
A Mesh of Automata

Sabine Brodaa, Markus Holzerb, Eva Maiaa, Nelma Moreiraa,∗, Rogério Reisa

aCMUP & DCC, Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 4169-007 Porto, Portugal
b Institut für Informatik, Universität Giessen,

Arndtstr. 2, 35392 Giessen, Germany

Abstract

We contribute new relations to the taxonomy of different conversions from regu-
lar expressions to equivalent finite automata. In particular, we are interested in
transformations that construct automata such as, the follow automaton, the par-
tial derivative automaton, the prefix automaton, the automata based on pointed
expressions recently introduced and studied, and last but not least the position,
or Glushkov automaton (APOS), and their double reversed construction coun-
terparts. We deepen the understanding of these constructions and show that
with the artefacts used to construct the Glushkov automaton one is able to
capture most of them. As a byproduct we define a dual version A←−−

POS
of the

position automaton which plays a similar role as APOS but now for the reverse
expression. Moreover, it turns out that the prefix automaton APre is central to
reverse expressions, because the determinisation of the double reversal of APre

(first reverse the expression, construct the automaton APre, and then reverse the
automaton) can be represented as a quotient of any of the considered determin-
istic automata that we consider in this investigation. This shows that although
the conversion of regular expressions and reversal of regular expressions to finite
automata seems quite similar, there are significant differences.

Keywords: Regular Expressions, Finite Automata, Regular Languages

IThis is a completely revised and expanded version of a paper presented at the 21st In-
ternational Conference on Developments in Language Theory (DLT) held in Liège, Belgium,
August 7–11, 2017, [5].

IIThis work was partially supported by CMUP (UID/MAT/00144/2019), which is funded
by FCT (Portugal) with national (MEC) and European structural funds through the programs
FEDER, under the partnership agreement PT2020.

∗Corresponding author
Email addresses: sbb@dcc.fc.up.pt (Sabine Broda),

holzer@informatik.uni-giessen.de (Markus Holzer), emaia@dcc.fc.up.pt (Eva Maia),
nam@dcc.fc.up.pt (Nelma Moreira), rvr@dcc.fc.up.pt (Rogério Reis)

Preprint submitted to Elsevier January 3, 2019

RE

POS

ε-Tε- F

PD FPre

MY◦◦B MB

RER

POS

←−−
POS

←−
PD

PD F

←−
F

Pre

←−
Pre

◦

X

◦

MIN

MA

R

ε
ε

≡F

≡c

D≡`
D

≡s

D

D ≡F ·ϕF · ≡s

≡Lε

≡Lε

≡`

R

DD

≡c

≡F

≡`

R R

D

R

D

R

D

Figure 1: Taxonomy of conversions from regular expressions to finite automata. Bold arrows
correspond to relations studied in this work. Dashed arrows correspond to constructions for the
reversed language. Here X may be any construction that yields a DFA. For the readability of

the diagram we omit the arrows between RE and
←−
F ,
←−
PD and

←−
Pre, respectively. Brzozowski [9]

showed that for a trim NFA A, the automaton D(A) is minimal if AR is deterministic.

1. Introduction

It is well known that regular expressions define exactly the same languages as
deterministic or nondeterministic finite automata. The conversion between these
representations has been intensively studied for more than half a century—see,
e.g., Gruber and Holzer [15] for a recent survey on this subject w.r.t. descrip-
tional complexity. There are a few classical algorithms and variants thereof
for converting finite automata into equivalent regular expressions and as shown
in [23] all these approaches are more or less reformulations of the same under-
lying algorithmic idea, and they yield (almost) the same regular expressions.
For the converse transformation, that is, the conversion of regular expressions
into equivalent finite automata, the situation is much more diverse, since the
algorithmic underlying ideas already are different. Nevertheless, for some of
the algorithms the constructed automata can still be related to each other by
determinisation and/or quotients w.r.t. equivalence relations. See Figure 1 for a
taxonomy of conversions from regular expression to finite automata, where ar-
rows, that are displayed in bold correspond to new contributions in [5] and in this
paper. The two top nodes correspond to regular expressions. Each other node
corresponds to a particular automaton, up to isomorphism, and edges between

2

two nodes represent transformation algorithms, such as epsilon elimination (ε)
determinisation (D), reversal (R), quotient by some equivalence relation, or a
specific construction. Different nodes represent objects for which there is some
witness that distinguishes them. Provenance of results that are not original is
well indicated. An example how to read the taxonomy is, for instance, the result
of Ilie and Yu [16] that shows that for a regular expression α the follow automa-
ton AF(α) is isomorphic (') to the quotient of the position or Glushkov [14]
automaton APOS(α) w.r.t. the relation ≡F, that is, AF(α) ' APOS(α)/≡F.

We briefly summarise our contributions: besides the above mentioned fol-
low automaton AF we also consider the partial derivative automaton APD of
Mirkin [20] and Antimirov [2], the prefix automaton APre of Yamamoto [25],
and contructions based on a recent approach of Asperti et al. [3] and by Nip-
kow and Traytel [21] by pointed expressions that lead to the mark after and
mark before automata AMA and AMB, respectively. Pointed expressions are an
alternative representation of sets of positions, which are used in the construc-
tion of APOS. For the follow automaton AF we show that it can be directly
computed from the expression by labelling states not with positions but with
their Follow sets and their finality. We also prove that the quotient of the
determinised follow automaton w.r.t. a right-invariant relation ≡s, which is a
generalisation of the ≡F-relation, leads to the mark before automaton AMB. It
is known that AMA is isomorphic to the McNaughton-Yamada automaton AMY.
After observing that the determinisation of a quotient of an automaton, by a
left-invariant relation, is isomorphic to the determinisation of the original au-
tomaton, we conclude that the determinisation of the prefix automaton APre is
isomorphic to AMY. From AMA to AMB we present a homomorphism, showing
that AMA cannot be smaller than AMB—compare with [21].

When considering pointed expressions with only one point marking we obtain
the position automaton in case of the mark after interpretation, while the other
interpretation leads us to a dual version A←−−

POS
of the position automaton. We

show that the double reverse construction APOS(αR)R is isomorphic to A←−−
POS

(α)
and that the determinisation of A←−−

POS
(α) yields AMB(α). Our study provides ev-

idence that A←−−
POS

plays a similar role as APOS, but for the reverse expression αR

instead of the expression α. This is supported by the fact that D(APOS(αR)R)
is isomorphic to D(AF(αR)R) and D(APD(αR)R). It is worth mentioning that
the double reverse automata APre(αR)R and its determinisation D(APre(αR)R)
get out of the line since the latter automaton turns out to be not isomorphic
to D(APOS(αR)R). The deterministic automaton D(APre(αR)R) is of its own
interest, because it can be represented as the quotient among the studied de-
terministic ones, such as, Brzozowski’s automaton AB, the determinisation of
the partial derivative automaton APD, the determinisation of the follow au-
tomaton AF, the McNaughton-Yamada automaton AMY that is isomorphic
to pointed expression automaton AMA, and the pointed expression automa-
ton AMB. This shows, that although the taxonomy of “ordinary” conversions
and double reversal conversions is quite similar, there are subtle differences that
break the symmetry and the automaton D(APre(αR)R) plays a central role in

3

that symmetry break. The resulting taxonomy is also an improvement regard-
ing the results in [3, 21]. Most proofs of our results are based on Glushkov’s
position concept which turns out to be highly valuable and can be used to de-
scribe automata constructions that look different at first sight, not only for the
implementation use but also from the theoretical perspective.

2. Preliminaries

In this section we review some basic definitions about regular expressions
and finite automata and fix notation.

2.1. Regular Expressions

Given an alphabet (finite set of letters or alphabet symbols) Σ, the set RE
of regular expressions, α, over Σ is defined by the following grammar:

α := ∅ | ε | σ1 | σ2 | · · · | σk | (α+ α) | (α · α) | α?, (1)

where the operator · (concatenation) is often omitted. The language associated
to α is denoted by L(α) and defined as usual. The size |α| of α ∈ RE is the
number of symbols in α (disregarding parentheses). The alphabetic size |α|Σ is
its number of letters. We denote the subset of Σ containing the symbols that
occur in α by Σα. We define ε(α) by ε(α) = ε if ε ∈ L(α), and ε(α) = ∅,
otherwise. Given a set of expressions S, the language associated to S is L(S) =⋃
α∈S L(α). Moreover, we consider εS = Sε = S and ∅S = S∅ = ∅, for any set

S of expressions (including a singleton).

2.2. Finite Automata

A nondeterministic finite automaton (NFA) is a five-tuple A = 〈Q,Σ, δ, I, F 〉
where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states, and δ : Q × (Σ ∪ {ε}) → 2Q is the
transition function. We consider the size of an NFA as its number of states. An
NFA that has transitions labelled with ε is an ε-NFA. In this paper, excepted
when explicitly mentioned, we will consider NFAs without ε transitions. The
transition function can be extended to words and to sets of states in the natural
way. When I = {q0}, we use I = q0. We define the finality function ε on Q by
ε(q) = ε if q ∈ F and ε(q) = ∅, otherwise. For S ⊆ Q we have ε(S) = ε iff there
is some state q ∈ S with ε(q) = ε, and ε(S) = ∅ otherwise. An NFA accepting a
non-empty language is trim if every state is accessible from an initial state and
every state leads to a final state.

Given a state q ∈ Q, the right language of q is

Lq(A) = {w ∈ Σ? | δ(q, w) ∩ F 6= ∅ },

and the left language is

←−
L q(A) = {w ∈ Σ? | q ∈ δ(I, w) }.

4

The language accepted by A is L(A) =
⋃
q∈I Lq(A). Two automata are equiv-

alent if they accept the same language. Two automata A1 = 〈Q1,Σ, δ1, I1, F1〉
and A2 = 〈Q2,Σ, δ2, I2, F2〉 are isomorphic, we write A1 ' A2, if there exists a
bijection ϕ : Q1 −→ Q2 such that

• ϕ(I1) = I2,

• ϕ(F1) = F2, and

• ϕ(δ1(q1, σ)) = δ2(ϕ(q1), σ), for all q1 ∈ Q1, σ ∈ Σ.

An NFA is deterministic (DFA) if |δ(q, σ)| ≤ 1, for all (q, σ) ∈ Q × Σ, and
|I| = 1. In this case, we simply write δ(p, σ) = q instead of δ(p, σ) = {q}.
We can convert an NFA A into an equivalent DFA D(A) by the determinisa-
tion operation D, using the well-known subset construction, where only subsets
reachable from the initial subset of D(A) are used. Formally,

D(A) = 〈QD,Σ, δD, ID, FD〉,

where QD ⊆ 2Q, ID = I, δD(S, σ) =
⋃
q∈S δ(q, σ) for S ⊆ Q, σ ∈ Σ, and

FD = {S ∈ QD | S ∩ F 6= ∅ }. Note that S ∈ FD if and only if ε(S) = ε.
An equivalence relation ≡ on Q is right invariant w.r.t. an NFA A if and

only if:

• ≡ ⊆ (Q− F)2 ∪ F 2 and

• ∀p, q ∈ Q, σ ∈ Σ, if p≡ q, then ∀p′ ∈ δ(p, σ) ∃q′ ∈ δ(q, σ) such that p′≡ q′.

Given a set of states S ⊆ Q, we denote S/≡ = { [q] | q ∈ S }. Note that
p≡ q implies δ(p, σ)/≡ = δ(q, σ)/≡ , for p, q ∈ Q and σ ∈ Σ. Furthermore, if A
is deterministic, then p≡ q implies δ(p, σ)≡ δ(q, σ). If ≡ is a right-invariant
relation on Q, the quotient automaton A/≡ is given by

A/≡ = 〈Q/≡ ,Σ, δ/≡ , I/≡ , F/≡〉,

where δ/≡ ([p], σ) = { [q] | q ∈ δ(p, σ) } = δ(p, σ)/≡ . It is easy to see that
L (A/≡) = L(A). Given a right-invariant relation ≡ w.r.t. an NFA A, we can
consider the natural extension of ≡ w.r.t. D(A), where for X,Y ⊆ 2Q we have
X ≡̂Y if and only if X/≡ = Y/≡ . The following lemma relates determinisation
with these right-invariant relations.

Lemma 1. D (A/≡) ' D(A)/ ≡̂ , if ≡ is a right-invariant relation w.r.t. A
and ≡̂ is the natural extension of ≡ to D(A).

Proof. By definition, we have D(A/≡) = 〈(Q/≡)D,Σ, (δ/≡)D, I/≡ , (F/≡)D〉.
Each X ∈ 2Q/≡ can be represented by S/≡ , for some S ⊆ Q, e.g. S = { p |
[p] ∈ X }. Then, for σ ∈ Σ we have

(δ/≡)D(S/≡ , σ) =
⋃

[p]∈S/≡

δ/≡ ([p], σ) =
⋃
p∈S

δ(p, σ)/≡ .

5

On the other hand, D(A)/ ≡̂ = 〈2Q/ ≡̂ ,Σ, δD/ ≡̂ , [I], FD/ ≡̂ 〉. Consider the
bijection ϕ : 2Q/ ≡̂ −→ 2Q/≡ defined by ϕ([S]) = S/≡ . First we note that
ϕ([I]) = I/≡ and ϕ(FD/ ≡̂) = (F/≡)D because we have,

ϕ(FD/ ≡̂) = {ϕ([X]) | X ∈ FD}
= {X/≡ | X ∩ F 6= ∅}
= {X/≡ | X/≡ ∩ F/≡ 6= ∅}
= (F/≡)D.

Furthermore,

ϕ(δD/ ≡̂ ([X], σ)) = ϕ([δD(X,σ)])

= δD(X,σ)/≡
= {[q] | q ∈ δD(X,σ)}
= {[q] | q ∈

⋃
p∈X

δ(p, σ)}

=
⋃
p∈X

δ(p, σ)/≡

=
⋃

[p]∈X/≡

δ/≡ ([p], σ)

= (δ/≡)D(X/≡ , σ)

= (δ/≡)D(ϕ(X), σ).

In the rest of the paper we will denote ≡̂ by ≡ , whenever ≡ is a right-
invariant relation w.r.t. an NFA.

Given a language L the reversal of L, LR, is the language obtained by
reversing all the words in L. The reversal of a regular expression α is de-
noted by αR, and is inductively defined by: αR = α for α ∈ Σ ∪ {ε, ∅},
(α + β)R = βR + αR, (αβ)R = βRαR and (α?)R = (αR)?. The reversal αR

describes L(α)R. In the same way, given an automaton A = 〈Q,Σ, δ, I, F 〉
its reversal is AR = 〈Q,Σ, δR, F, I〉, where δR(q, σ) = { p | q ∈ δ(p, σ) } and
L(AR) = L(A)R.

An equivalence relation ≡ on Q is left invariant w.r.t. an NFA A if it is
right invariant w.r.t. AR. This means that

• ≡ ⊆ (Q− I)2 ∪ I2 and

• ∀p, q ∈ Q, σ ∈ Σ, if p≡ q, then ∀p′ ∈ δR(p, σ) ∃q′ ∈ δR(q, σ) such that
p′≡ q′.

For left-invariant relations and determinised automata we find the following
situation:

6

Lemma 2. Let A be a trim NFA and consider ≡ a left-invariant relation
w.r.t. A. Then, D(A) ' D(A/≡).

Proof. Let A = 〈Q,Σ, δ, I, F 〉 and let p, q ∈ Q be such that p ≡ q. We will
show that for every accessible state S in D(A), p ∈ S implies q ∈ S. The
result is true for the initial state, as p ≡ q implies that p ∈ I iff q ∈ I. Let
S = δD(S′, σ) and suppose that the result is true for S′. If p ∈ S there exists
some p′ ∈ S′ such that δ(p′, σ) = p, i.e., p′ ∈ δR(p, σ). Since p ≡ q, there
is some q′ ∈ δR(q, σ) such that p′ ≡ q′, and consequently q′ ∈ S′. Then,
q ∈ S = δD(S′, σ) results from the definition of the determinisation. We have
that the bijection ϕ : QD −→ (Q/≡)D defined by ϕ(S) = {[q] | q ∈ S} is an
isomorphism between D(A) and D(A/≡).

3. The Position and the Follow Automata

In this section we recall the definition of the position automaton and several
related automata constructions. In particular, the determinisation of the posi-
tion automaton, some ε-NFAs, and the follow automaton are considered. We
show that the latter can be obtained directly from the regular expression.

To decide if a word is represented by a regular expression, one can scan
the symbols of the regular expression in a specific way. For instance, given
α = a(bb+aba)?b the word abbabab can be obtained by scanning the first a, the
two consecutive bs and then the second a, the third b, the third a, and the last b.
This illustrates that uniquely identifying each letter of a regular expression is
important for word recognition. Formally, given α ∈ RE, one can mark each
occurrence of a letter σ with its position in α, considering reading it from left
to right. The resulting regular expression is a marked regular expression α with
all symbols distinct and over the alphabet Σα. Then, a position i ∈ [1, |α|Σ]
corresponds to the symbol σi in α, and consequently to exactly one occurrence
of σ in α. For instance, α = a1(b2b3 +a4b5a6)?b7. The same notation is used for
unmarking, α = α. Let Pos(α) = {1, 2, . . . , |α|Σ}, and Pos0(α) = Pos(α) ∪ {0}.

Positions were used by Glushkov [14] to define an NFA equivalent to α,
usually called the position automaton or Glushkov automaton (APOS(α)). Each
state of the automaton, except for the initial state, corresponds to a position
and there exists a transition from a position i to a position j by a letter σ such
that σj = σ, if σi can be followed by σj in some word represented by α. More
formally this reads as follows: the sets characterising the positions that can
begin, end or be followed in words of L(α) are, respectively:

First(α) = { i | σiw ∈ L(α) },
Last(α) = { i | wσi ∈ L(α) },

and given i ∈ Pos(α),
Follow(α, i) = { j | u σiσjv ∈ L(α) }.

These sets can be defined inductively in the structure of the marked regular

7

expression as follows [6, 7, 16]:

First(σi) = {i},
First(α1 + α2) = First(α1) ∪ First(α2),

First(α1α2) = First(α1) ∪ ε(α1)First(α2),

First(α?) = First(α).

The equations for Last coincide with those for First except for the case of con-
catenation:

Last(α1α2) = Last(α2) ∪ ε(α2) Last(α1).

Finally, for Follow we have the following:

Follow(σi, i) = ∅,

Follow(α1 + α2, i) =

{
Follow(α1, i) if i ∈ Pos(α1),

Follow(α2, i) if i ∈ Pos(α2),

Follow(α1α2, i) =

Follow(α1, i) if i ∈ Pos(α1) ∧ i /∈ Last(α1),

Follow(α1, i) ∪ First(α2) if i ∈ Last(α1),

Follow(α2, i) if i ∈ Pos(α2).

Follow(α?, i) =

{
Follow(α, i) if i /∈ Last(α),

Follow(α, i) ∪ First(α) otherwise.

We also define Last0(α) = Last(α) ∪ ε(α){0}, Follow(α, 0) = First(α) and

Follow(α) =
⋃

i∈Pos(α)

{ (i, j) | j ∈ Follow(α, i) }.

Furthermore, given S ∈ 2Pos0(α) let Follow(α, S) =
⋃
i∈S Follow(α, i). Then, the

position automaton for α is

APOS(α) = 〈Pos0(α),Σ, δPOS, 0, Last0(α)〉,

where δPOS(i, σ) = { j | j ∈ Follow(α, i) and σ = σj }.

Proposition 3 ([14]). L(APOS(α)) = L(α).

The following example gives some intuition on the construction of the posi-
tion automaton and its behaviour. Note that ε(0) = ε(α), and we will use either
one or the other as it will be more convenient.

Example 1. Consider α = (b + ab)? + b? with α = (b1 + a2b3)? + b?4. Then,
First(α) = {1, 2, 4}, Last0(α) = {0, 1, 3, 4} and

Follow(α) = {(1, 1), (1, 2), (2, 3), (3, 1), (3, 2), (4, 4)}.

The position automaton APOS for α is depicted below.

8

0

1

2 3

4

b

b

a

a

b

b

a

b

b

Note that each state, different from 0, in the position automaton corresponds
to a symbol σi in α, where σ = σi is the symbol just read. Thus, one can define
a function Select that selects from a set of positions S ⊆ Pos(α), those that
correspond to a given letter, i.e., Select : 2Pos(α) × Σ −→ 2Pos(α) is defined by

Select(S, σ) = { i | i ∈ S and σi = σ }.

Then, the transition function δPOS can be defined by composing Follow with
Select, i.e.,

δPOS(i, σ) = Select(Follow(α, i), σ). (2)

The same notion1 was used by McNaughton and Yamada [19] to define an
automaton which corresponds to the determinisation of the position automaton.
With the definition of δPOS in (2) and considering the determinisation algorithm,
the McNaughton-Yamada DFA can be defined as

AMY(α) = D(APOS(α)) = 〈QMY,Σ, δMY, {0}, FMY〉,

where QMY ⊆ 2Pos0(α), FMY = {S ∈ QMY | ε(S) = ε } and for S ∈ 2Pos(α) and
σ ∈ Σ,

δMY(S, σ) = Select(Follow(α, S), σ). (3)

Proposition 4 ([19]). L(AMY(α)) = L(α).

Let us continue with an example for a McNaughton-Yamada DFA.

Example 2. Applying the McNaughton-Yamada construction to α from Exam-
ple 1, we obtain the following DFA, AMY(α):

{0} {2}

{1, 4}

{3}

{1}

a

b

b

a

b

b

a

a

b

1Some authors use slightly different notions of marking [12, 19], which have in common
that each symbol in the marked expression corresponds to exactly one occurrence of a symbol
in the original expression.

9

The states of this automaton are sets of positions. Given S ⊆ Pos0(α) and a
letter σ, one computes the target of a transition from S by σ, by first considering
the set of all positions following in α some position in S, and then selecting the
ones that correspond to σ. For instance,

δMY({1, 4}, a) = Select(Follow(α, {1, 4}), a) = Select({1, 2, 4}, a) = {2},
and
δMY({1, 4}, b) = Select({1, 2, 4}, b) = {1, 4}.

In the forthcoming we review the Thompson like construction of the follow
automaton AF, which was introduced by Ilie and Yu in [16]. We show that one
can directly construct this automaton by an appropriate state labelling inspired
by the position automaton APOS.

3.1. The Follow Automaton AF

The most used conversion from regular expressions to equivalent ε-NFAs is
the Thompson conversion [24], Aε-T. An improved use of ε-transitions lead to
the definition of the ε-follow automaton [16], Aε- F—compare this automaton
with that constructed in [22]. Both constructions can be defined inductively
on the structure of the regular expressions and are schematically presented in
Figure 2.

N∅ : Nε : Nσ :
ε σ

Nα1+α2 : Nα1α2 : Nα? :
Aε-T

ε

ε ε

ε
Nα1

Nα2

εNα1
Nα2

ε

ε

ε

ε

Nα

Aε- F

Nα1

Nα2

Nα1
Nα2

ε ε

Nα

Figure 2: Aε-T and Aε- F constructions. For atomic expressions, the two constructions coin-
cide.

From a Thompson automaton, if ε-transitions are eliminated in an adequate
manner, the position automaton is obtained [1, 13]. Eliminating ε-transitions
from the ε-follow automaton, the resulting automaton is the follow automa-
ton AF(α) which was introduced by Ilie and Yu [16] in 2003.

Proposition 5 ([16]). L(AF(α)) = L(α).

10

They also showed that the follow automaton is a quotient of the position
automaton, obtained by identifying positions with the same Follow set. For in-
stance, in the position automaton of Example 1, one can see that Follow(α, 1) =
Follow(α, 3) = {1, 2}, and that 1 and 3 are both accepting states. Formally, Ilie
and Yu considered the right-invariant equivalence relation ≡F defined on the set
of states Pos0(α), w.r.t. APOS(α), by

i ≡F j ⇔ Follow(α, i) = Follow(α, j) and ε(i) = ε(j),

and showed that AF(α) ' APOS(α)/≡F. Based on this result we present a new
definition of the automaton AF(α) computed directly from α, by labelling states
not with positions i ∈ Pos0(α), but with their Follow sets and their finality.

Definition 1. Let AF(α) = 〈F(α),Σ, δF, (Follow(α, 0), ε(0)), FF〉, where

F(α) = { (Follow(α, i), ε(i)) | i ∈ Pos0(α) } ⊆ 2Pos(α) × {ε, ∅},

FF = { (S, c) ∈ F(α) | c = ε }, and for (S, c) ∈ F(α) and σ ∈ Σ,

δF((S, c), σ) = { (Follow(α, j), ε(j)) | j ∈ Select(S, σ) }.

The transition function δF is defined as a composition of Select with Follow,
instead of Follow with Select as for δPOS (and δMY). The following example
illustrates the need of considering the finality of a position in the state labels.

Example 3. Consider the expression α = a(b?c)? with α = a1(b?2c3)?. The
position automaton for α, APOS(α), is the following:

0 1 2

3

a b

c c

b

b

c

It is (Follow(α, 0), ε(0)) = ({1}, ∅), (Follow(α, 1), ε(1)) = (Follow(α, 3), ε(3)) =
({2, 3}, ε) and (Follow(α, 2), ε(2)) = ({2, 3}, ∅). We can see that the states 1, 2
and 3 have the same Follow value but different finalities. Considering the rela-
tion ≡F it is easy to see that the states 1 and 3 will be merged in APOS(α)/≡F.
The follow automaton, AF(α), is depicted below.

{1}, ∅ {2, 3}, ε {2, 3}, ∅
a

b
c

c

b

11

From now on, in automata diagrams, we will omit the indication of the
finality in labels of states, since this is already explicit from the representation
of the nodes. With the last definition of AF we obtain an alternative proof of
the result by Ilie and Yu.

Proposition 6. AF(α) ' APOS(α)/≡F.

Proof. Let ϕF : Pos0(α)/≡F −→ F(α) be defined by ϕF([i]) = (Follow(α, i), ε(i)).
By definition, ϕF is a bijection and preserves initial as well as final states. Fur-
thermore, for [i] ∈ Pos0(α)/≡F and σ ∈ Σ we have

ϕF(δPOS/≡F([i], σ)) = ϕF({ [j] | j ∈ Select(Follow(α, i), σ) })
= {ϕF([j]) | j ∈ Select(Follow(α, i), σ) }
= δF((Follow(α, i), ε(i)), σ) = δF(ϕF([i]), σ).

This shows that ϕF is an isomorphism.

4. Automata Based on Pointed Expressions

Next we review two deterministic automata constructions, AMB and AMA,
that are based on recent approaches by Asperti et al. [3] and by Nipkow and
Traytel [21] using pointed expressions. In a pointed regular expression, several
positions are selected, and are graphically marked with a point corresponding
to a letter. Those automata correspond to two different interpretations of a
pointed expression, i.e., of a given set of positions S: in the first case, given
a letter σ one selects which positions from S correspond to that letter and
then determines which possible positions can follow; in the second case the set
of positions S corresponds to where one can be after reading the letter σ. For
instance, the pointed regular expression a(•bb+•aba)?•b characterises the set of
positions {2, 4, 7}. Intuitively, these are the positions which have been reached
after reading some prefix of an input word. Asperti et al. thought that their
algorithm “au point” computed a DFA isomorphic to AMY(α), but Nipkow and
Traytel [21] showed that their construction led to a dual automaton and called it
mark before, AMB, while AMY was isomorphic to a mark after, AMA. Using the
notation of the previous section, a transition in AMA is a composition of Follow
with Select similarly as described in (2), while in AMB it will be a composition
of Select with Follow. Because of the behaviour of the transition function δMY

of AMY(α), Nipkow and Traytel called this construction mark after (AMA(α)).
In this section, we show that the AMB is isomorphic to a quotient of the

determinisation of AF, and as a corollary it follows that AMA (AMY) cannot
be smaller than AMB (as already stated by Nipkow and Traytel). Moreover, we
also consider the case, where one restricts pointed regular expressions with only
one point marking a position. Obviously, the mark after automaton of single
pointed expressions is related to the position automaton.

12

4.1. The Automaton AMB Versus D(AF)

As mentioned above, Asperti et al. introduced the notion of pointed regular
expression in order to obtain a compact representation of a set of positions.
However, a point was used to mark a position to be visited when reading a letter
instead of a position reached after reading the letter, as is the case for APOS

and AMA. The resulting construction was called mark before, AMB, by Nipkow
and Traytel. In our framework, this means that δMB is a composition of Follow
with Select. Formally, given α ∈ RE, let

AMB(α) = 〈QMB,Σ, δMB, (Follow(α, 0), ε(0)), FMB〉,

where QMB ⊆ 2Pos(α) × {∅, ε}, and for (S, c) ∈ QMB and σ ∈ Σ,

δMB((S, c), σ) = (Follow(α,Select(S, σ)), ε(Select(S, σ))),

and FMB = { (S, c) | c = ε }. In QMB we consider only the states that are
accessible from the initial state by δMB.

Proposition 7 ([3, 21]). L(AMB(α)) = L(α).

As before, we continue with a small example.

Example 4. Consider again the regular expression α from Example 1. The
AMB(α) DFA is depicted below.

{1, 2, 4} {3} {1, 2}

b

a b

a

b

Note that the first state label is the set First(α), and one can see that two states
are saved when comparing with AMA, in Example 2.

One could expect that the AMB construction was isomorphic to the deter-
minisation of AF. But we will see that in general that is not the case. The de-
terminisation of AF, D(AF(α)) = 〈QD(F),Σ, δD(F), {(Follow(α, 0), ε(0))}, FD(F)〉,
can be obtained by the subset construction.

Example 5. Considering again the regular expression α from Example 1, the
AF(α) and D(AF(α)) are respectively:

{1, 2, 4}

{1, 2}

{3}

{4}

b

b

a

a

b

b

b

{{1, 2, 4}} {{3}}

{{1, 2}, {4}}

{{1, 2}}

a

b

b

a

b

b

a

AF(α) D(AF(α))

13

It is clear that D(AF(α)) is not isomorphic to AMB(α) (see Example 4).
However states labeled by {({1, 2, 4}, ε)} and {({1, 2}, ε), ({4}, ε)} in D(AF(α))
are merged, the DFA AMB(α) is obtained. Next we prove that if certain sets
of sets in the determinisation of AF are flattened the resulting automaton is
isomorphic to AMB.

Let ≡s be the equivalence relation on 2F(α) defined by,

I ≡s J ⇔
⋃

(S,)∈I

S =
⋃

(S,)∈J

S and ε(I) = ε(J).

We find the following situation:

Proposition 8. L (D(AF(α))/≡s) = L(D(AF(α))).

Proof. We need to proof that ≡s is right invariant w.r.t. D(AF(α)). Let I, J ∈
QD(F), such that I ≡s J . Then, by definition of ≡s, I is a final state if and only
if J is final. Note that the subset construction implies that

δD(F)(I, σ) =
⋃

(S,c)∈I

{ (Follow(α, j), ε(j)) | j ∈ S and σ = σj }.

We want to show that for every σ ∈ Σ, one has δD(F)(I, σ) ≡s δD(F)(J, σ). In
fact, we show that both sets are identical, since

(T, d) ∈ δD(F)(I, σ)

⇔ ∃(S, c) ∈ I, j ∈ S, s. t. σ = σj and (T, d) = (Follow(α, j), ε(j))

⇔ ∃(S′, c′) ∈ J, j ∈ S′, s. t. σ = σj and (T, d) = (Follow(α, j), ε(j))

⇔ (T, d) ∈ δD(F)(J, σ).

This proves the stated claim.

Next we show that the determinised follow automaton AF w.r.t. the rela-
tion ≡s is isomorphic to AMB.

Proposition 9. D(AF(α))/≡s ' AMB(α).

Proof. Consider ϕS : QD(F)/≡s −→ QMB defined by ϕS([I]) = (
⋃

(S,)∈I S, ε(I)).
It follows directly from the definition of ≡s that ϕS is injective. Furthermore, by
the definition of ϕS, one has that [I] is a final state if and only if ϕS([I]) is final.
Now, consider the initial state [{(Follow(α, 0), ε(0))}] of the DFA D(AF(α))/≡s.
Then, ϕS([{(Follow(α, 0), ε(0))}]) = (Follow(α, 0), ε(0)), which is the initial state
of AMB(α). Next we show that for every σ ∈ Σ and [I] ∈ QD(F)/≡s,

ϕS(δD(F)/≡s([I], σ)) = δMB(ϕS([I]), σ).

14

Let SI =
⋃

(S,)∈I S. Then

ϕS(δD(F)/≡s([I], σ))

= ϕS([{ (Follow(α, j), ε(j)) | j ∈ SI and σ = σj }])
= ϕS([{ (Follow(α, j), ε(j)) | j ∈ Select(SI , σ) }])
= ({ i | i ∈ Follow(α, j) and j ∈ Select(SI , σ) }, ε(Select(SI , σ))

= (Follow(α,Select(SI , σ)), ε(Select(SI , σ)))

= δMB((SI , ε(I)), σ)

= δMB(ϕS([I]), σ).

This also proves that ϕS is surjective.

Nipkow and Traytel presented a homomorphism from AMA to AMB, showing
that AMA cannot be smaller than AMB. The same result is a direct corollary of
the above results.

Corollary 1. AMB(α) ' (AMA(α)/≡F)/≡s.

Proof. By Proposition 9, we have AMB(α) ' D (AF(α))/≡s. But, by Proposi-
tion 6, D (AF(α))/≡s ' D (APOS(α)/≡F)/≡s, which by Lemma 1 is isomorphic
to (D (APOS(α))/≡F)/≡s = (AMA(α)/≡F)/≡s.

We continue Example 2 explaining this isomorfism in more detail.

Example 6. Considering AMY (AMA) from Example 2, we have {1} ≡F {3},
since [1]≡F = [3]≡F . Furthermore, using the isomorphism ϕF from Proposi-
tion 6,

ϕF({[0]≡F}) = {({1, 2, 4}, ε)} ≡s {({1, 2}, ε), ({4}, ε)} = ϕF({[1]≡F , [4]≡F}). (5)

4.2. The Dual Position Automaton

If one considers pointed regular expressions with only one point marking a
position to be visited when reading a letter, an NFA, dual of APOS (A←−−

POS
),

can be defined. We show that its determinisation yields AMB. Given a regular
expression α, with n = |α|Σ = |Pos(α)|, the set of states of A←−−

POS
is Pos(α) plus

an unique final state n+1. The set of initial states is Follow(α, 0)∪ε(α){n+1}.
From a state i ∈ Pos(α) reading σ ∈ Σ one can move to Follow(α, i) if σi = σ.
That is, by first selecting Select({i}, σ) which is i if σi = σ, and empty otherwise,
and then applying Follow. Moreover, if ε(i) = ε there is a transition to n + 1.
Formally,

Definition 2. Let

A←−−
POS

(α) = 〈Pos(α) ∪ {n+ 1},Σ, δ←−−
POS

,Follow(α, 0) ∪ ε(α){n+ 1}, {n+ 1}〉,

with δ←−−
POS

(i, σ) = Follow(α,Select({i}, σ)) ∪ ε(Select({i}, σ)){n+ 1}.

15

This means that δ←−−
POS

(i, σ) = Follow(α, i) ∪ ε(i){n + 1}, only if i ∈ Pos(α)
and σi = σ, being the empty set otherwise.

Example 7. Considering again the regular expression α from Example 1, the
A←−−

POS
(α) is the following:

1

2 3 5

4

b

b

b

a

b b

b
b

b

Observe that for each state of A←−−
POS

all transitions leaving it have the same
label. This is exactly the opposite of the position automaton APOS, where for
each state all transitions into it have the same label.

Proposition 10. D(A←−−
POS

(α)) ' AMB(α).

Proof. One has D(A←−−
POS

(α)) = 〈2Pos(α)∪{n+1},Σ, δ
D(
←−−
POS)

, I
D(
←−−
POS)

, F
D(
←−−
POS)
〉,

where I
D(
←−−
POS)

= Follow(α, 0) ∪ ε(α){n + 1}, F
D(
←−−
POS)

= {S | n + 1 ∈ S },
and for S ∈ Pos(α) ∪ {n+ 1} and σ ∈ Σ,

δ
D(
←−−
POS)

(S, σ) =
⋃
i∈S

Follow(α,Select({i}, σ)) ∪ ε(Select({i}, σ)){n+ 1}

= Follow(α,Select(S, σ)) ∪ ε(Select(S, σ)){n+ 1}.

Note that, n+ 1 ∈ δ
D(
←−−
POS)

(S, σ) if and only if ε(Select(S, σ)) = ε. Then the

map ϕM(S) = (S, ε(S)) defines an isomorphism between D(A←−−
POS

) andAMB.

From the above proposition we obtain:

Corollary 2. L(A←−−
POS

(α)) = L(α).

We end this section noticing that a dual of the follow automaton, A←−
F

, can
also be defined which will be a quotient of A←−−

POS
. But we postpone its discussion

to Section 6.

5. Derivative Based Constructions

We recall some constructions of automata from regular expressions based on
derivatives and variants, such as, e.g., Brzozowski’s construction by derivatives
and the construction of Mirkin [20] and Antimirov [2] by partial derivatives.
Here we focus on known results characterizing these automata as quotients of
the position automaton. Then we consider a construction due to Yamamoto,
the prefix automaton, and we show how it relates to the partial derivatives
constructions. We also consider the dual of the partial derivative automaton
and introduce a dual of the prefix automaton. Moreover we obtain that the

16

determinisation of the dual of the prefix automaton leads to the smaller DFA
amongst the ones studied in this paper.

Brzozowski [8] defined a DFA equivalent to a regular expression using the
notion of derivative. The derivative of a regular expression α w.r.t. σ ∈ Σ is
a regular expression dσ(α), such that L(dσ(α)) = {w | σw ∈ L(α) } and it is
inductively defined by:

dσ(∅) = dσ(ε) = ∅,

dσ(σ′) =

{
{ε} if σ′ = σ

∅ otherwise,

dσ(α+ α′) = dσ(α) + dσ(α′),

dσ(αα′) =

{
dσ(α)α′ if ε(α) = ∅
dσ(α)α′ + dσ(α′) otherwise,

dσ(α?) = dσ(α)α?.

This notion can be extended to words: dε(α) = α and dσw(α) = dw(dσ(α)).
The set of all derivatives { dw(α) | w ∈ Σ? } of αmay not be finite. For finiteness,
Brzozowski considered the quotient of that set modulo some regular expression
equivalences, D(α). Here we consider the equivalences to be the associativity,
commutativity and idempotence of + (ACI). The Brzozowski’s automaton for α
is

AB(α) = 〈D(α),Σ, δB, [α], FB〉,

where FB = { [q] ∈ D(α) | ε(q) = ε }, and δB([q], σ) = [dσ(q)], for all [q] ∈ D(α)
and σ ∈ Σ.

Proposition 11 ([8]). L(AB(α)) = L(α).

We recall that Berry and Sethi [4] defined the position automaton using
derivatives of a marked expression.

The partial derivative automaton of a regular expression was introduced
independently by Mirkin [20] and Antimirov [2] as a nondeterministic contrapart
of Brzozowski automaton. Champarnaud and Ziadi [10] proved that the two
formulations are equivalent. For a regular expression α ∈ RE and a symbol
σ ∈ Σ, the set of partial derivatives of α w.r.t. σ is defined inductively as
follows:

∂σ(∅) = ∂σ(ε) = ∅,

∂σ(σ′) =

{
{ε} if σ′ = σ

∅ otherwise,

∂σ(α+ α′) = ∂σ(α) ∪ ∂σ(α′),

∂σ(αα′) = ∂σ(α)α′ ∪ ε(α)∂σ(α′),

∂σ(α?) = ∂σ(α)α?,

17

where for any S ⊆ RE , we define Sα′ = {αα′ | α ∈ S } if α′ 6= ∅, ε (and
analogously for α′S). The definition of partial derivatives can be extended in a
natural way to sets of regular expressions, words, and languages. We have that
L(dw(α)) = L(∂w(α)) for w ∈ Σ∗. The set of all partial derivatives of α w.r.t.
words is denoted by PD(α) = ∂Σ∗(α). The partial derivative automaton of α is

APD(α) = 〈PD(α),Σ, δPD, α, FPD〉,

where FPD = { τ ∈ PD(α) | ε(τ) = ε }, and δPD(τ, σ) = ∂σ(τ), for all τ ∈ PD(α)
and σ ∈ Σ.

Proposition 12 ([2, 20]). L(APD(α)) = L(α).

Champarnaud and Ziadi [11] proved that APD is a quotient of the position
automaton APOS by the right-invariant equivalence relation ≡c. Given a po-
sition i, either ∂wσi(α) = ∅ for all w ∈ Σ?α, or there is some expression ci(α)
such that for all w ∈ Σ?α, ∂wσi(α) is either empty or equal to the singleton
{ci(α)}, which can be computed by the following rules. For i ∈ Pos(α), we have
ci(∅) = ci(ε) = ∅, and ci(σi) = ε. Now consider α of the form α1 + α2, α1α2

or α?1. If i occurs in α1, then ci(α1 + α2) = ci(α1), ci(α1α2) = ci(α1)α2, and
ci(α

?
1) = ci(α1)α?1. If i occurs in α2, then ci(α1 + α2) = ci(α1α2) = ci(α2).

For i, j ∈ Pos0(α) and considering c0(α) = α, one has

i ≡c j ⇔ ci(α) = cj(α).

Proposition 13 ([11]). APD(α) ' APOS(α)/≡c.

An example for APD is given next.

Example 8. For the expression α = (b + ab)? + b? from Example 1, the APD

automaton is the following:

α b(b + ab)?

b?

(b + ab)?
a

b

b

b

b

a b

On the other hand, c1(α) = (b1 + a2b3)?, c2(α) = b3(b1 + a2b3)?, c3(α) =
(b1 + a2b3)? and c4(α) = b?4. Thus, 1 ≡c 3 and those two states of APOS merged
into the state labeled by (b+ ab)? in APD.

It is worth mentioning that derivatives and partial derivatives w.r.t. a word

can also be considered on the right, i.e.,
←−
d w(α) and

←−
∂ w(α), with L(

←−
d w(α)) =

L(
←−
∂ w(α)) = {x | xw ∈ L(α) }. In the same way one can define the right partial

derivative automaton A←−
PD

which is a quotient of A←−−
POS

[18]. This is obviously
related to the reversal of the expression and will be discussed in more detail in
Section 6.

18

5.1. Prefix automaton and its dual

In this section we consider the prefix automaton construction, APre, initially
defined as a quotient of the Thompson’s automaton Aε-T by Yamamoto [25]. In
the same paper the author presented the suffix automaton which is isomorphic
to the partial derivative automaton APD. However, the prefix automaton does
not coincides with the right-derivative automaton.

Proposition 14 ([25]). L(APre(α)) = L(α).

Maia et al. [18, 17] characterised the APre automaton as a solution of a
system of left regular expression equations (similar to Mirkin’s equational system
that defines APD) and expressed it as a quotient of APOS by a left-invariant
equivalence relation, ≡`. Every state in APre is labelled either with ε or with an
expression of the form ασ, which describes the left-language of that state. In the
following we define a function R, which given an expression α computes a set of
normalised expressions of the form α′σ, modulo associativity of concatenation,
and such that L(α) = L(Rε(α)), where Rε(α) = R(α) ∪ ε(α). Note that we
consider an expression σ to be of the form α′σ with α′ = ε. For α ∈ RE, the
set R(α) is given by

R(∅) = R(ε) = ∅, (6)

R(σ) = {σ},
R(α+ α′) = R(α) ∪ R(α′),

R(αα′) = αR(α′) ∪ ε(α′)R(α),

R(α?) = α? R(α).

Starting with Rε(α) as the set of final states, the automatonAPre(α) can then
be successively constructed backwards as follows. For each state of the form α′σ
the set Rε(α

′) is computed and a transition by σ is added from each element
α′′ ∈ Rε(α

′) to α′σ. The state labelled by ε is the initial state of APre(α).
Formally, consider the function pw(α) for words w ∈ Σ? defined as follows:

pε(α) = Rε(α),

pσw(α) =
⋃

α′σ ∈ pw(α)

Rε(α
′).

We have that L(pw(α)) = {x | xw ∈ L(α) }. Let Pre(α) =
⋃
w∈Σ? pw(α).

The prefix automaton of α is

APre(α) = 〈Pre(α),Σ, δPre, ε,Rε(α)〉,

where δPre = { (α′′, σ, α′σ) | α′σ ∈ Pre(α), α′′ ∈ Rε(α
′), σ ∈ Σ }, that is,

δR
Pre(α′σ, σ) = Rε(α

′), for all α′σ ∈ Pre(α).
Considering a marked regular expression α all the expressions of Pre(α) are

of the form that α′σi or ε. For each position i ∈ Pos(α) there exists an unique
α′σi ∈ Pre(α). Let pi(α) be that expression. One has, APre(α) ' APOS(α). For
i, j ∈ Pos0(α) the relation ≡` defined below is left-invariant w.r.t. APOS,

i ≡` j ⇔ pi(α) = pj(α).

19

Proposition 15 ([18]). APre(α) ' APOS(α)/≡`.

The following example explains the relation ≡` in more detail.

Example 9. Considering the regular expression α = (a + b) + bb. The au-
tomata APOS(α) and APre(α) are depicted below, where 2 ≡` 3.

0 2

1

3 4

a

b

b

b

ε a

b bb

a

b

b

APOS(α) APre(α)

However the determinisation of APre is isomorphic to the determinisation
of APOS, i.e., AMY. This fact is a direct consequence of Lemma 2 presented in
Section 2.

Proposition 16. D(APre(α)) ' AMY(α).

Considering the concepts used to define APre in a symmetric manner, a new
automaton construction from an expression can be obtained. We will show that
that construction is closely related to the partial derivative automaton APD

and to the Brzozowski automaton AB. First, let L(α) be a set of normalised
expressions of the form σα′, which is computed as R except for concatenation
and Kleene star:

L(αα′) = L(α)α′ ∪ ε(α) L(α′),

L(α?) = L(α)α?.

Again, let Lε(α) = L(α) ∪ ε(α). Moreover, let

←−p ε(α) = Lε(α)

←−p wσ(α) =
⋃

σα′∈←−p w(α)

Lε(α
′).

It is immediate that L(α) = L(Lε(α)) and L(←−p w(α)) = {x | wx ∈ L(α) }.

Definition 3. Let A←−
Pre

(α) = 〈
←−
Pre(α),Σ, δ←−

Pre
, Lε(α), ε〉, where

←−
Pre(α) =

⋃
w∈Σ?

←−p w(α)

and δ←−
Pre

(α′, σ) = Lε(α
′′) if α′ = σα′′, and δ←−

Pre
(α′, σ) = ∅ otherwise.

20

It follows that

Proposition 17. L(A←−
Pre

(α)) = L(α).

Moreover from the subset construction we have,

D(A←−
Pre

(α)) = 〈Q
D(
←−
Pre)

,Σ, δ
D(
←−
Pre)

, Lε(α), F
D(
←−
Pre)
〉,

where F
D(
←−
Pre)

= {X ∈ Q
D(
←−
Pre)
| ε ∈ X } and δ

D(
←−
Pre)

(X,σ) =
⋃
σα′∈X Lε(α

′).

In the following, we will show that this automaton is a quotient of both, the
Brzozowski automaton and of the determinisation of the partial derivative au-
tomaton. The right-invariant relation is the same for both cases.

Lemma 18. Lε(α) =
⋃
σ∈Σ σ∂σ(α) ∪ ε(α).

Proof. The proof is by induction on the structure of α. For ∅ and ε the result
is trivially true. For σ ∈ Σ,

⋃
σ′∈Σ σ

′∂σ′(σ) ∪ ε(σ) = {σ} = Lε(σ). For the
remaining cases it is sufficient to apply the definitions of ∂σ(α) and Lε(α), and
the fact that Lε(α) =

⋃
σ∈Σ σ∂σ(α) ∪ ε(α) implies L(α) =

⋃
σ∈Σ σ∂σ(α).

Given X,X ′ ⊆ PD(α) we define

X ≡Lε X
′ ⇔ Lε(X) = Lε(X

′),

where Lε(X) denotes
⋃
α′∈X Lε(α

′).

Proposition 19. D(APD(α))/≡Lε ' D(A←−
Pre

(α)).

Proof. Let D(APD(α)) = 〈QD(PD),Σ, δD(PD), {α}, FD(PD)〉. We first show that
≡Lε is right-invariant w.r.t. D(APD(α)). We have

≡Lε⊆ (QD(PD) \ FD(PD))
2 ∪ F 2

D(PD),

because ε ∈ Lε(X) if and only if there exists α′ ∈ X such that ε(α′) = ε. Now,
consider two states X and X ′ in D(APD(α)) such that X ≡Lε X

′. Then

δD(PD)(X,σ) =
⋃
α′∈X

∂σ(α′)

= {α′′ | σα′′ ∈ Lε(X) }
= {α′′ | σα′′ ∈ Lε(X

′) }
= δD(PD)(X

′, σ).

Consider ϕN : QD(PD)/≡Lε −→ Q
D(
←−
Pre)

defined by ϕN([X]) = Lε(X). We

want to show that ϕN defines an isomorphism between D(APD(α))/≡Lε and
D(A←−

Pre
(α)). Injectivity follows from the definition of ≡Lε . We have ϕN([{α}]) =

Lε(α) and [X] is a final state of D(APD(α))/≡Lε if and only if ε ∈ Lε(X) =

21

ϕN([X]). For the transition functions, let X ∈ QD(PD)/≡Lε and σ ∈ Σ,

ϕN(δD(PD)/≡Lε([X], σ)) = ϕN([{α′′ | σα′′ ∈ Lε(X) }])
= Lε({α′′ | σα′′ ∈ Lε(X) })

=
⋃

σα′′∈Lε(X)

Lε(α
′′)

= δ
D(
←−
Pre)

(Lε(X), σ)

= δ
D(
←−
Pre)

(ϕN([X]), σ).

To prove that ϕN is surjective note that any state of D(A←−
Pre

(α)) is a Lε(X) for
X ∈ QD(PD).

Asperti et al. [3] showed that quotients of the Brzozowski automaton AB(α)
and of the mark before automaton AMB(α), by two different right-invariant
relations, lead to two isomorphic automata. For AB(α) that relation is precisely
≡Lε . Adapting the arguments in the proof of Proposition 19 and using the fact
that Lε(dσ(α)) = Lε(dσ(Lε(α))), which was shown in [3], we obtain that those
isomorphic automata are also isomorphic to D(A←−

Pre
(α)), i.e.,

Corollary 3. AB(α)/≡Lε ' D(A←−
Pre

(α)).

Example 10. Consider the expression α = (b+ ab)? + b? from Example 1 and
APD(α) presented in Example 8. We have

Lε(α) = {ε, bb?, b(b+ ab)?, ab(b+ ab)?} = Lε({(b+ ab)?, b?})

and the following automata:

α b(b + ab)?

b?, (b + ab)?

(b + ab)?
a

b

b

b

a
a

b

Lε(α) b(b + ab)?

ε, ab(b + ab)?, b(b + ab)?

a

b

ba

b

D(APD(α)) D(A←−
Pre

(α))

For this expression one has AB(α) ' D(A←−
Pre

(α)).

6. Reversals and Automata Constructions

Given α, any of the automata constructions in the previous sections can be
applied to αR. If one reverses the resulting automaton, an alternative automaton
construction for L(α) is obtained.

22

In this section we establish some relations between the direct constructions
and the double reversed ones. We show that APOS(αR)R ' A←−−

POS
(α) and obtain

analogous relations for some of the quotients of APOS. Then we show that deter-
minising any quotient of APOS(αR)R by a right-invariant relation is the same as
determinising APOS(αR)R and thus, by Proposition 10, the resulting automata
are all isomorphic to AMB. The same does not hold if one considers quotients
by a left-invariant relation, and we illustrate that with the APre construction.

The following lemma establishes the relation between positions of letters in α
and the positions of the corresponding occurrences in αR.

Lemma 20. Consider a regular expression α with |α|Σ = n and the bijection
ϕP : Pos0(α) −→ Pos(α)∪{n+1} defined by ϕP(i) = n+1−i. Then, ϕP(ϕP(i)) =
i, ϕP(Pos(α)) = Pos(α) and ϕP(0) = n+ 1. Furthermore, the following hold for
i, j ∈ Pos(α):

• i ∈ Last(α) iff ϕP(i) ∈ First(αR);

• i ∈ First(α) iff ϕP(i) ∈ Last(αR);

• j ∈ Follow(α, i) iff ϕP(i) ∈ Follow(αR, ϕP(j));

• σi in α is the same letter as σϕP(i) in αR.

Our first result on reversals of expressions and automata reads as follows:

Proposition 21. APOS(αR)R ' A←−−
POS

(α).

Proof. Consider APOS(αR)R = 〈Pos0(αR),Σ, δR
POS, Last0(αR), {0}〉 where

δR
POS = { (i, σi, j) | i ∈ Follow(αR, j), j 6= 0 } ∪ { (i, σi, 0) | i ∈ First(αR) }.

We show that ϕP, as defined in Lemma 20, is an isomorphism between the
automata APOS(αR)R and A←−−

POS
(α). For the transition relations we have,

ϕP(δR
POS)

= ϕP({ (i, σϕP(i), j) | ϕP(j) ∈ Follow(α,ϕP(i)), ϕP(j) 6= n+ 1 })
∪ ϕP({ (i, σϕP(i), 0) | ϕP(i) ∈ Last(α) })

= { (ϕP(i), σϕP(i), ϕP(j)) | ϕP(j) ∈ Follow(α,ϕP(i)), ϕP(j) 6= n+ 1 }
∪ { (ϕP(i), σϕP(i), n+ 1) | ϕP(i) ∈ Last(α) })

= δ←−−
POS

.

Showing that ϕP preserves initial and final states is easy and left to the reader.

A right-invariant relation ≡ on the position automaton corresponds to a
left-invariant relation in its dual, A←−−

POS
. In particular, we have APD(αR) '

APOS(αR)/≡c and consequently APD(αR)R ' APOS(αR)R/≡c. Moreover, Maia

23

et al. [18] showed that APD(αR)R ' A←−
PD

(α). For the follow automaton con-

struction it is also true that AF(αR)R ' APOS(αR)R/≡F. So, this automaton,
which we denote by A←−

F
can also be defined as a quotient of A←−−

POS
by a left-

invariant relation.
If we consider a quotient of the position automaton by a left-invariant re-

lation ≡, its dual construction is a quotient of A←−−
POS

by ≡, which is a right-

invariant relation on A←−−
POS

. In particular, APre(αR) ' APOS(αR)/≡`, where ≡`
is left-invariant. Consequently, APre(αR)R ' APOS(αR)R/≡`, where ≡` is
right-invariant. In the following we show that APre(αR)R ' A←−

Pre
(α) automa-

ton. For this, we consider the following lemma, which relates the states in
APre(αR) with the states in A←−

Pre
(α). Given a set S of regular expressions, let

SR = {αR | α ∈ S }.

Lemma 22. For all α ∈ RE, one has R(αR)R = L(α).

Proof. The proof is by structural induction on α, for which we only show the
case of concatenation. Let

L(α1α2) = L(α1)α2 ∪ ε(α1) L(α2)

= R(αR
1)Rα2 ∪ ε(α1)R(αR

2)R

= (αR
2 R(αR

1))R ∪ (ε(αR
1)R(αR

2))R

= (αR
2 R(αR

1) ∪ ε(αR
1)R(αR

2))R

= R(αR
2 α

R
1)R = R((α1α2)R)R.

The remaining operations can be shown with similar arguments.

As a consequence, one also has Rε(α
R)R = Lε(α). Now it is sufficient to

note that the initial state of APre(αR) is ε, which is the unique finite state
of A←−

Pre
(α). The set of final states in APre(αR) is Rε(α

R), and the set of initial
states in A←−

Pre
(α) is Lε(α). Furthermore, there is a transition entering a state

of the form α′σ from a state α′′ in APre(αR) if and only if α′′ ∈ Rε(α
′) and

that transition is labelled by σ. On the other hand, there is a transition from
a state of the form α′σ to a state α′′ in A←−

Pre
(α) if and only if α′′ ∈ Lε(α

′)

and that transition is labelled by σ. We conclude that APre(αR)R is isomorphic
to A←−

Pre
(α).

Proposition 23. APre(αR)R ' A←−
Pre

(α).

Now we consider, the determinisation of the above constructions. For A←−−
POS

,
the determinisation of any quotient by a left-invariant relation is isomorphic
to AMB, which is a direct consequence of Lemma 2 and of the fact that a right-
invariant relation in an NFA A is a left-invariant relation in AR. This has direct
consequences for all constructions, that can be obtained as a quotient of the
position automaton by some right-invariant relation. In particular, we have the
following.

24

Proposition 24.

D(APOS(αR)R) ' D(APD(αR)R) ' D(AF(αR)R) ' AMB(α).

However, if we consider quotients of the position automaton by a left-
invariant relation ≡, the determinisation of its dual construction is a quotient
of A←−−

POS
by ≡, which is a right-invariant relation on A←−−

POS
. By Lemma 1, we

have for A←−
Pre

that

Proposition 25.

D(A←−
Pre

(α)) ' D(APre(αR)R) ' D(APOS(αR)R/≡`) ' D(APOS(αR)R)/≡`.

From this result and the relations obtained in Section 5.1, we conclude that
D(A←−

Pre
(α)) is the smallest automaton among the constructions studied in this

paper.

Example 11. For α = a? + (a + b)a?, where αR = a?1(a2 + b3) + a?4, we have
D(APre(αR)R) 6' D(APOS(αR)R), which are depicted below.

{a?b, a?a} {a?a, ε}
a, b

a

{0, 2, 3, 4} {0, 1, 4}

{0, 1}

b

a
a

a

D(APre(αR)R) D(APOS(αR)R)

7. Taxonomy

Recall Figure 1, where the relations between the different automata stud-
ied are graphically represented. We highlight that D(A←−

Pre
(α)) is the smallest

automaton among the deterministic ones, but is not always the minimal. Brzo-
zowski [9] showed that for a trim NFA A, D(A) is minimal if AR is deterministic.
Consequently, one obtains the nice property that, whenever X(α) is a deter-
ministic automaton, for instance AMB or AMA, then D(X(αR)R) is the minimal
DFA for L(α). We note that the size of AB, D(APD) and AMB are incompa-
rable. Some examples follow. For a?b? + a?bbb, automaton AB is smaller than
D(APD), and for a?(a+ (aa))?, automaton D(APD) is the smaller. For aa+ bba
we find that D(APD) is smaller than AMB. Finally, for (b((a + a) + a?))b, the
device AMB is smaller than AB and than D(APD).

References

[1] Allauzen, C., Mohri, M., 2006. A unified construction of the Glushkov,
follow, and Antimirov automata. In: Kralovic, R., Urzyczyn, P. (Eds.),
31st MFCS. Vol. 4162 of LNCS. Springer, pp. 110–121.

25

[2] Antimirov, V. M., 1996. Partial derivatives of regular expressions and finite
automaton constructions. Theoret. Comput. Sci. 155 (2), 291–319.

[3] Asperti, A., Coen, C. S., Tassi, E., 2010. Regular expressions, au point.
CoRR abs/1010.2604.
URL http://arxiv.org/abs/1010.2604

[4] Berry, G., Sethi, R., 1986. From regular expressions to deterministic au-
tomata. Theoret. Comput. Sci. 48 (3), 117–126.

[5] Broda, S., Holzer, M., Maia, E., Moreira, N., Reis, R., 2017. On the mother
of all automata: the position automaton. In: Charlier, É., Leroy, J., Rigo,
M. (Eds.), Proc. 21st DLT (Developments in Language Theory). Vol. 10396
of LNCS. Springer, pp. 134–146.

[6] Broda, S., Machiavelo, A., Moreira, N., Reis, R., 2012. On the average size
of Glushkov and partial derivative automata. Internat. J. Found. Comput.
Sci. 23 (5), 969–984.

[7] Brüggemann-Klein, A., 1993. Regular expressions into finite automata.
Theoret. Comput. Sci. 48, 197–213.

[8] Brzozowski, J., 1964. Derivatives of regular expressions. J. ACM (11), 481–
494.

[9] Brzozowski, J. A., 1962. Canonical regular expressions and minimal state
graphs for definite events. In: Mathematical Theory of Automata. MRI
Symposia Series. Polytechnic Press, Polytechnic Institute of Brooklyn,
NY,12, pp. 529–561.

[10] Champarnaud, J. M., Ziadi, D., 2001. From Mirkin’s prebases to An-
timirov’s word partial derivatives. Fundam. Inform. 45 (3), 195–205.

[11] Champarnaud, J. M., Ziadi, D., 2002. Canonical derivatives, partial deriva-
tives and finite automaton constructions. Theoret. Comput. Sci. 289, 137–
163.

[12] Chen, H., Yu, S., 2012. Derivatives of regular expressions and an applica-
tion. In: Dinneen, M. J., Khoussainov, B., Nies, A. (Eds.), Computation,
Physics and Beyond, WTCS 2012. Vol. 7160 of LNCS. Springer, pp. 343–
356.

[13] Giammarresi, D., Ponty, J.-L., Wood, D., 1998. Glushkov and Thompson
constructions: A synthesis. HKUST TCSC-98-11, The Department of Sci-
ence & Engineering, Theoretical Cmputer Science Group, The Hong Kong
University of Science and Technology.

[14] Glushkov, V. M., 1961. The abstract theory of automata. Russian Math.
Surveys 16, 1–53.

26

http://arxiv.org/abs/1010.2604

[15] Gruber, H., Holzer, M., Dec. 2015. From finite automata to regular ex-
pressions and back—a summary on descriptional complexity. Internat. J.
Found. Comput. Sci. 26 (8), 1009–1040.

[16] Ilie, L., Yu, S., 2003. Follow automata. Inf. Comput. 186 (1), 140–162.

[17] Maia, E., 2015. On the descriptional complexity of some operations and
simulations of regular models. Ph.D. thesis, Faculdade de Ciências da Uni-
versidade do Porto.

[18] Maia, E., Moreira, N., Reis, R., 2015. Prefix and right-partial derivative
automata. In: Soskova, M., Mitrana, V. (Eds.), 11th CiE. Vol. 9136 of
LNCS. Springer, pp. 258–267.

[19] McNaughton, R., Yamada, H., 1960. Regular expressions and state graphs
for automata. IEEE Trans. Comput. 9, 39–47.

[20] Mirkin, B. G., 1966. An algorithm for constructing a base in a language of
regular expressions. Eng. Cybern. 5, 51—57.

[21] Nipkow, T., Traytel, D., 2014. Unified decision procedures for regular ex-
pression equivalence. In: Klein, G., Gamboa, R. (Eds.), 5th ITP. Vol. 8558
of LNCS. Springer, pp. 450–466.

[22] Ott, G., Feinstein, N. H., Oktober 1961. Design of sequential machines from
their regular expressions. J. ACM 8 (4), 585–600.

[23] Sakarovitch, J., 2009. Elements of Automata Theory. Cambridge University
Press.

[24] Thompson, K., 1968. Regular expression search algorithm. Commun. ACM
11 (6), 410–422.

[25] Yamamoto, H., 2014. A new finite automaton construction for regular ex-
pressions. In: Bensch, S., Freund, R., Otto, F. (Eds.), 6th NCMA. Vol. 304
of books@ocg.at. Österreichische Computer Gesellschaft, pp. 249–264.

27

	Introduction
	Preliminaries
	Regular Expressions
	Finite Automata

	The Position and the Follow Automata
	The Follow Automaton A`39`42`"613A``45`47`"603AF

	Automata Based on Pointed Expressions
	The Automaton A`39`42`"613A``45`47`"603AMB Versus `39`42`"613A``45`47`"603AD(A`39`42`"613A``45`47`"603AF)
	The Dual Position Automaton

	Derivative Based Constructions
	Prefix automaton and its dual

	Reversals and Automata Constructions
	Taxonomy

