFAB = (P,Σ, δB, p0, FB),

where |P | = m . Let C = (R,Σ, δC , r0, FC) be a new DFA with R = (Q∪{−1})×
2P − FA × 2P−{p0}, r0 = 〈q0, ∅〉 if q0 /∈ FA or r0 = 〈q0, {p0}〉 if q0 ∈ FA,
FC = {〈q, T 〉 ∈ R | T ∩ FB 6= ∅}, and for a ∈ Σ, δC(〈q, T 〉, a) = 〈q′, T ′〉 with
q′ = δA(q, a), if δA(q, a) ↓ or q′ = −1 otherwise, and T ′ = δB(T, a) ∪ {p0} if
q′ ∈ FA or T ′ = δB(T, a) otherwise. DFA C recognizes the language L(A)L(B).

The following results determine the number of states and transitions which
are sufficient for any DFA C resulting from the previous algorithm.

Proposition 4. For any m-state DFA A and any n-state DFA B, (m+1)2n −
f(A)2n−1 − 1 states are sufficient for any DFA accepting L(A)L(B).

Note that the minus one in the formula is due to the removal of the state
(−1, ∅).

Corollary 1. The formula in Proposition 4 is maximal when f(A) = 1.

Given an automaton A, the alphabet can be partitioned in two sets ΣA
c and

ΣA
i such that τ ∈ ΣA

c if A is τ -complete, or τ ∈ ΣA
i otherwise. In the same

way, considering two automata A and B, the alphabet can be divided into four
disjoint sets Σci, Σcc, Σii and Σic. As before, these notations can be extended
to regular languages considering their minimal DFA.

Proposition 5. For any regular languages L1 and L2 with isc(L1) = m, isc(L2) =
n, uτ = uτ (L2), f = f(L1) and ūτ = ūτ (L1), one has

itc(L1L2) ≤ |Σ|(m+ 1)2n − |ΣL2
c |(f2n−1 + 1)−

∑

τ∈Σ
L2
i

(2uτ + f2itcτ (L2))−

−
∑

τ∈Σii

ūτ2
uτ −

∑

τ∈Σic

ūτ .

Proof. Let A and B be the minimal DFAs that recognize L1 and L2, respectively.
Consider the DFA C such that L(C) = L(A)L(B) and C is constructed using
the algorithm described above. We name the τ -transitions of A and B as in
the proof of the Theorem 1, with a slight modification: 1 ≤ j ≤ u(τ, B). The
τ -transitions of C are pairs (θ, γ) where θ is an αi or ᾱi, and γ is a set of βj or
β̄j . By construction, C cannot have transitions where θ is an ᾱi, and γ is a set
with only β̄j , because these would correspond to pairs of undefined transitions.

Let us count the number of τ -transitions of C. If τ ∈ Σci, the number of C
τ -transitions is (t(τ, A)+ 1)2t(τ,B)+u(τ,B)− 2u(τ,B)− f(A)2t(τ,B). The number of
θs is t(τ, A)+1 and the number of γs is 2t(τ,B)+u(τ,B). From the product we need
to remove the 2u(τ,B) sets of transitions of the form (v, ∅) where v corresponds to
the undefined τ -transition leaving the added state −1 of DFA A. If θ corresponds
to a transition that leaves a final state of A, then γ needs to include the initial
state of the B. Thus we also remove the f(A)2t(τ,B) pairs. If τ ∈ Σcc, C has
(t(τ, A) + 1)2t(τ,B) − 1 − f(A)2t(τ,B)−1 τ -transitions. In this case, u(τ, B) = 0.
The only pair we need to remove is (v, ∅) where v corresponds to the undefined
τ -transition leaving the added state −1 of DFA A. Analogously, if τ ∈ Σii, C

has (t(τ, A) + u(τ, A) + 1)2t(τ,B)+u(τ,B) − (ū(τ, A) + 1)2u(τ,B) − f(A)2t(τ,B) τ -
transitions. Finally, if τ ∈ Σic, C has (t(τ, A) + u(τ, A) + 1)2t(τ,B) − (ū(τ, A) +
1)− f(A)2t(τ,B)−1 τ -transitions.

Thus, after some simplifications, the right side of the inequality in the propo-
sition holds. ⊓⊔

4.2 Worst-case Witnesses

The following results show that the complexity upper bounds found in Propo-
sitions 4 and 5 are tight. As in the previous section we need to consider three
different cases, according to the state and transition complexities of the operands.
All following automaton families have Σ = {a, b, c}. For these automata, it is
easy to prove that they are minimal. It is also possible to prove that there cannot
exist binary language families that reach the upper bounds.

(A)
0 1 2 · · · m− 1

c

a

c

b

a

c

b

a a

c

a, b

(B) 0 1 2 · · · n− 1

a

b

a, c

b

a

c
b b

a

b

c

Fig. 3. DFA A with m states and DFA B with n states.

Theorem 3. For any integers m ≥ 2 and n ≥ 2 exist an m-state DFA A with
r = 3m− 1 transitions and an n-state DFA B with s = 3n− 1 transitions such
that any DFA accepting L(A)L(B) has, at least, (m+1)2n−2n−1−1 states and

(r + 1)2
s+1
3 + 3.2

s−2
3 − 5 transitions.

Proof. Let A = (Q,Σ, δA, 0, FA) with Q = {0, . . . ,m − 1}, FA = {m− 1}, and
δA(i, a) = i + 1 mod m, if 0 ≤ i ≤ m − 1, δA(i, b) = 0, if 1 ≤ i ≤ m − 1, and
δA(i, c) = i if 0 ≤ i ≤ m− 1; and B = (P,Σ, δB , 0, FB) with P = {0, . . . , n− 1},
FB = {n−1}, δB(i, a) = i if 0 ≤ i ≤ n−1, δB(i, b) = i+1 mod n, if 0 ≤ i ≤ n−1,
and δB(i, c) = 1, 1 ≤ i ≤ n − 1 (see Fig. 3). Consider the DFA C, constructed
with the previous algorithm, such that L(C) = L(A)L(B) and which can be
proved to be minimal. We only prove the part of the theorem correspondent to
the number of transitions. As in Proposition 5, the transitions of C are pairs
(θ, γ). Then, C has: (m + 1)2n − 2n−1 − 1, a-transitions. There are m + 1 θs
and 2n γs, from which we need to remove the transition pair (−1, ∅). If θ is a
transition which leaves a final state of A, γ needs to include the transition that
leaves the initial state of B. Thus, 2n−1 pairs are removed; (m+1)2n−2n−1−2,
b-transitions. Here, the transition (θ̄, ∅) is removed; and (m + 1)2n − 2n−1 − 2,
c-transitions. This is analogous to the previous cases. As m = r+1

3 and n = s+1
3

the DFA C has (r + 1)2
s+1
3 + 3.2

s−2
3 − 5 transitions. ⊓⊔

(A) 0

b, c

(B) 0 1 · · · n− 1

a

b

a

b, c b, c

a

b, c

Fig. 4. DFA A with 1 state and DFA B with n states.

Theorem 4. For any integer n ≥ 2, exist a 1-state DFA A with 2 transitions
and an n-state DFA B with s = 3n− 1 transitions such that any DFA accepting

L(A)L(B) has, at least, 2n+1−2n−1−1 states and 3(2
s+4
3 −2

s−2
3)−4 transitions.

Proof. Let A = (Q,Σ, δA, 0, FA) with Q = {0}, FA = {0}, δA(0, b) = δA(0, c) =
0; and define B = (P,Σ, δB , 0, FB) with P = {0, . . . , n − 1}, FB = {n − 1},
δB(i, a) = i if 0 ≤ i ≤ n−1, δB(i, b) = i+1 mod n if 0 ≤ i ≤ n−1, and δB(i, c) =
i+ 1 mod n, if 1 ≤ i ≤ n− 1 (see Fig. 4). Consider the DFA C = (R,Σ, δ, 0, F),
constructed by the previous algorithm, such that L(C) = L(A)L(B). One needs
to prove that C is minimal, i.e. all states are reachable from the initial state
and are pairwise distinguishable. The DFA C has states (s, c) with s ∈ {−1, 0},
c = {i1, . . . , ik}, 1 ≤ k ≤ n, and i1 < · · · < ik. There are two kinds of states:
final states where ik = n − 1; and non-final states where ik 6= n − 1. Note that
whenever s = 0, i1 = 0. Taking this form of the states into account is not difficult
to prove that the DFA C is minimal. The proof of the second part of the theorem
is similar to the proof of Theorem 3. ⊓⊔

(A) 0 1 2 · · · m− 1

a

b, c

a

b

a

b, c b, c

a

b, c

(B) 0

b, c

Fig. 5. DFA A with m states and DFA B with 1 state.

Theorem 5. For any integer m ≥ 2 exists an m-state DFA A. with r = 3m− 1
transitions and an 1-state DFA B with 2 transitions such that any DFA accepting
L(A)L(B) has at least 2m states and 2r transitions.

Proof (Sketch). Let A = (P,Σ, δA, 0, FA) with P = {0, . . . , n−1}, FA = {m−1},
δA(i,X) = i, if 0 ≤ i ≤ m − 1, δA(i, b) = i + 1 mod m, if 0 ≤ i ≤ m − 1,
δA(i, c) = i+1 mod m if i = 0 or 2 ≤ i ≤ m− 1; and B = (Q,Σ, δB, 0, FB) with
Q = {0}, FB = {0}, and δB(0, b) = δB(0, c) = 0 (see Fig. 5). ⊓⊔

5 Incomplete Transition Complexity of the Star

In this section we give a tight upper bound for the incomplete transition com-
plexity of the star operation. The incomplete state complexity of star coincides
with the one in the complete case.

5.1 An Upper Bound

Let A = (Q,Σ, δ, q0, F) be a DFA. Let F0 = F \ {q0} and suppose that l =
|F0| ≥ 1. If F = {q0}, then L(A)⋆ = L(A). The following algorithm obtains the
kleene star of a DFA A. Let A′ = (Q′, Σ, δ′, q′0, F

′) be a new DFA where q′0 /∈ Q
is a new initial state, Q′ = {q′0}∪{P | P ⊆ (Q\F0)∧P 6= ∅}∪{P | P ⊆ Q∧q0 ∈
P ∧ P ∩ F0 6= ∅}, F ′ = {q′0} ∪ {R | R ⊆ Q ∧R ∩ F 6= ∅}, and for a ∈ Σ,

δ′(q′0, a) =

{δ(q0, a)} if δ(q0, a) ↓ ∧ δ(q0, a) /∈ F0,

{δ(q0, a), q0} if δ(q0, a) ↓ ∧ δ(q0, a) ∈ F0,

∅ if δ(q0, a) ↑ .

and

δ′(R, a) =

δ(R, a) if δ(R, a) ∩ F0 = ∅,

δ(R, a) ∪ {q0} if δ(R, a) ∩ F0 6= ∅,

∅ if δ(R, a) = ∅.

We can verify that DFA A′ recognizes the language L(A)⋆.
The following results present upper bounds for the number of states and

transitions for any DFA A′ resulting from the algorithm described above.

Proposition 6. For any integer n ≥ 2 and any n-state DFA A, any DFA ac-
cepting L(A)⋆ needs at least 2n−1 + 2n−l−1 states.

Corollary 2. The formula in Proposition 6 is maximal when l = 1.

Proposition 7. For any regular language L with isc(L) = n, iτ = iτ (L), and
and ūτ = ūτ (L), one has

itc(L⋆) ≤ |Σ|(2n−1 + 2n−l−1) +
∑

τ∈Σi

(iτ − 2ūτ)

Proof. Let A be a minimal DFA recognizing a language L. Consider the DFA A′,
constructed with the previous algorithm, such that L(A′) = L(A)⋆. The number
of τ -transitions of A′ is the summation of:

1. iτ τ -transitions leaving the initial state of A.
2. The number of sets of τ -transitions of A leaving only non-final states:

(a) (2tτ−l) − 1, if A is τ -complete, we have tτ − l τ -transitions of this kind,
and we remove the empty set.

(b) 2tτ−l+uτ − 2ūτ , if A is τ -incomplete: tτ − l + uτ of this kind, and we
subtract number of sets with only undefined τ -transitions of A.

3. The number of sets of τ -transitions of A leaving final and non-final states of
A. We do not count the transition leaving the initial state of A because, by
construction, if a transition of A′ contains a transition leaving a final state of
A then it also contains the one leaving the initial state of A.
(a) (2l − 1)2tτ−l−1, if A is τ -complete.
(b) (2l − 1)2tτ−l−1+uτ , if A is τ -incomplete.

Thus, the inequality in the proposition holds. ⊓⊔

5.2 Worst-case Witnesses

Let us present an automaton family for which the upper bounds in Proposition
6 and Proposition 7 are reached. The following automaton family has Σ =
{a, b}. Using Myhill-Nerode theorem, it is easy to prove that these automata are
minimal.

0 1 n− 1· · ·
a a, b a, b

a, b

Fig. 6. DFA A with n states.

Theorem 6. For any integer n ≥ 2, exists an n-state DFA A with r = 2n− 1
transitions such that any DFA accepting L(A)⋆ has, at least, 2n−1 +2n−2 states

and 2
r+1
2 + 2

r−1
2 − 2 transitions.

Proof. Let A = (Q,Σ, δA, 0, FA) with Q = {0, . . . , n − 1}, FA = {n − 1},
δA(i, a) = i + 1 mod m for 0 ≤ i ≤ n − 1, and δA(i, b) = i + 1 mod m for
1 ≤ i ≤ n− 1 (see Fig.6). Consider the DFA A′, constructed with the previous
algorithm, such that L(A′) = (L(A))⋆ and which can be proved to be minimal.
We only analyse the transition complexity. The DFA A′ has:

– 2n−1 + 2n−2 a–transitions because i(a) = 1, 2n−1 − 1 a–transitions which
corresponds to case 2 of Proposition 7 and 2n−2 a–transitions which corre-
sponds to case 3 of Proposition 7.

– 2n−1 − 2+ 2n−2 b–transitions because it has 2n−2+1 − 2 b–transitions which
corresponds to case 2 of Proposition 7, and 2n−3+1 b–transitions which cor-
responds to case 3.

As n = r+1
2 , A′ has 2

r+1
2 + 2

r−1
2 − 2 transitions. ⊓⊔

6 Final Remarks

It is known that considering complete DFAs the state complexity of the reversal
operation reaches the upper bound 2n, where n is the state complexity of the
operand language. By the subset construction, a (complete) DFA resulting from
the reversal has a state which corresponds to the ∅, which is a dead state. There-
fore, if we remove that state the resulting automaton is not complete and the
incomplete state complexity is 2n − 1. Consequently the transition complexity
is |Σ|(2n − 1). Note that the worst case of the reversal operation is when the
operand is complete.

In this paper we presented tight upper bounds for the incomplete state and
incomplete transition complexities for the union, the concatenation, the Kleene
star and the reversal of regular languages, with |Σ| ≥ 2. Transition complexity
bounds are expressed as functions of several more fine-grained measures of the
operands, such as the number of final states, the number of undefined transitions
or the number of transitions that leave initial state.

Operation sc isc nsc

L1 ∪ L2 mn mn+m+ n m+ n+ 1

L1 ∩ L2 mn mn mn

LC n n+ 1 2n

L1L2 m2n − f12
n−1 (m+ 1)2n − f12

n−1 − 1 m+ n

L⋆ 2m−1 + 2m−l−1 2m−1 + 2m−l−1 m+ 1

LR 2m 2m − 1 m+ 1
Table 1. State Complexity.

Table 1 and Table 2 summarize some of the results on state complexity and
transition complexity of basic operations on regular languages, respectively. In
Table 1 we present the state complexity, based on complete DFA (sc) [18], DFA
(isc) (new results here presented and [6]); and NFAs (nsc) [7]. Nondeterministic
transition complexity (ntc) of basic operations on regular languages was studied
by Domaratzki and Salomaa [5, 12]. They also used refined number of transitions
for computing the operational transition complexity. In Table 2, s(L) is the
minimal number of transitions leaving the initial state of any transition-minimal
NFA M accepting L, and fin(L) is the number of transitions entering the final
states of any transition-minimal NFA M accepting L. The upper bound for the
nondeterministic transition complexity of the complementation is not tight, and
thus we inscribe the lower and the upper bounds.

Operation itc ntc

L1 ∪ L2 itc(L1)(1+ n) + itc(L2)(1+m)−∑
τ∈Σ

itcτ (L2)itcτ (L1)
ntc(L1) + ntc(L2) +
s(L1) + s(L2)

L1 ∩ L2 itc(L1)itc(L2)
∑
τ∈Σ

ntcτ (L1)ntcτ (L2)

LC |Σ|(itc(L) + 2)
|Σ|2ntc(L)+1

2
ntc(L)

2
−2 − 1

L1L2 |Σ|(m+ 1)2n − |ΣL2
c |(f 2n−1 + 1)−

∑

τ∈Σ
L2

i

(2uτ

+f 2itcτ (L2))−
∑

τ∈Σii

ūτ2
uτ −

∑
τ∈Σic

ūτ

ntc(L1) + ntc(L2) +
fin(L1)

L⋆ |Σ|(2m−l−1 + 2m−1) +
∑

τ∈Σi

(iτ − 2ūτ) ntc(L) + fin(L)

LR |Σ|(2m − 1) ntc(L) + f(L)
Table 2. Transition Complexity.

In the case of unary languages, if a DFA is not complete it represents a finite
language. Thus, the worst-case state complexity of operations occurs when the
operand DFAs are complete. For these languages the (incomplete) transition
complexity coincide with the (incomplete) state complexity. The study for union
and intersection was made by Y. Gao et al. [6] and it is similar for the other
operations studied in this article.

In future work we plan to extend this study to finite languages and to other
regular preserving operations. In order to understand the relevance of these par-

tial transition functions based models, some experimental as well as asymptotic
study of the average size of these models must be done.

Acknowledgements This, as many other subjects, was introduced to us by Sheng
Yu. He will be forever in our mind.

References

1. Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accepting
subregular languages. Theor. Comput. Sci. 410(35), 3209–3222 (2009)

2. Brzozowski, J.A.: Complexity in convex languages. In: Dediu, A.H., Fernau, H.,
Mart́ın-Vide, C. (eds.) 4th LATA 2010 Proc. LNCS, vol. 6031, pp. 1–15. Springer
(2010)

3. Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems. Springer-
Verlag (2006)

4. Daciuk, J., Weiss, D.: Smaller representation of finite state automata. In: Bouchou-
Markhoff, B., Caron, P., Champarnaud, J.M., Maurel, D. (eds.) 16th CIAA 2011
Proc. LNCS, vol. 6807, pp. 118–129. Springer (2011)

5. Domaratzki, M., Salomaa, K.: Transition complexity of language operations.
Theor. Comput. Sci. 387(2), 147–154 (2007)

6. Gao, Y., Salomaa, K., Yu, S.: Transition complexity of incomplete dfas. Fundam.
Inform. 110(1-4), 143–158 (2011)

7. Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic
finite automata. In: Champarnaud, J.M., Maurel, D. (eds.) 7th CIAA 2002 Proc.
LNCS, vol. 2608, pp. 148–157. Springer (2003)

8. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite au-
tomata. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) 3rd LATA 2009
Proc. LNCS, vol. 5457, pp. 23–42. Springer (2009)

9. Holzer, M., Kutrib, M.: Nondeterministic finite automata - recent results on the
descriptional and computational complexity. Int. J. Found. Comput. Sci. 20(4),
563–580 (2009)

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

11. Owens, S., Reppy, J.H., Turon, A.: Regular-expression derivatives re-examined. J.
Funct. Program. 19(2), 173–190 (2009)

12. Salomaa, K.: Descriptional complexity of nondeterministic finite automata. In:
Harju, T., Karhumäki, J., Lepistö, A. (eds.) 11th Developments in Language The-
ory, DTL’2007. LNCS, vol. 4588, pp. 31–35. Springer (2007)

13. Shallit, J.: A Second Course in Formal Languages and Automata Theory. CUP
(2008)

14. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, pp. 41–110. Springer (1997)

15. Yu, S.: State complexity: Recent results and open problems. Fundam. Inform. 64(1-
4), 471–480 (2005)

16. Yu, S.: On the state complexity of combined operations. In: Ibarra, O.H., Yen,
H.C. (eds.) 11th CIAA 2006 Proc. LNCS, vol. 4094, pp. 11–22. Springer (2006)

17. Yu, S., Gao, Y.: State complexity research and approximation. In: Mauri, G.,
Leporati, A. (eds.) 15th DLT 2011 Proc. LNCS, vol. 6795, pp. 46–57. Springer
(2011)

18. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994)

