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Abstract. The state complexity of basic operations on finite languages
(considering complete DFAs) has been extensively studied in the liter-
ature. In this paper we study the incomplete (deterministic) state and
transition complexity on finite languages of boolean operations, concate-
nation, star, and reversal. For all operations we give tight upper bounds
for both descriptional measures. We correct the published state complex-
ity of concatenation for complete DFAs and provide a tight upper bound
for the case when the right automaton is larger than the left one. For
all binary operations the tightness is proved using family languages with
a variable alphabet size. In general the operational complexities depend
not only on the complexities of the operands but also on other refined
measures.

1 Introduction

Descriptional complexity studies the measures of complexity of languages and
operations. These studies are motivated by the need to have good estimates of
the amount of resources required to manipulate the smallest representation for
a given language. In general, having succinct objects will improve our control
on software, which may become smaller and more efficient. Finite languages are
an important subset of regular languages with many applications in compilers,
computational linguistics, control and verification, etc. [9, 1, 8, 3]. In those ar-
eas it is also usual to consider deterministic finite automata (DFA) with partial
transition functions. As an example we can mention the manipulation of com-
pact natural language dictionaries using Unicode alphabets. This motivates the
study of the transition complexity of DFAs (not necessarily complete), besides
the usual state complexity. The operational transition complexity of basic op-
erations on regular languages was studied by Gao et al. [4] and Maia et al. [7].
In this paper we continue that line of research by considering the class of finite
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languages. For finite languages, Salomaa and Yu [10] showed that the state com-
plexity of the determinization of a nondeterministic automaton (NFA) with m
states and k symbols is Θ(k

m

1+log k ) (lower than 2m as it is the case for general
regular languages). Câmpeanu et al. [2] studied the operational state complexity
of concatenation, Kleene star, and reversal. Finally, Han and Salomaa [5] gave
tight upper bounds for the state complexity of union and intersection on finite
languages. In this paper we give tight upper bounds for the state and transi-
tion complexity of all the above operations, for non necessarily complete DFAs
with an alphabet size greater than 1 . For the concatenation, we correct the
upper bound for the state complexity of complete DFAs [2], and show that if
the right automaton is larger than the left one, the upper bound is only reached
using an alphabet of variable size. The transition complexity results are all new,
although the proofs are based on the ones for the state complexity and use
techniques developed by Maia et al. [7]. Table 1 presents a comparison of the
transition complexity on regular and finite languages, where the new results are
highlighted. Note that the values in the table are obtained using languages for
which the upper bounds are reached. All the proofs not presented in this paper
can be found in an extended version of this work1.

Operation Regular |Σ| Finite |Σ|

L1 ∪ L2 2n(m + 1) 2 3(mn-n-m) +2 f1(m,n)

L1 ∩ L2 nm 1 (m− 2)(n− 2)(2+
∑min(m,n)−3

i=1 (m−
2− i)(n− 2− i)) + 2

f2(m,n)

LC m+ 2 1 m+ 1 1

L1L2

2n−1(6m+ 3)− 5,
3

2n(m− n+ 3)− 8, if m+ 1 ≥ n 2

if m,n ≥ 2 See Theorem 3 (4) n− 1

L⋆ 3.2m−1 − 2, if m ≥ 2 2
9 · 2m−3 − 2m/2 − 2, if m is odd

3
9 · 2m−3 − 2(m−2)/2 − 2, if m is even

LR 2(2m − 1) 2
2p+2 − 7, if m = 2p

2
3 · 2p − 8, if m = 2p− 1

Table 1. Incomplete transition complexity for regular and finite languages, where m

and n are the (incomplete) state complexities of the operands, f1(m,n) = (m− 1)(n−
1)+1 and f2(m,n) = (m−2)(n−2)+1. The column |Σ| indicates the minimal alphabet
size for each the upper bound is reached.

1 http://www.dcc.fc.up.pt/Pubs/TReports/TR13/dcc-2013-02.pdf



2 Preliminaries

We assume that the reader is familiar with the basic notions about finite au-
tomata and regular languages. For more details, we refer the reader to the stan-
dard literature [6, 12, 11]. In this paper we consider DFAs to be not necessarily
complete, i.e. with partial transition functions. The state complexity of L (sc(L))
is equal to the number of states of the minimal complete DFA that accepts L.
The incomplete state complexity of a regular language L (isc(L)) is the number
of states of the minimal DFA, not necessarily complete, that accepts L. Note that
isc(L) is either equal to sc(L) − 1 or to sc(L). The incomplete transition com-

plexity, itc(L), of a regular language L is the minimal number of transitions over
all DFAs that accepts L. We omit the term incomplete whenever the model is
explicitly given. A τ -transition is a transition labeled by τ ∈ Σ. The τ -transition
complexity of L, itcτ (L) is the minimal number of τ -transitions of any DFA rec-
ognizing L. It is known that itc(L) =

∑

τ∈Σ
itcτ (L) [4, 7]. For determining the

transition complexity of an operation, we also consider the following measures
and refined numbers of transitions. Let A = ([0, n − 1], Σ, δ, 0, F ) be a DFA,
τ ∈ Σ, and i ∈ [0, n− 1]. We define f(A) = |F |, f(A, i) = |F ∩ [0, i− 1]|, tτ (A, i)
as 1 if exist a τ -transition leaving i and 0 otherwise, and tτ (a, i) as its com-
plement. Let sτ (A) = tτ (A, 0), eτ (A) =

∑

i∈F tτ (A, i), tτ (A) =
∑

i∈Q tτ (A, i),

tτ (A, [k, l]) =
∑

i∈[k,l] tτ (A, i), and the respective complements sτ (A) = tτ (A, 0),

eτ (A) =
∑

i∈F tτ (A, i), etc. We denote by inτ (A, i) the number of transitions
reaching i, aτ (A) =

∑

i∈F inτ (A, i) and cτ (A, i) = 0 if inτ (A, i) > 0 and 1 oth-
erwise. Whenever there is no ambiguity we omit A from the above definitions.
All the above measures, can be defined for a regular language L, considering
the measure values for its minimal DFA. We define s(L) =

∑

τ∈Σ sτ (L) and
a(L) =

∑

τ∈Σ aτ (L). Let A be a minimal DFA accepting a finite language,
where the states are assumed to be topologically ordered. Then, s(L(A)) = 0
and there is exactly one final state, denoted π and called pre-dead, such that
∑

τ∈Σ tτ (π) = 0. The level of a state i is the size of the shortest path from the
initial state to i, and never exceeds n− 1. The level of A is the level of π.

3 Union and Intersection

Given two incomplete DFAs A = ([0,m − 1], Σ, δA, 0, FA) and B = ([0, n −
1], Σ, δB, 0, FB) adaptations of the classical cartesian product construction can
be used to obtain DFAs accepting L(A) ∪ L(B) and L(A) ∩ L(B) [7].

Theorem 1. For any two finite languages L1 and L2 with isc(L1) = m and

isc(L2) = n, one has:

1. isc(L1 ∪ L2) ≤ mn− 2 and

itc(L1 ∪ L2) ≤
∑

τ∈Σ

(sτ (L1)⊞ sτ (L2)− (itcτ (L1)− sτ (L1))(itcτ (L2)− sτ (L2)))

+ n(itc(L1)− s(L1)) +m(itc(L2)− s(L2)),



where for x, y boolean values, x⊞ y = min(x+ y, 1).
2. isc(L1 ∩ L2) ≤ mn− 2m− 2n+ 6 and

itc(L1 ∩ L2) ≤
∑

τ∈Σ

(sτ (L1)sτ (L2) + (itcτ (L1)− sτ (L1) −

aτ (L1))(itcτ (L2)− sτ (L2)− aτ (L2)) + aτ (L1)aτ (L2)) .

All the above upper bounds are tight but can only be reached with an alphabet

of size depending on m and n.

4 Concatenation

Câmpeanu et al. [2] studied the state complexity of the concatenation of a m-
state complete DFA A with a n-state complete DFA B over an alphabet of size
k and proposed the upper bound

m−2
∑

i=0

min







ki,

f(A,i)
∑

j=0

(

n− 2

j

)







+min







km−1,

f(A)
∑

j=0

(

n− 2

j

)







, (1)

which was proved to be tight for m > n − 1. It is easy to see that the second

term of (1) is

f(A)
∑

j=0

(

n− 2

j

)

if m > n− 1, and km−1, otherwise. The value km−1

indicates that the DFA resulting from the concatenation has states with level
at most m− 1. But that is not always the case, as we can see by the example2

in Figure 2. This implies that (1) is not an upper bound if m < n. With these
changes, we have

Theorem 2. For any two finite languages L1 and L2 with sc(L1) = m and

sc(L2) = n over an alphabet of size k ≥ 2, one has

sc(L1L2) ≤
m−2
∑

i=0

min







ki,

f(L1,i)
∑

j=0

(

n− 2

j

)







+

f(L1)
∑

j=0

(

n− 2

j

)

. (2)

Given two incomplete DFAs A = ([0,m − 1], Σ, δA, 0, FA) and B = ([0, n −
1], Σ, δB, 0, FB), that represent finite languages, the algorithm by Maia et al.

for the concatenation of regular languages can be applied to obtain a DFA C =
(R,Σ, δC , r0, FC) accepting L(A)L(B). The set of states of C is contained in
the set ([0,m − 1] ∪ {ΩA}) × 2[0,n−1], the initial state r0 is (0, ∅) if 0 /∈ FA,
and is (0, {0}) otherwise; FC = {(i, P ) ∈ R | P ∩ FB 6= ∅}, and for τ ∈ Σ,
i ∈ [0,m − 1], and P ⊆ [0, n − 1], δC((i, P ), τ) = (i′, P ′) with i′ = δA(i, τ),
if δA(i, τ) ↓ or i′ = ΩA otherwise, and P ′ = δB(P, τ) ∪ {0} if i′ ∈ FA and
P ′ = δB(P, τ) otherwise. For the incomplete state and transition complexity we
have

2 Note that we are omitting the dead state in the figures.



Theorem 3. For any two finite languages L1 and L2 with isc(L1) = m and

isc(L2) = n over an alphabet of size k ≥ 2, and making Λj =
(

n−1
j

)

−
(

tτ (L2)−sτ (L2)
j

)

,

∆j =
(

n−1
j

)

− sτ (L2)
(

tτ (L2)−sτ (L2)
j

)

one has

isc(L1L2) ≤
m−1
∑

i=0

min







ki,

f(L1,i)
∑

j=0

(

n− 1

j

)







+

f(L1)
∑

j=0

(

n− 1

j

)

− 1. (3)

and

itc(L1L2) ≤ k

m−2
∑

i=0

min







ki,

f(L1,i)
∑

j=0

(

n− 1

j

)







+

+
∑

τ∈Σ



min







km−1 − sτ (L2),

f(L1)−1
∑

j=0

∆j







+

f(L1)
∑

j=0

Λj



 . (4)

Proof. The τ -transitions of the DFA C accepting L(A)L(B) have three forms:
(i, β) where i represents the transition leaving the state i ∈ [0,m − 1]; (−1, β)
where −1 represents the absence of the transition from state πA to ΩA; and
(−2, β) where −2 represents any transition leaving ΩA. In all forms, β is a set of
transitions of DFA B. The number of τ -transitions of the form (i, β) is at most
∑m−2

i=0 min{ki,
∑f(L1,i)

j=0

(

n−1
j

)

} which corresponds to the number of states of the

form (i, P ), for i ∈ [0,m− 1] and P ⊆ [0, n− 1]. The number of τ -transitions of

the form (−1, β) is min{km−1 − sτ (L2),
∑f(L1)−1

j=0 ∆j}. We have at most km−1

states in this level. However, if sτ (B, 0) = 0 we need to remove the transition
(−1, ∅) which leaves the state (m − 1, {0}). On the other hand, the size of β
is at most f(L1)− 1 and we know that β has always the transition leaving the
initial state by τ , if it exists. If this transition does not exist, i.e. sτ (B, 0) = 1, we
need to remove the sets with only non-defined transitions, because they originate
transitions of the form (−1, ∅). The number of τ -transitions of the form (−2, β)

is
∑f(L1)

j=0 Λj and this case is similar to the previous one.

To prove that the bounds are reachable, we consider two cases depending whether
m+ 1 ≥ n or not.

Case 1: m+1 ≥ n The witness languages are the ones presented by Câmpeanu
et al. (see Figure 1).

(A)
0 1 m− 1· · ·

a, b a, b a, b

(B)
0 1 n− 1· · ·

b a, b a, b

Fig. 1. DFA A with m states and DFA B with n states.
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Fig. 2. DFA resulting of the concatenation of DFA A with m = 3 and DFA B with
n = 5, of Fig. 1. The states with dashed lines have level > 3 and are not accounted for
by formula (1).

Theorem 4. For any two integers m ≥ 2 and n ≥ 2 such that m+1 ≥ n, there
exist an m-state DFA A and an n-state DFA B, both accepting finite languages,

such that any DFA accepting L(A)L(B) needs at least (m−n+3)2n−1−2 states

and 2n(m− n+ 3)− 8 transitions.

Case 2: m + 1 < n Let Σ = {b} ∪ {ai | i ∈ [1, n − 2]}. Let A = ([0,m −
1], Σ, δA, 0, [0,m − 1]) where δA(i, τ) = i + 1, for any τ ∈ Σ. Let B = ([0, n −
1], Σ, δB, 0, {n− 1}) where δB(i, b) = i + 1, for i ∈ [0, n − 2], δB(i, aj) = i + j,
for i, j ∈ [1, n − 2], i + j ∈ [2, n − 1], and δB(0, aj) = j, for j ∈ [2, n− 2]. Note
that A and B are minimal DFAs.

Theorem 5. For any two integers m ≥ 2 and n ≥ 2, with m + 1 < n, there
exist an m-state DFA A and an n-state DFA B, both accepting finite languages

over an alphabet of size depending on m and n, such that the number of states

and transitions of any DFA accepting L(A)L(B) reaches the upper bounds.

Proof. We need to show that the DFA C accepting L(A)L(B) is minimal, i.e.,
(i) every state of C is reachable from the initial state; (ii) each state of C defines
a distinct equivalence class. To prove (i), we first show that all states (i, P ) ⊆ R
with i ∈ [1,m− 1] are reachable. The following facts hold for the automaton C:
1) every state of the form (i+1, P ′) is reached by a transition from a state (i, P )
(by the construction of A) and |P ′| ≤ |P |+ 1, for i ∈ [1,m− 2]; 2) every state
of the form (ΩA, P

′) is reached by a transition from a state (m − 1, P ) (by the
construction of A) and |P ′| ≤ |P | + 1; 3) for each state (i, P ), P ⊆ [0, n − 1],
|P | ≤ i+1 and 0 ∈ P , i ∈ [1,m−1]; 4) for each state (ΩA, P ), ∅ 6= P ⊆ [0, n−1],
|P | ≤ m and 0 /∈ P .

Suppose that for a 1 ≤ i ≤ m − 2, all states (i, P ) are reachable. The
number of states of the form (1, P ) is m − 1 and of the form (i, P ) with i ∈

[2,m− 2] is
∑i

j=0

(

n−1
j

)

. Let us consider the states (i+1, P ′). If P ′ = {0}, then



δC((i, {0}), a1) = (i+1, P ′). Otherwise, let l = min(P ′\{0}) and Sl = {s−l | s ∈
P ′\{0}}. Then, δC((i, Sl), al) = (i+1, P ′), if 2 ≤ l ≤ n−2; δC((i, {0}∪S1), a1) =
(i + 1, P ′), if l = n − 1; and δC((i, S1), b) = (i + 1, P ′), if l = 1.. Thus, all
∑i+1

j=0

(

n−1
j

)

states of the form (i+1, P ′) are reachable. Let us consider the states

(ΩA, P
′). P ′ is always an non empty set by construction of C. Let l = min(P ′)

and Sl = {s − l | s ∈ P ′}. Thus, δC((m − 1, Sl), al) = (ΩA, P
′), if 2 ≤ l ≤

n−2; δC((m−1, {0}∪S1), a1) = (ΩA, P
′), if l = n−1; and δC((m−1, S1), b) =

(ΩA, P
′), if l = 1 Thus, all

∑m
j=0

(

n−1
j

)

−1 states of the form (ΩA, P
′) are reach-

able. To prove (ii), consider two distinct states (i, P1), (j, P2) ∈ R. If i 6= j, then
δC((i, P1), b

n+m−2−i) ∈ FC but δC((j, P2), b
n+m−2−i) /∈ FC . If i = j, suppose

that P1 6= P2 and both are final or non-final. Let P ′

1 = P1 \P2 and P ′

2 = P2 \P1.
Without loss of generality, let P ′

1 be the set which has the minimal value, let
us say l. Thus δC((i, P1), a

n−1−l
1 ) ∈ FC but δC((i, P2), a

n−1−l
1 ) /∈ FC . The proof

corresponding to the number of transitions is similar to the proof of Theorem 3.

Theorem 6. The upper bounds for state and transition complexity of concate-

nation cannot be reached for any alphabet with a fixed size for m ≥ 0, n > m+1.

Proof. Let S = {(ΩA, P ) | 1 ∈ P} ⊆ R. A state (ΩA, P ) ∈ S has to satisfy the
following condition:

∃i ∈ FA∃P
′ ⊆ 2[0,n−1]∃τ ∈ Σ : δC((i, P

′ ∪ {0}), τ) = (ΩA, P ).

The maximal size of S is
∑f(A)−1

j=0

(

n−2
j

)

, because by construction 1 ∈ P and

0 /∈ P . Assume that Σ has a fixed size k = |Σ|. Then, the maximal number

of words that reach states of S from r0 is
∑f(A)

i=0 ki+1 since the words that
reach a state s ∈ S are of the form wAσ, where wA ∈ L(A) and σ ∈ Σ. As
n > m, for some l ≥ 0 we have n = m + l. Thus for an l sufficiently large
∑f(A)

i=0 ki+1 ≪
∑f(A)−1

j=0

(

m+l−2
j

)

, which is an absurd. The absurd resulted from
supposing that k is fixed.

5 Star and Reversal

Given an incomplete DFA A = ([0,m − 1], Σ, δA, 0, FA) accepting a finite lan-
guage, we obtain a DFA accepting L(A)⋆ using an algorithm similar to the one
for regular languages [7] and a DFA that accepts L(A)R, reversing all transi-
tions of A and then determinizing the resulting NFA. Note that if f(A) = 1 then
the minimal DFA accepting L(A)⋆ has also m states. Thus, for the Kleene star
operation, we will consider DFAs with at least two final states.

Theorem 7. For any finite language L with isc(L) = m one has

1. if f(L) ≥ 2, isc(L⋆) ≤ 2m−f(L)−1 + 2m−2 − 1 and

itc(L⋆) ≤ 2m−f(L)−1

(

k +
∑

τ∈Σ

2eτ (L)

)

−
∑

τ∈Σ

2nτ −
∑

τ∈X

2nτ ,

where nτ = tτ (L)− sτ (L)− eτ (L) and X = {τ ∈ Σ | sτ (L) = 0}.



2. if m ≥ 3, k ≥ 2, and l is the smallest integer such that 2m−l ≤ kl, isc(LR) ≤
∑l−1

i=0 k
i + 2m−l − 1 moreover if m is odd,

itc(LR) ≤
l
∑

i=0

ki − 1 + k2m−l −
∑

τ∈Σ

2
∑

l−1
i=0

tτ (L,i)+1,

and, if m is even,

itc(LR) ≤
l
∑

i=0

ki − 1 + k2m−l −
∑

τ∈Σ

(

2
∑

l−2
i=0 tτ (L,i)+1 − cτ (L, l)

)

.

6 Final Remarks

In this paper we studied the incomplete state and transition complexity of basic
regularity preserving operations on finite languages. Note that for the comple-
ment operation these descriptional measures coincide with the ones on regular
languages. Table 1 summarizes some of those results. For unary finite languages
the incomplete transition complexity is equal to the incomplete state complexity
of that language, which is always equal to the state complexity of the language
minus one.
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