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ABSTRACT
Descriptional complexity is the study of the conciseness of the various models represent-
ing formal languages. The state complexity of a regular language is the size, measured
by the number of states of the smallest, either deterministic or nondeterministic, fi-
nite automaton that recognises it. Operational state complexity is the study of the
state complexity of operations over languages. In this survey, we review the state com-
plexities of individual regularity preserving language operations on regular and some
subregular languages. Then we revisit the state complexities of the combination of in-
dividual operations. We also review methods of estimation and approximation of state
complexity of more complex combined operations.
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1. Introduction

Automata theory is one of the oldest research areas in computer science. Much
research has been done on automata theory since 1950’s. Work in many subareas
of automata theory is still ongoing these days due to its new applications in areas
such as software engineering, programming languages, parallel programming, network
security, formal verification and natural language and speech processing [164, 175, 166,
195, 151, 201].

Descriptional complexity and, in particular, state complexity is one of such active
subareas. Generally speaking, the study of complexity mainly focuses on the following
two kinds of issues: time and space complexity issues, i.e. time and space needed for
the execution of the processes; or descriptional complexity issues, i.e. the succinctness
of the model representations [203]. In general, having succinct objects will improve
our control on software, which may become smaller, more efficient and easier to certify.

State complexity is a type of descriptional complexity based on the finite machine
model, and, in the domain of regular languages, it is related to the basic question of
how to measure the size of a finite automaton. For the deterministic finite automa-
ton (DFA) case, the three usual answers are: the number of states, the number of
transitions, or a combination of the two [203]. For a complete DFA, whose transition
function is defined for every state and every possible input symbol, the number of
transitions is linear with the number of states, for each fixed alphabet. Thus, the
number of states becomes the key measure for the size of a complete DFA. When
considering the descriptional complexity of nondeterministic finite automata (NFA),
because this notion of completeness is not present, the measures based on the number
of states and on the number transitions, are much more loosely related.

Since a regular language can be accepted by many DFAs with a different number
of states but only by one unique minimal, complete DFA, the deterministic state
complexity of a regular language is defined as the number of states of the minimal,
complete DFA accepting it. If we replace the minimal, complete DFA with minimal
NFA, we have the definition of nondeterministic state complexity. Since state com-
plexity is used as a natural abbreviation of deterministic state complexity by most
researchers working in the area, we also follow the convention in this paper.

Complexity can be studied in two different flavours: in the worst case [203] and in
the average case [169]. The worst-case complexity of a class of regular languages is
the supremum of the complexities of all the languages in the class [203] whereas the
average-case complexity is the average value of the complexities of those languages.
In spite of its evident practical importance, there is still very few research on average-
case state complexity. For that reason, in this paper, we mainly review worst-case
results.

Results on descriptional complexity can be, roughly, divided into representational
(or transformational) and operational. Representational complexity studies the com-
plexity of transformations between models, by comparing the sizes of different repre-
sentations of formal languages [191]. For example, given an n-state NFA for a regular
language, the DFA which is equivalent to it has at most 2n states, and this result,
established in 1957, is considered the first state complexity result [181]. Operational
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state complexity studies the state complexity of operations on languages. When we
speak about the state complexity of an operation on regular languages, we mean the
state complexity of the class of resulting languages from the operation [203]. For
example, when we say that the state complexity of the intersection operation on two
regular languages, accepted by m-state and n-state DFAs, respectively, is mn, we
mean that mn is the worst-case state complexity of the class of regular languages
that can be represented as the intersection of an m-state DFA language and an n-
state DFA language. Note that this implies that the intersection of any m-state DFA
language L1 and n-state DFA L2 language has a DFA with at most mn states (upper
bound) and that there exist languages L1 and L2 such that the minimal DFA for
L1 ∩ L2 has exactly mn states (lower bound).

In this survey, we mostly concentrate in operational state complexity results. Al-
though first studies go back to the 1960’s and 1970’s, research in the area has been
most active in the last two decades. This can be partially explained by the fact that
back then, descriptional complexity issues were not a priority for applications, as they
are today. But, also, due to its combinatorial nature many of the current research is
only possible with the help of new high-performance symbolic manipulation software
and powerful computers [78].

The paper is organized as follows. After some preliminares in the next section, the
notions of deterministic and nondeterministic state complexity are considered in Sec-
tion 3. To better understand the possible gap between both measures is a main topic
of research. In Section 4, we review the state complexities of individual regularity
preserving language operations, like, Boolean operations, catenation, star, reversal,
shuffle, orthogonal catenation, proportional removal, and cyclic shift, etc. These indi-
vidual operations are fundamental and important in formal languages and automata
theory research and applications. Results in these two sections are given for differ-
ent classes of (sub)regular languages, e.g. general infinite, finite, unary, star-free,
etc. In Section 5, we revisit the state complexities of combined operations which are
combinations of individual operations, e.g., star of union, star of intersection, star of
catenation, star of reversal, union of star, intersection of star, etc. The state com-
plexities of most of these combined operations are much lower than the mathematical
composition of the state complexities of their component individual operations. We
also review the methods of estimation and approximation of state complexity of com-
bined operations which can be used for very complex combined operations. Section 6
concludes this survey with some discussion on the results presented, highlighting some
open problems and directions of future research.

2. Preliminaries

Here we recall some basic definitions related to finite automata and regular languages.
For a more complete presentation the reader is referred to [202].

The set of natural numbers is denoted by N and for i, j ∈ N, [i, j] = {x ∈ N | i ≤
x ≤ j}. The power set of a set S is denoted by 2S and the cardinality of a finite set
S is |S|. In the following, Σ stands always for a finite alphabet, the empty word is
represented by ε and the set of all words over Σ by Σ?. A language is a subset of
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Σ?. We say that L ⊆ Σ? is a unary (respectively, binary, ternary) language if |Σ| = 1
(respectively, |Σ| = 2, |Σ| = 3). Note this definition does not require that all symbols
of Σ actually appear in words of L and hence every unary language is also a binary
language and a binary language is always a ternary language. A language L is said
to be finite if L is a finite subset of Σ?.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F ) where
Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → 2Q is the (multi-
valued) transition function, q0 ∈ Q is the initial state and F ⊆ Q is the set of final
(accepting) states. The transition function is extended as a function δ̂ : Q×Σ? → Q

by setting δ̂(q, ε) = q for q ∈ Q and for w ∈ Σ?, x ∈ Σ, δ̂(q, wx) = δ(δ̂(q, w), x). To
simplify the notation, we denote δ̂ by δ. The language recognized by the NFA A is
L(A) = {w ∈ Σ? | δ(q0, w) ∩ F 6= ∅}.

An NFA A = (Q,Σ, δ, q0, F ) is a complete deterministic finite automaton (DFA)
if the transition function δ is one-valued, that is, δ is a function Q × Σ → Q. An
incomplete DFA allows the possibility that some transitions may be undefined, that
is, δ is a partial function Q× Σ→ Q.

Both the DFAs and the NFAs define the class of regular languages [202]. It is well
known that any regular language has a unique minimal (complete or incomplete) DFA,
that is, a unique DFA with the smallest number of states. For a given regular language
the sizes of the minimal, complete DFA and minimal, incomplete DFA differ by at
most one state. Furthermore, for a given DFA there exists an n logn time algorithm to
compute the minimal DFA [202]. On the other hand, for a given regular language there
may be more than one minimal NFA and NFA minimization is PSPACE-hard [108,
202].

3. State Complexity and Nondeterministic State Complexity

The state complexity of a regular language L, sc(L), is the number of states of its
minimal (complete) DFA. The nondeterministic state complexity of a regular language
L, nsc(L), is the number of states of a minimal NFA that accepts L. Since a DFA is
in particular an NFA, for any regular language L one has sc(L) ≤ nsc(L). It is well
known that any m-state NFA can be converted, via the subset construction, into an
equivalent DFA with at most 2m states [181] (we call this conversion determination).
Thus, sc(L) ≤ 2nsc(L). To show that this upper bound is tight one must exhibit a
family of languages (Lm)m≥1 such that nsc(Lm) = m and sc(Lm) = 2m, for every
m ≥ 1. In 1963, Lupanov [152] showed that this upper bound is tight using a family
of ternary languages. In 1971, Moore [165] and Meyer and Fischer [161] presented
different families of binary languages. All three families of NFAs are represented in
Figure 1. However, for unary languages that upper bound is not achievable [153, 52,
53]. Chrobak [52, 53] proved that if L is a unary language with nsc(L) = m, then
sc(L) = O(F (m)) where

F (m) = max{lcm(x1, . . . , xl) | x1, . . . , xl ≥ 1 and x1 + · · ·+ xl = m} (1)
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Figure 1: Moore (i), Lupanov (ii), and Meyer & Fischer (iii) minimal m-state NFAs
with equivalent minimal 2m-state DFAs

is the Landau’s function and lcm denotes the least common multiple. It is known that
F (m) = eΘ(

√
m lnm), so sc(L) = eΘ(

√
m lnm). This asymptotic bound is tight, i.e., for

every m there exists a unary language Lm such that nsc(Lm) ≤ m and sc(Lm) =
F (m− 1). Other related bounds were studied by Meregethi and Pighizzini [160].

For a general finite language L, if nsc(L) = m then sc(L) = Θ(k
m

1+log k ), k = |Σ| >
1, and this bound is tight [192]. In the case of finite binary languages, Θ(2 m

2 ) is a tight
bound. In 1973, Mandl [155] had already proved that, for any finite binary language
L, if nsc(L) = m then sc(L) ≤ 2 · 2m/2 − 1 if m is even, and sc(L) ≤ 3 · 2bm/2c − 1
if m is odd, and that these bounds are tight. Finally, for finite unary languages,
nondeterminism does not lead to significant improvements. If L is a finite unary
language with nsc(L) = m, then sc(L) ≤ m+ 1 [155, 192].

In Section 4.3 the state complexity of determination of other subregular languages
is reviewed. As it will be evident from the results in the following sections, the
complexity of determination plays a fundamental role in the operational complexity
and thus the importance of its study per se.

The possible gap between state complexity and nondeterministic state complexity
for general regular languages leads to the notion of magic number introduced in
2000 by Iwama et al. [115, 116]. A number α, such that α ∈ [m, 2m], is magic
for m with respect to a given alphabet of size k, if there is no minimal m-state
NFA whose equivalent minimal DFA has α states. This notion has been extensively
researched in the last decade and has been extended to other gaps between two state
complexity values [153, 52, 121, 81, 82, 83, 120, 125, 127, 102]. We summarize here
some of the obtained results. The general observation is that, apart from unary
languages, magic numbers are hard to find. For binary languages, it was shown that
if α = 2m − 2n or α = 2m − 2n − 1, for n ∈ [0,m/2 − 2] [115], and α = 2m − n
for n ∈ [5, 2m − 2] and some coprimality condition holds for n [116], then α is not
magic. Also, for a binary alphabet, all numbers α ∈ [m,m + 2bm/3c] have been
shown to be non-magic [123], which improves previous results, [m,m2/2] [121] and
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[m, 2 3√m] [81]. For ternary or quaternary regular languages, and for languages over an
alphabet of exponential growing size there are no magic numbers [121, 120, 125, 127].
For the unary case, however, trivially all numbers between e(1+o(1))

√
m lnm and 2m

are magic [153, 52, 82]. Moreover, it has been shown that there are much more magic
than non-magic numbers in the range from m to e(1+o(1))

√
m lnm [82]. In the case

of finite languages, partial results were obtained by Holzer et al. [102]. All numbers
α ∈ [m+ 1, (m2 )2 + m

2 + 1], if m even, and α ∈ [m+ 1, (m−1
2 )2 +m+ 1], if m is odd,

are non-magic. Moreover, all numbers of the form 3 · 2 m
2 −1 + 2i − 1, with m even,

and 2 m+1
2 + 2i− 1, with m odd, for some integer i ∈ [1, dm−1

2 e] are non-magic. In the
same paper, the magic number problem is also studied for other subregular language
classes.

3.1. State Complexity versus Quotient Complexity

Quotient complexity, introduced in 2009 by Brzozowski [14, 16], coincides, for regular
languages, with the notion of state complexity but it is defined in terms of languages
and their (left) quotients. The left quotient of a language L by a word w is defined as
the language w−1L = {x ∈ Σ? | wx ∈ L}. The quotient complexity of L, denoted by
κ(L), is the number of distinct languages that are left quotients of L by some word.
It is well known that, for a regular language L, the number of left quotients is finite
and is exactly the number of states of the minimal DFA accepting L. So, in the case
of regular languages, state complexity and quotient complexity coincide. Considering
that quotient complexity is given in terms of languages, and their left quotients, some
language algebraic properties can be used in order to obtain upper bounds for the
complexity of operations over languages. Actually, the proof that the set of (left)
quotients of a regular language is finite [13] was one of the earliest studies of state
complexity. Quotient complexity can also be useful to show that an upper bound is
tight. If a given operation can be expressed as a function of other operations (for
example, L1 − L2 = L1 ∩ L2), then, witnesses for the worst-case complexity of those
operations can be used to provide a witness for the complexity of the first operation.

4. State Complexity of Individual Operations

The state complexity of an operation (or operational state complexity) on regular lan-
guages is the worst-case state complexity of a language resulting from the operation,
considered as a function of the state complexities of the operands. Adapting a for-
mulation from Holzer and Kutrib [107], given a binary operation ◦, the ◦-language
operation state complexity problem can be stated as follows:
• Given an m-state DFA A1 and an n-state DFA A2.
• How many states are sufficient and necessary, in the worst case, to accept the

language L(A1) ◦ L(A2) by a DFA?
This formulation can be generalized for operations with other arities, other kinds

of automata and classes of languages. An upper bound can be obtained by providing
an algorithm that, given DFAs for the operands, constructs a DFA that accepts the
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resulting language. The number of states of the resulting DFA is an upper bound
for the state complexity of the referred operation. To show that an upper bound is
tight, for each operand a family of languages (one language, for each possible value
of the state complexity) must be given such that the resulting automata achieve that
bound. We can call those families witnesses. The same approach is used to obtain the
nondeterministic state complexity of an operation on regular languages. No proofs
are here presented for the stated results, although several examples of families of
languages, for which the operations achieve a certain upper bound, are given. There
are very few results of the study of state complexity on the average case. However,
whenever some results are known they are mentioned together with the corresponding
worst-case analysis.

In this section, the following notation is used. When considering unary operations,
let L be regular language with sc(L) = m (nsc(L) = m) and let A = (Q,Σ, δ, q0, F )
be the complete minimal DFA (a minimal NFA) such that L = L(A). Furthermore,
|Σ| = k or |Σ| = f(m) if a growing alphabet is taken into account, |F | = f , and
|F − {q0}| = l. In the same way, for binary operations let L1 and L2 be regular
languages over the same alphabet with sc(L) = m (nsc(L) = m) and sc(L2) = n
(nsc(L2) = n), and let Ai = (Qi,Σ, δi, qi, Fi) be complete minimal DFAs (minimal
NFAs) such that Li = L(Ai), for i ∈ [1, 2]. Furthermore, |Σ| = k or |Σ| = f(m,n) if
a growing alphabet is taken into account, |Fi| = fi, and |Fi − {qi}| = li, for i ∈ [1, 2].

4.1. Basic Operations

In this section we review the main results related with state complexity (and nonde-
terministic state complexity) of some basic operations on regular languages: Boolean
operations (mainly union, intersection, and complement), catenation, star (and plus),
and reversal. For some classes of languages, left and right quotients are also con-
sidered. Because their particular characteristics, that were already pointed out in
Section 3, for each operation the languages are divided into regular (k ≥ 2 and in-
finite), finite (k ≥ 2), unary (infinite) and finite unary. Some other subregular
languages are considered in Section 4.3. Whenever known, results on the range of
complexities that can be reached for each operation are also presented. This exten-
sion of the notion of magic number to operational state complexity is now an active
topic of research.

There are some other survey papers that partially review the results here presented
and that were a reference to our presentation [202, 203, 204, 114, 205, 190, 107, 14,
106, 108].

4.1.1. General Regular Languages

Table 1 summarizes the results for general regular languages. The (fifth) third column
contains the smallest alphabet size of the witness languages for the (nondeterministic)
state complexity given in the (fourth) second column, respectively. Columns with this
kind of information also appear in several tables to follow.

In 1994, Yu et al. [208] studied the state complexity of catenation, star, reversal,
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Table 1: State complexity and nondeterministic state complexity for basic operations
on regular languages.

Regular
sc |Σ| nsc |Σ|

L1 ∪ L2 mn 2 m+ n+ 1 2
L1 ∩ L2 mn 2 mn 2
L m 1 2m 2
(L1 − L2) mn 2
(L1 ⊕ L2) mn 2

L1L2
m2n − f12n−1, if n > 1 2

m+ n 2
m, if n = 1 1

L?
2m−1 + 2m−l−1, if m > 1, l > 0 2

m+ 1 2m, if m > 1, l = 0 1
m+ 1, if m = 1 1

L+ 2m−1 + 2m−l−1 − 1 2 m 2
LR 2m 2 m+ 1 2
L2 \ L1 2m − 1 2
L1 /L2 m 1
w−1L m 1 O(m+ 1)
Lw−1 m 1 m 1

union, intersection, and left and right quotients. They also studied the state complex-
ity of some operations for unary languages. More than two decades before, in 1970,
Maslov [156] had presented some estimates for union, catenation, and star. Although
Maslov considered possible incomplete DFAs, and the paper has some incorrections,
the binary languages presented are tight witnesses for the upper bounds for that three
operations [14]. Rabin and Scott [181] indicated the upper bound mn for the inter-
section (that also applies to union). Maslov and Yu et al. gave similar witnesses of
tightness, both for union and intersection. The families of languages given by Yu et al.
for intersection are {x ∈ {a, b}? | #a(x) = 0 (mod m)} and {x ∈ {a, b}? | #b(x) = 0
(mod n)}. Their complements are witnesses for union. Hricko et al. [112] showed
that for any integers m ≥ 2, n ≥ 2, and α ∈ [1,mn], there exist binary languages L1
and L2 such that sc(L1) = m, sc(L2) = n, and sc(L1 ∪ L2) = α. Thus, there are no
magic numbers for the union. The same holds for intersection.

Complementation for DFAs is trivial (one has only to exchange the final states)
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and thus, the state complexity of the complement is the same one as of the original
language, i.e., sc(L) = sc(L). For other Boolean operations (set difference, symmet-
ric difference, exclusive disjunction, etc.) the state complexity can be obtained by
expressing them as a function of union, intersection and complement [14].

For catenation, Yu et al. gave the upper bounds m2n − f12n−1, if m ≥ 1, n ≥ 2;
and m, if m ≥ 1, n = 1. They presented binary languages tight bound witnesses for
m ≥ 1, n = 1 and m = 1, n ≥ 2, but ternary languages tight bound witnesses for
m > 1, n ≥ 2. However, the bound is tight for the following binary language families
presented by Maslov: {w ∈ {a, b}? | #a(w) = (m− 1) (mod m)} and L((a?b)n−2(a+
b)(b + a(a + b))?), for all m,n ≥ 2 and f1 = 1. Other families of binary languages
for which the catenation achieves the upper bound were presented by Jirásková [122].
Concerning the possible existence of magic numbers, the same author [124, 126] proved
that, for all m, n and α such that either n = 1 and α ∈ [1,m], or n ≥ 2 and
α ∈ [1,m2n−2n−1], there exist languages L1 and L2 with sc(L1) = m and sc(L2) = n,
defined over a growing alphabet, such that sc(L1L2) = α. This result was improved
by showing that a linear alphabet is enough to produce all complexity values [141].
Moreover, Jirásek et al. [119] showed that the upper bound m2n − f12n−1 on the
catenation of two languages L1 and L2, with sc(L1) = m ≥ 2 and sc(L2) = n ≥ 2
respectively, are tight for any integer f1 with f1 ∈ [1,m − 1]. The witness language
families are binary and accepted by the DFAs presented in Figure 2.

(i)
0 1 · · · · · ·m � f1 m � 2 m � 1

b b b b b

a a a a a a

a

(ii) 0 1 · · · m � 2 m � 1

b

a a, b a, b a, b

a, b

Figure 2: Witness DFAs for all range of state complexities of the catenation

The state complexity for the star on a regular language L was studied by Yu et al..
A lower bound of 2m−1 was presented before, by Ravikumar and Ibarra [185, 184].
If sc(L) = 1 then either L = Σ?, and sc(L?) = 1, or L = ∅, and sc(L?) = 2. If
sc(L) = m > 1, but l = 0, i.e., the minimal DFA accepting L has the initial state
as the only final state, then sc(L?) = m, as L = L?. Finally, if sc(L) = m > 1, and
l > 0, then sc(L?) ≤ 2m−1 + 2m−l−1. The upper bound 2m−1 + 2m−2 is achieved
for the language {w ∈ {a, b}? | #a(w) is odd}, if m = 2; if m > 2, for the family
of binary languages accepted by the DFAs presented in Figure 2:(ii). We note that
although the upper bound given by Maslov is not correct ( 3

42m − 1 instead of 3
42m),

the family of languages he presented are witnesses for the above bound (for m > 2).
Those languages are accepted by the DFAs presented in Figure 3.

Jirásková [123] proved that for all integersm and α with eitherm = 1 and α ∈ [1, 2],
or m ≥ 2 and α ∈ [1, 2m−1 + 2m−2], there exists a language L over an alphabet of size
2m such that sc(L) = m and sc(L?) = α. This result was improved by Jirásková et
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0 1 · · · m � 2 m � 1

b
a a

b b

a a

b

a

b

Figure 3: Maslov’s witness DFAs for the state complexity of the star

al. [138] by using an alphabet of size atmost 2m. Again, no gaps or magic numbers
exist for the Kleene star operation.

The state complexity for the plus on a regular language L (L+ = LL?) coincides
with the one for star in the first two cases, but for m > 1 and l > 0 one state is saved
(as a new initial state is not needed).

In 1966, Mirkin [162] pointed out that the reversal of the NFAs given by Lupanov as
an example of a tight bound for determination (see Figure 1:(ii)), were deterministic.
This yields that 2m is a tight upper bound for the state complexity of reversal of a (at
least ternary) language L such that sc(L) = m. Leiss [149] studied also this problem
and proved the tightness of the bound for another family of ternary languages. Yu et
al. presented also (independently) the Lupanov example. Salomaa et al. [189] studied
several classes of languages where the upper bound is achieved. Nevertheless, a family
of binary languages therein presented as meeting the upper bound for m ≥ 5 was later
proved to be wrong [128]. A family of binary languages for which the upper bound
for reversal is tight was given by Jirásková and Sěbej [199, 140] and their minimal
DFAs are represented in Figure 4.

0 1 2 3 3 · · · m � 2 m � 1

b

a

a

b
a b

b

a

a

b

a a

b

a

b

Figure 4: Witness DFAs for the state complexity of the reversal

In the paper cited above [123], Jirásková has shown that for all m and α with
2 ≤ m ≤ α ≤ 2m, there exists a binary languague L such that sc(L) = m and
sc(LR) = α. Allowing alphabets of size 2m and m ≥ 3, the reversal operation has
no magic numbers in the range [logm, 2m]. This result was improved by Sěbej [196]
considering an alphabet of size 2m−2. Sěbej gives also some enhanced partial results
for the binary case.

Yu et al. showed that the state complexity for the left quotient of a regular language
L1 by an arbitrary language L2, L2 \L1, is less or equal to 2m − 1, with sc(L1) = m,
and that this bound is tight for the family of binary languages given in Figure 2:(ii)
and considering L2 = Σ?. In 1971, Conway [54] had already stated that if L2 is a
regular language then sc(L2 \ L1) ≤ 2m. For the right quotient of a regular language
L1 by an arbitrary language L2 one has sc(L1/L2) ≤ m. The minimal DFA accepting
L1/L2 coincides with the one for L1, except that the set of final states is the set of
states q ∈ Q1 such that there exists a word of w ∈ L2 such that δ1(q, w) ∈ F1. The
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bound is tight for L2 = {ε}. For the left and the right quotients of a regular language
L by a word w ∈ Σ? it is then easy to see that sc(w−1L) = sc(Lw−1) ≤ m. As a family
of languages for which the upper bound is tight consider (am)? and w ∈ {a}? [64].

The state complexity of basic operations on NFAs was first studied by Holzer and
Kutrib [104], and also by Ellul [64]. We note that for state complexity purposes it
is tantamount to consider NFAs with or without ε-transitions. NFAs are considered
with only one initial state and trimmed, i.e., all states are accessible from the initial
state and from all states a final state is reached.

For union, only a new initial state with ε transitions for each of the operands initial
states is needed, thus sc(L1 ∪L2) ≤ m+n+ 1. To see that the upper bound is tight,
consider the families (am)? and (bn)? over a binary alphabet. For intersection, a
product construction is needed.

The nondeterministic state complexity of the complementation is, trivially, at
most 2m. That this upper bound is tight even for binary languages was proved by
Jirásková [122], using a fooling-set lower-bound technique [7, 85, 113]. Those languages
are accepted by the NFAs presented in Figure 5 (for m > 2).

0 1 · · · m � 2 m � 1

a

a, b a, b a, b a, b

a

a

a
a

a

Figure 5: Witness NFAs for the nondeterministic state complexity of complementation

See Holzer and Kutrib [107] for other witness languages. Using the same techniques,
Jirásková and Szabari [119] proved that for all integers m ≥ 1 and α ∈ [logm, 2m],
there exists a language L over an alphabet of exponential growing size, such that
nsc(L) = m and nsc(L) = α. This result was improved to a five-symbol alphabet by
Jirásková [123].

Mera and Pighizzini [159] proved a related best case result, i.e., for every m ≥ 2
there exists a language L such that nsc(L) = m, nsc(L) ≤ m+1 and sc(L) = sc(L) =
2m. However, as we will see below, this result does not hold if unary languages are
considered.

The upper bound for the nondeterministic state complexity of catenation is m +
n and this bound can be reached considering the witness binary languages given
for union. All the values α ∈ [1,m + n] can be obtained as nondeterministic state
complexity of catenation of unary languages [124].

For the plus of a regular language L, we have nsc(L+) ≤ nsc(L) = m: an NFA
accepting L+ coincides with one accepting L except that each final state has also the
transitions to the initial state. In the case of the star, one more state can be needed
(if L does not accept the empty word), i.e., sc(L?) ≤ m+ 1. Witness languages of the
tightness of these bounds are {w ∈ {a, b}? | #a(w) = (m − 1) (mod m)}. All range
of values α ∈ [1,m + 1] can be reached for the nondeterministic state complexity of
the star of binary languages [123].

For the reversal, at most one more state will be needed, so nsc(LR) ≤ m + 1.
Witness ternary languages were presented by Holzer and Kutrib, but the bound is
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tight even for the family of binary languages (m > 1) which minimal NFAs are
presented in Figure 6 [122]. If nsc(L) = m ≥ 3 the possible values for nsc(LR) are
m − 1, m or m + 1 [123]. The first value is reached by the reversals of the above
binary languages and the second considering the languages {w ∈ {a, b}? | |w| = 0
(mod m)}.

0 1 m � 2· · · m � 1
a a a a

b

Figure 6: Witness NFAs for the nondeterministic state complexity of reversal

The nondeterministic state complexity of left and right quotients by a word were
studied by Ellul [64]. Given a minimal NFA A = (Q,Σ, δ, q0, F ) accepting L, an NFA
C accepting Lw−1, for w ∈ Σ, coincides with A except that the set of final states is
{q ∈ Q | δ(q, w) ∩ F 6= ∅}. Thus nsc(Lw−1) ≤ nsc(L). The witness languages used
for the state complexity of right quotient show that the bound is tight. An upper
bound for nsc(w−1L) can be obtained by considering an NFA C with one new initial
state q′0 and ε-transitions from q′0 to each state of A reached when inputing w.

Universal Witnesses Brzozowski [17, 18] identified a ternary family of languages
Um(a, b, c) over Σ = {a, b, c} which provides witnesses for the state complexity of
all operations considered in the previous section. The family, presented in Figure 7
and called universal witness, fulfills also other conditions that, according to the same
author, should be verified by the most complex (regular) languages. For a language
Lm the suggested conditions are:
(1) The state complexity should be m.
(2) The state complexity of each quotient of Lm should be m.
(3) The number of atoms of Lm should be 2m. An atom of a regular language with

quotients K0, . . . ,Km−1 is a non-empty intersection of the form K̃0∩· · ·∩K̃m−1,
where K̃i is either Ki or Ki. Thus the number of atoms is bounded from above
by 2m, and it was proved by Brzozowski et al. [39, 41] that this bound is tight1.
Every quotient of Lm is a union of atoms.

(4) The state complexity of each atom of Lm should be maximal. It was shown [40]
that the complexity of the atoms with 0 orm complemented quotients is bounded
from above by 2m − 1, and the complexity of any atom with r complemented
quotients, where 1 ≤ r ≤ m− 1, by

f(m, r) = 1 +
r∑

k=1

m−r+k∑
h=k+1

(
m

h

)(
h

k

)
.

(5) The syntactic semigroup of Lm should have cardinality mm, which is well known
to be a tight upper bound [156]. This measure, which is called the syntactic

1We also notice that the number of atoms of a language L is equal to the state complexity of LR.
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complexity of a language, has been recently studied for many classes of subregular
languages [103, 147, 31, 42, 29, 30, 36, 22, 38, 37].

The following result [17, 18] can be considered a milestone in the operational state
complexity for regular languages:

(Um(a, b, c) | m ≥ 3) meets conditions 1–5 and is a witness for the
reversal and the star. The families (Um(a, b, c) | m ≥ 3) and (Un(b, a, c) |
n ≥ 3) are witnesses for the Boolean operations, whereas (Um(a, b, c) |
m ≥ 3) and (Un(a, b, c) | n ≥ 3) are witnesses for catenation.

Variants (or dialects) of the universal witness were also given for several combined
operations. The question of whether there are universal witnesses for other operations,
classes of subregular languages or other complexity measures is a topic of recent
research (see page 29). However, when searching for witnesses for a given upper
bound, to ensure that the above conditions (or, at least, some of them) are verified,
can be a good starting point. Moreover, the study of properties that may enforce
(some of) the conditions (1) – (5) is fundamental for a better understanding of the
operational state complexity [20].

0 1 2 · · · m � 2 m � 1
a, b

b
c c

a

b, c

a aa

b, c b

a, c

Figure 7: Universal witness DFAs, Um(a, b, c).

4.1.2. Unary Regular Languages

Table 2 presents the main state complexity results of the basic operations on unary
languages. Given the constraints on both DFAs and NFAs over a one symbol alphabet,
and the results presented in Section 3, the state complexity for several operations on
unary languages is much lower than what is predicted by the general results of state
complexity. Some results on the average-case state complexity of operations on unary
languages were presented by Nicaud [169, 170].

A DFA that accepts a unary language is characterized by a noncyclic part (the
tail) and a cyclic part (the loop). A characterization and the enumeration of minimal
unary DFAs was given by Nicaud [169].

The state complexity of the reversal of a unary language L is trivially equal to the
state complexity of L. The state complexities of Boolean operations on unary lan-
guages coincide asymptotically with the ones on general regular languages. Yu [203]
has shown that the bound was tight for union (and thus, for intersection) if m and n
are coprimes and the witness languages are (am)? and (an)?. The state complexity of
catenation and star was proved by Yu et al. [208] and the tightness for the first was
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Table 2: State complexity (sc), nondeterministic state complexity (nsc) and average
state complexity (asc) of basic operations on unary languages. The ∼ symbol means
that the complexities are asymptotically equal to the given values. The upper bounds
of state complexity for union, intersection and catenation are exact if the greatest
common divisor ofm and n, (m,n) is 1. For the average state complexity of intersection
and union, ζ(n) is the function ζ of Riemman. For the average state complexity of
catenation, n must be bounded by a polynomial P in m.

Unary Regular
sc nsc asc

L1 ∪ L2 ∼ mn m+ n+ 1, if m 6= ṅ ∼ 3ζ(3)
2π2 mn

L1 ∩ L2 ∼ mn mn, if (m,n) = 1 ∼ 3ζ(3)
2π2 mn

L m eΘ(
√
m logm)

L1L2 ∼ mn
[m+ n− 1,m+ n],

if m,n > 1
O(1),

if n < P (m)

L?
(m− 1)2 + 1,
if m > 1, l > 1

m+ 1, if m > 2 O(1)

L+ (m− 1)2 m, if m > 2
LR m m

w−1L m m

Lw−1 m m

also shown for m and n coprimes. The witnesses for the catenation are (am)?am−1

and (an)?an−1. For the star, if m = 2 a witness is (aa)?, and for each m > 2 a witness
is (am)?am−1. The state complexity when m and n are not necessarily coprimes was
studied by Pighizzini and Shallit [176, 177]. In this case, the tight bounds are given
by the number of states in the tail and in the loop of the resulting automata. The
state complexity for left and right quotient by a word on unary languages coincides
with the general case.

Nicaud [169, 170] proved that the state complexity of union, intersection and cate-
nation on two languages L1 and L2 are asymptotically equivalent to mn, where
m = sc(L1) and n = sc(L2). Let Dn be the set of unary (complete and initially
connected) DFAs with n states. The average state complexity (asc) of a binary oper-
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ation ◦ on regular languages is given by∑
A1×A2∈Dm×Dn

sc(L(A1) ◦ L(A2))

|Dm ×Dn|

This definition can be generalized to operations with other arities, other kinds of
automata and classes of languages.

As shown in Table 2, the average state complexities of catenation and star on
unary languages are bounded by a constant, and for intersection (and union) note that
3ζ(3)
2π2 ≈ 0.1826907423. Magical numbers for the star operation on unary languages
were studied by Čevorová [48]. Considering the gap between the worst-case upper
bound, n2 − 2n + 2, and the average case (less than a constant), it is not a surprise
that for every n no more than 4 complexities are attainable between n2 − 4n+ 6 and
the upper bound. In the same paper, the author also establishes a relation between
this problem and the Frobenius problem.

The nondeterministic state complexity of basic operations on unary languages was
studied by Holzer and Kutrib [105], and also by Ellul [64]. For union and intersection,
the upper bound coincides with the general case. However, it was proved to be
achievable for union if m is not a divisor or multiple of n. As in the deterministic
case, the witnesses for intersection are (am)? and (an)?, if m and n are coprimes.
The nondeterministic state complexity of the complementation is O(F (m)) (where
F is the Landau’s function of equation (1)), which is directly related with the state
complexity of determination. Holzer and Kutrib [105] proved that this upper bound is
tight in order of magnitude, i.e., for any integerm > 1 there exists a unary language L
such that nsc(L) = m and nsc(L) = Ω(F (m)). Moreover, Mera and Pighizzini [159]
have shown that for each m ≥ 1 and unary language L, such that nsc(L) = m and
sc(L) = sc(L) = eO(

√
m logm), then nsc(L) ≥ m. The upper bound m + n for the

catenation of two unary languages is not known to be tight. The known lower bound is
m+n−1 achieved by the catenation of {al | l = (m−1) (mod m)} and {al | l = (n−1)
(mod n)} [105]. The same languages can be used to show the tightness of the bound
m + 1 for the star (and the plus) operation. For the left and right quotients, notice
that in the unary case w−1L = Lw−1, and the results for the general case apply.

4.1.3. Finite Languages

Finite languages are an important subset of regular languages. They are accepted by
complete DFAs that are acyclic apart from a loop on the sink (or dead) state, for
all alphabetic symbols. Minimal DFAs have also special graph properties that lead
to a linear time minimization algorithm [186], and where the length of the longest
word accepted by the language plays an important role. Table 3 shows that the
(nondeterministic) state complexity of operations on finite languages are, in general,
lower than in the general case.

Câmpeanu et al. [43] presented the first formal study of state complexity of oper-
ations on finite languages. Yu [203] presented upper bounds of O(mn) for the union
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Table 3: State complexity and nondeterministic state complexity of basic operations
on finite languages.

Finite
sc |Σ| nsc |Σ|

L1 ∪ L2 mn− (m+ n) f(m,n) m+ n− 2 2
L1 ∩ L2 mn− 3(m+ n) + 12 f(m,n) O(mn) 2
L m 1 Θ(k

m
1+log k ) 2

L1L2
(m− n+ 3)2n−2 − 1, m+ 1 ≥ n 2

m+ n− 1 2
m+ n− 2, if l1 = 1 1

L?
2m−3 + 2m−l−2, l ≥ 2, m ≥ 4 3

m− 1, m > 1 1
m− 1, if f = 1 1

L+ m 1 m, m > 1 1
LR O(k

m
1+log k ) 2 m 2

and the intersection. The tight upper bounds were given by Han and Salomaa [91]
using growing size alphabets. The upper bound for union and intersection cannot be
reached with a fixed alphabet when m and n are arbitrarily large. Câmpeanu et al.
gave tight upper bounds for catenation, star and reversal. For catenation the bound
(m−n+ 3)2n−2− 1 is tight for binary languages, if m+ 1 ≥ n > 2. The DFAs of the
witness languages are presented in Figure 8.

0 1 · · · m � 2 m � 1
a, b a, b a, b a, b

a, b

0 1 · · · m � 2 m � 1
b

a

a, b a, b a, b

a, b

Figure 8: Witness DFAs for the state complexity of catenation on finite languages

For star, Câmpeanu et al. have shown that the bound 2m−3 + 2m−4 is tight for
ternary languages. The tight upper bound for the reversal of a finite binary language
is 3 · 2p−1 − 1, if m = 2p, and 2p−1 − 1 if m = 2p− 1.

Nondeterministic state complexity of basic operations on finite languages were
studied by Holzer and Kutrib [104]. Minimal NFAs accepting finite languages without
the empty word can be assumed to have only a final state (with no transitions); and if
the empty word is in the language, the initial state is also final. Because there are no
cycles, for the union of two finite languages three states can be avoided: no new initial
state is needed, and the initial states and the final states can be merged. The upper
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Table 4: State complexity and nondeterministic state complexity of basic operations
on finite unary languages.

Finite Unary
sc nsc

L1 ∪ L2 max{m,n} max{m,n}
L1 ∩ L2 min{m,n} min{m,n}
L m m+ 1
(L1 − L2) m

(L1 ⊕ L2) max{m,n}
L1L2 m+ n− 2 m+ n− 1

L?
2, if m = 3

m− 1, if f = 1
m2 − 7m+ 13, if m > 4, f ≥ 3

m− 1

L+ m m

LR m m

bound m+n− 2 is tight for the languages am−1 and bn−1, for m,n ≥ 2. Considering
the upper bound of determination for finite languages, the nondeterministic state
complexity for complement is bounded by O(k

m
1+log k ). The lower bound Ω(k

m
2 log k )

is reached for alphabets Σ = {a1, . . . , ak} of size k ≥ 2, and the languages Σja1Σiy,
where i ≥ 0, 0 ≤ j ≤ i, y ∈ Σ \ {a1}, and m > 2. However, a tighter lower bound
can be achieved by the determination lower bound of Ω(k

m
1+log k ). For catenation of

finite languages represented by NFAs, one state can be saved. Witness languages for
the tightness of the bound m+ n− 1 can be the ones used for union. Two states are
also saved for the star, and for plus the nondeterministic state complexity coincides
with the one for the general case. Witness languages are am and am−1, respectively.
NFAs for the reversal are exponentially more succinct than DFAs. In the case of finite
languages, and like other operations, one state can be spared. Witness languages are
{a, b}m−1.

4.1.4. Finite Unary Languages

Table 4 summarizes the state complexity and nondeterministic state complexity re-
sults of basic operations on finite unary languages [43, 203, 105]. State complexity
of union, intersection and catenation on finite unary languages are linear, while they
are quadratic for general unary languages. In this setting, nondeterminism is only
relevant for the star (and plus), as unary regular languages are obtained. As already
stated, for a finite unary language L, one has sc(L) ≤ nsc(L) + 1, and sc(L) − 2 is
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the length of the longest word in the language. If an operation preserves finiteness,
for state complexity only the longest words must be considered.

4.2. Other Regularity Preserving Operations

Table 5 presents the results for the state complexity of some regularity preserving
operations, that are detailed in the next paragraphs.

Proportional removals The proportional removals preserving regularity were studied
by Hartmanis [198] and were full characterized by Seiferas and McNaughton [197].
For any binary relation r ⊆ N×N and any language L ⊆ Σ?, let the language P (r, L)
be defined as

P (r, L) = {x ∈ Σ? | ∃y ∈ Σ? such that xy ∈ L ∧ r(|x|, |y|)}.

A relation r is regularity-preserving if P (r, L) is regular for every regular language
L. Seiferas and McNaughton [197] gave sufficient and necessary conditions of regu-
larity preservation in this context. For the special case where r is the identity, the
correspondent language is denoted by 1

2 (L). Domaratzki [61] proved that for a reg-
ular language L, sc( 1

2 (L)) = O(sc(L)F (sc(L))) (where F is the Landau’s function of
equation (1)) and this bound is tight for ternary languages. In the case of L be a
unary language, one gets sc( 1

2 (L)) = sc(L). Following Nicaud’s work on average-case
complexity, mentioned above, Domaratzki showed that the average state complexity
of the 1

2 (·) operation on an m-state unary automaton is asymptotically equivalent
to 5

8m + c, for some constant c. Domaratzki also studied the state complexity of
polynomial removals. Let f ∈ Z[x] be a strictly monotonic polynomial such that
f(N) ⊂ N. Then, the relation rf = {(n, f(n)) | n ≥ 0} preserves regularity, and
sc(P (rf , L)) ≤ O(sc(L)F (sc(L))).
In 1970, Maslov [156] had already studied the language p

q (L), i.e., a language P (r, L)
such that r is defined by {(m,n) | mq = pn} with p, q ∈ N. An open problem is
to obtain the state complexity of P (r, L) where r belongs to the broader class of
regularity preserving relations studied by Seiferas and McNaughton.

Nondeterministic state complexity of polynomial removals was studied by Goč et
al. [86]. The authors showed an O(n2) upper bound and a matching lower bound in
the case where the polynomial is a sum of monomials and a constant, or when the
polynomial has rational roots.

Power Given a regular language L and i ≥ 2, an upper bound of the state complexity
of the language Li is given by considering the state complexity of catenation. However,
a tight upper bound is obtained if this operation is studied individually. Domaratzki
and Okhotin [62] proved that sc(Li) = Θ(m2(i−1)m), for i ≥ 2. The bound is tight
for a family of languages over a six-symbol alphabet. In the case i = 3, sc(L3) =
6m−3

8 4m − (m − 1)2m −m, for m ≥ 3, and the tightness is witnessed by a family of
languages over a four-symbol alphabet. For the square, i.e. if i = 2, the upper bound
is the one given by the state complexity of catenation, sc(L2) = m2m−2m−1 and it is
met by a language accepted by a m-state DFA with only one final state. In the case
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Table 5: State complexity and nondeterministic state complexity of some regularity
preserving operations: proportional removals for the identity relation ( 1

2 (L)); power Li

where i ≥ 2; cyclic shift LCS ; shuffle L1 � L2; and orthogonal catenation L1 �⊥ L2.

Regular
sc |Σ| nsc |Σ|

1
2 (L)

meΘ(
√
m logm) 3

O(m2)
m 1

Li
Θ(m2(i−1)m) 6

im 2im− i+ 1 1

L3 6m−3
8 4m−(m−1)2m−m 4

LCS
2m2+m logm−O(m) 4 1, if m = 1

2
2Θ(m2) 2,3

2m2 + 1,
if m ≥ 2

m 1 m 1

L1 � L2 ≤ 2mn−1 + 2(m−1)(n−1)(2m−1 − 1)(2n−1 − 1) O(mn) 5

L1 �⊥ L2
m2n−1 − 2n−2,

4 m+ n 2
if m ≥ 3, n ≥ 4

of multiple l final states, the upper bound is (m− l)2m + l2m−1. Čevorová et al. [51]
proved that those upper bounds are tight in the ternary case for every l ∈ [1,m− 2].
The nondeterministic state complexity of Li is proved to be im. This bound is shown
to be tight over a binary alphabet, for m ≥ 2. The power of unary languages was
studied by Rampersad [182]. If L is a unary language with sc(L) = m ≥ 2, then
sc(Li) = im− i+ 1. For the square, Čevorová et al. showed that all the complexities
in the range [1, 2m− 1] can be attained for m ≥ 5.

Cyclic Shift The cyclic shift of a language L is defined as LCS = {vu | uv ∈ L}.
Maslov [156] gave an upper bound of (m2m − 2m−1)m for the state complexity of
cyclic shift and an asymptotic lower bound of (m − 3)m−3 · 2(m−3)2 , by considering
languages over a growing alphabet (if complete DFAs are considered). Jirásková
and Okhotin [135] reviewed and improved Maslov results. Using a fixed four-symbol
alphabet, they obtained a lower bound of (m− 1)! · 2(m−1)(m−2), m ≥ 3, which shows
that sc(LCS) = 2m2+m logm−O(m) for alphabets of size greater than 3. For binary and
ternary languages, they proved that the state complexity is 2Θ(m2). As this function
grows faster than the number of DFAs for a given m, there must exist some magic
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numbers for the state complexity of the cyclic shift over languages of a fixed alphabet.
The nondeterministic state complexity of this operation was shown to be 2m2 + 1,

for m ≥ 2, and the upper bound is tight for binary languages. Although the hardness
of this operation on the deterministic case, its nondeterministic state complexity is
relatively low. For a unary language L, as LCS = L, one gets sc(LCS) = nsc(LCS) =
sc(L).

Shuffle The shuffle operation of two words w1, w2 ∈ Σ? is defined by
w1 � w2 = {u1v1 · · ·umvm |

ui, vi ∈ Σ?, i ∈ [1,m], w1 = u1 · · ·um and w2 = v1 · · · vm}.
This operation is extended trivially to languages. If two regular languages are regular,
their shuffle is also a regular language. Câmpeanu et al. [46] showed that the state
complexity of the shuffle of two regular languages L1 and L2 is less or equal to
2mn − 1. They proved that this bound is tight for witness languages over a five
symbols alphabet and if minimal incomplete DFAs are considered. Thus, sc(L1�L2)
is at least 2(sc(L1)−1)(sc(L2)−1). In 2016, Brzozowski et al. [25] improved these results
and proved that 2mn−1 + 2(m−1)(n−1)(2m−1 − 1)(2n−1 − 1) is an upper-bound. The
tightness was proved for 2 ≤ m ≤ 5 and n ≥ 2 and also form = n = 6. They have also
shown that an alphabet of size mn is needed for the bound to be reached provided
that m,n ≥ 2.

Various restrictions and generalizations of the shuffle operation have been studied.
Mateescu et al. [157] introduced the shuffle operation of two languages L1 and L2 on
a set of trajectories T ⊆ {0, 1}?, L1�T L2. When L1, L2, and T are regular languages
L1�T L2 is a regular language. In particular, if T = {0, 1}?, then L1�T L2 = L1�L2;
and if T = {0}?{1}?, then L1 �T L2 = L1L2. Domaratzki and Salomaa [63] studied
the state complexity of the shuffle on regular trajectories. In general, sc(L1�T L2) ≤
2nsc(L1)nsc(L2)nsc(T ). If T belongs to special families of regular languages, tight bounds
were also presented.

Orthogonal Catenation A language L is the orthogonal catenation of L1 and L2, and
denoted by L = L1 �⊥ L2, if every word w of L can be obtained in just one way
as a catenation of a word of L1 and a word of L2. If catenation uniqueness is not
verified for every word of L, orthogonal catenation of L1 and L2 is undefined, oth-
erwise L1 and L2 are orthogonal. Daley et al. [59] studied the state complexity of
orthogonal catenation and generalized orthogonality to other operations. Although
it is a restricted operation, its state complexity is only half of the one for the general
catenation, i.e., m2n−1 − 2n−2 for m ≥ 3 and n ≥ 4. The tight bound was obtained
for languages over a four-symbol alphabet. Concerning nondeterministic state com-
plexity, one has nsc(L1�⊥L2) = nsc(L1) +nsc(L2), which coincides with the one for
(general) catenation. Witness languages presented for the catenation are orthogonal
(see page 12), thus apply to orthogonal catenation.

Unique Regular Operations Similar to orthogonality is the concept of unique operation
introduced by Rampersad et al. [183]. However, instead of demanding that every pair
of words of the operand languages lead to a distinct word on the resulting language, the
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Table 6: State complexity of unique operations: for unique star L◦, ε /∈ L; for the
nondeterministic state complexity of L1 ◦L2, the combined state complexity of L1 and
L2 is O(h), for h ≥ 0.

Unique Regular Operations
sc |Σ| nsc

L1
◦
∪ L2 mn 2

L1 ◦ L2 O(m3n − f13n−1) ≥ 2O(h)

L◦2 m3m − 3m−1 2

L◦
O(3m−1 + (f + 2)3m−f−1

−(2m−1 + 2m−f−1 − 2))

language resulting from a unique operation only contains the words that are uniquely
obtained through the given operation. Rampersad et al. studied several properties of
unique operations and of their poly counterpart (i.e. where each resulting word must
be obtained in more than one way), such as closure, ambiguity, and membership and
non-emptiness decision problems. Results on state complexity and nondeterministic
state complexity were obtained for unique union (L1

◦
∪ L2), unique catenation (L1 ◦

L2), unique square (L◦L = L◦2), and unique star (L◦). The state complexity of L1
◦
∪

L2 is mn, and witness binary languages are {x ∈ {a, b}? | #a(x) = (m−1) (mod m)}
and {x ∈ {a, b}? | #b(x) = (n − 1) (mod n)}, for m,n ≥ 3 (that were also used by
Maslov [156] for general union). For unique catenation, sc(L1 ◦ L2) ≤ m3n − f13n−1

which is much higher than the one for general catenation. It is an open problem to
know if this bound is tight, although several examples, for specific values of m and n,
were presented. However, for the unique square sc(L◦2) = m3m−3m−1, and the bound
is tight for binary languages and m ≥ 3. For the nondeterministic state complexity of
unique catenation, an exponential lower bound was provided. An upper bound for the
state complexity of the unique star is 3m−1 + (f + 2)3m−f−1− (2m−1 + 2m−f−1− 2).
But, again, it is an open problem to know if this upper bound is tight. Table 6
summarizes the known results.

4.3. Other Subregular Languages

Besides finite and unary languages, several other subregular languages are used in
many applications and are now theoretically well studied. Prefix-free or suffix-free
languages are examples of codes that are fundamental in coding theory [144, 6].
Prefix-closed, factor-closed, or subword-closed languages were studied by several au-
thors [90, 200, 60, 84]. These languages belong to a broader set of languages, the
convex languages, for which a general framework has been recently addressed by Ang
and Brzozowski [2] and Brzozowski et al. [33]. A detailed survey on complexity topics
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was presented by Brzozowski [15]. Partially based on that survey, here we summarize
some of the results concerning the state complexity of preserving regularity opera-
tions over some of the convex subregular languages. Star-free languages are another
family of subregular languages well studied [194, 158]. We briefly address recent re-
sults on the (nondeterministic) state complexity of basic regular operations on these
languages.

4.3.1. Convex Subregular Languages

We begin by some definitions and results on determination for these languages. Let
� be a partial order on Σ?, and let � be its converse. A language L is �-convex if
u� v and v � w with u,w ∈ L implies v ∈ L. It is �-free if v � w and w ∈ L implies
v /∈ L. It is �-closed if v � w and w ∈ L implies v ∈ L. It is �-closed if v � w and
w ∈ L implies v ∈ L. The closure and the converse closure operations are:

�L = {v | v � w for some w ∈ L},

L� = {v | w � v for some w ∈ L}.

The freeness operation can defined for a language L, by

L� ⊆ L and ∀w ∈ L�,∀v ∈ Σ?, v � w implies v /∈ L�.

The following proposition is from [2], except for the last item.

Proposition 1. Let � be an arbitrary relation on Σ?. Then
(I) A language is �-convex if and only if it is �-convex.
(II) A language is �-free if and only if it is �-free.
(III) Every �-closed language and every �-closed language are �-convex.
(IV) A language is �-closed if and only if its complement is �-closed.
(V) A language L is �-closed (�-closed) if and only if L =� L (L = L�).
(VI) A language L is �-free if and only if L = L�.

We consider � to be:

• ≤: if u, v, w ∈ Σ? and w = uv, then u is prefix of w, and we write u ≤ w.
• �: if u, v, w ∈ Σ? and w = uv, then v is suffix of w, and we write v � w
• v: if u, v, w ∈ Σ? and w = uxv, then x is factor of w, and we write x v w.

Note that a prefix or suffix of w is also a factor of w. This relation is also called
infix.

• b: if w = w0a1w1 · · · anwn, where a1, . . . , an ∈ Σ, and w0, . . . , wn ∈ Σ?, then
v = a1 · · · an is a subword of w; and we write v b w. Note that every factor of
w is a subword of w.

If a language is both prefix- and suffix-convex it is bifix-convex. Bifix-free and
bifix-closed languages are defined in the same manner. Ideals are languages directly
related with closed languages. A non-empty language L ⊆ Σ? is a
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• right ideal if L = LΣ? (also called ultimate definite [174]); the complement is
prefix converse-closed.

• left ideal if L = Σ?L (also called reverse ultimate definite [174]); the complement
is suffix converse-closed.

• two-sided ideal if L = Σ?LΣ? (also called central definite); the complement is
bifix converse-closed.

• all-sided ideal if L = Σ? � L; the complement is subword converse-closed; also
studied by Haines [90] and Thierrin [200].

Table 7: State complexity of determination of free, closed and ideal languages consider-
ing prefix, suffix and factor partial orders, respectively. For free and closed languages,
the range of correspondent non-magic numbers appears on the second row.

Free
≤ |Σ| � |Σ| v |Σ|

2m−1 + 1 3 2m−1 + 1 3 2m−2 + 2 3
]m, 2m−1 + 1] ]m, 2m−1 + 1] ]m, 2m−2 + 2]

Closed
≤ |Σ| � |Σ| v |Σ|

2m 3 2m−1 + 1 4 2m−1 + 1 4
]m, 2m] [m, 2m−1 + 1] ]m, 2m−1 + 1]

Ideal
right |Σ| left |Σ| two-sided |Σ|

2m−1 2 2m−1 + 1 3 2m−2 + 1 3

Some of the languages defined above are also characterized in terms of properties
of the finite automata that accept them. In particular: prefix-closed languages are
accepted by NFAs where all states are final; suffix-closed languages are accepted by
NFAs where all states are initial; factor-closed languages are accepted by NFAs where
all states are initial and final; prefix-free languages are accepted by non-exiting NFAs
(i.e. there are no transitions from the final states); suffix-free languages are accepted
by non-returning NFAs (i.e. there are no transitions to the initial state); and factor-
free languages are accepted by non-returning and non-exiting NFAs.

The state complexity of the determination on some subregular languages (or for
the kind of NFAs they are defined by) was recently studied by Bordihn et al. [9],
Jui-Yi Kao et al. [145], and Jirásková et al. [128].

Table 7 presents some of the values for the languages considered above. The
existence of magic numbers for some subregular languages was studied by Holzer et
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Table 8: State complexity and nondeterministic state complexity of some operations
on prefix-free languages.

Prefix-free
sc |Σ| nsc |Σ|

L1 ∪ L2 mn− 2 2 m+ n 2
L1 ∩ L2 mn− 2(m+ n− 3) 2 mn− (m+ n) + 2 2

L m 1
2m−1

[2bm
2 c−1, 2m−1 + 2m−3 + 1]

Θ(
√
m)

3
2
1

(L1 − L2) mn−m− 2n+ 4 3 (m− 1)2n−1 + 1 4
(L1 ⊕ L2) mn− 2 2
L1L2 m+ n− 2 1 m+ n− 1 1

L1/L2
n− 1

n−m+ 2
2
1

L?
m

m− 2
2
1

m 1

LR 2m−2 + 1 3 m 1
LCS (2m− 3)m−2 6 2m2 − 4m+ 3 2

al. [102]. As can be seen in Table 7, m is the only magic number for all free languages
and for both prefix- and factor-closed languages (except if m = 1, where m is non-
magic). Suffix-closed languages have no magic numbers.

Free languages Table 8 summarizes state complexity results of individual operations
on prefix-free languages [94, 95, 128, 24, 138, 134, 118, 65, 163, 49]. In the case of state
complexity, the results are valid for Boolean operations if m,n ≥ 3; for catenation if
m,n ≥ 2; for star if k = 1, then m ≥ 3, if k = 2 then m 6= 3, and else m ≥ 2; and
for reversal if m ≥ 4 and the tight bound cannot be reached if k = 2 [128]. The state
complexty of right quotient is 1, if k = 1 and m = 1 or m > n, and if k = 2 and
m = 1 or n = 1; furthermore, if m = 2 then sc(L1/L2) = n [118].

Note that here the state complexities of the catenation and the star are much lower
than on general regular languages. For catenation, witness languages are am−2 and
an−2. Moreover, for the star, the only complexities attained are m − 2, m − 1, and
m [138].

Nondeterministic state complexity of complementation on free languages was stud-
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Table 9: State complexity and nondeterministic state complexity of some operations
on suffix-free languages.

Suffix-free
sc |Σ| nsc |Σ|

L1 ∪ L2 mn− (m+ n− 2) 2 m+ n− 1 2
L1 ∩ L2 mn− 2(m+ n− 3) 2 mn− (m+ n− 2) 2

L m 1
2m−1

[2bm
2 c−1, 2m−1 + 2m−3 + 2]

Θ(
√
m)

3
2
1

L1 − L2 mn− (m+ 2n− 4) 4
L1 ⊕ L2 mn− (m+ n− 2) 5
L1L2 (m− 1)2n−2 + 1 4
L2 m2m−3 + 1 3
L? 2m−2 + 1 4
LR 2m−2 + 1 3

ied by Jirásková and Mlynárcik [134, 163]. Comparing with the general case, one state
is saved for union, catenation, star and reversal, and half of the sates are saved for
complementation.

Table 9 summarizes the state complexity of some regular operations on suffix-free
languages. Han and Salomaa showed that all bounds, except for complementation,
difference, and symmetric difference, are tight [92, 93]. Jirásková and Olejár [137]
provided binary witnesses for intersection and union. They also proved that for all
integer α between 1 and the respective bound there are languages L1 and L2 such that
(n)sc(L1 ◦L2) = α, for ◦ ∈ {∩,∪} (and witnesses are ternary, except for nsc(L1∩L2)
for which the witnesses are over a four-symbol alphabet). The bounds for difference
and symmetric difference are from Brzozowski et al. [24]. Čevorová [49] studied the
square. Jirásková et al. [134] proved the results for complementation.

If a language is subword-free then it is factor-free, and if it is factor-free then it is
bifix-free. Table 10 summarizes the state complexity of some regular operations on
bifix-, factor-, and subword-free languages [24]. The tight upper bounds for the state
complexity of these operations on the three classes of languages coincide. Comple-
mentation for these languages was also studied in [134, 163].

Nondeterministic state complexity for factor-free and subword-free languages is
2m−2 + 1, but for the former it is tight for ternary languages and the latter when the
alphabet size is ≥ 2m−2. For binary alphabets and factor-languages, the upper bound
is 2m−2 − 2m−4 + 1 and the lower bound Ω(2 m

2 ).



A Survey on Operational State Complexity 27

Closed Languages and Ideals Table 11 shows the state complexity of some basic op-
erations on prefix-, suffix-, factor-, and subword-closed languages. A language is
factor-closed if and only if it is subword-closed. So the state-complexity results of
operations are the same for those classes. For prefix and suffix closed languages, the
bounds for the square operation are not the ones of catenation [49, 50].

The state complexity of the closure on the respective partial orders is also con-
sidered. Subword and converse subword closures were first studied by Gruber et
al. [88, 89] and Okhotin [172]. Brzozowski et al. [26, 27] presented the tight upper
bound, by using a growing alphabet. Karandikar and Schoebelen [146] have shown
that the exponential blown up is also required in the binary case. Given a regular
language L with sc(L) = m, nsc(bL) = nsc(Lb) = m and these upper bounds are
tight for witness binary languages.

Prefix, suffix, and factor closures (respectively, ≤L, �L, and vL) were studied by
Kao et al. [145]. If L does not have ∅ as a quotient, Brzozowski et al. have shown
that the state complexity of the suffix closure is 2m − 1 (instead of 2m−1).

If L is a right (respectively, left, two-sided, all-sided) ideal, any language G ⊆ Σ?
such that L = GΣ? (respectively, L = Σ?G, L = Σ?GΣ?,L = Σ?�G) is a generator of
L. Brzozowski and Jirásková [23] studied state complexity on ideals. Table 12 presents
the state complexity of basic operations on ideals. As stated before closed languages
and ideals are related. In particular, the state complexity of basic operations on two-
sided and all-sided ideals coincide. Brzozowski [15] observed that for the four types
of convex languages (prefix, suffix, factor and subword) the state complexity of the
Boolean operations is mn. Čevorová [49] showed that the state complexity of the
square on ideals coincides with one for catenation.

Operational nondeterministic state complexity on closed and ideal languages are
presented in Table 13 [111]. Again, only for complementation the bounds are signifi-

Table 10: State complexity of basic operations on bifix-, factor-, and subword-free
languages.

Free
sc |Σ|

≤ ∪ � v b

L1 ∪ L2 mn−m− n 5 5 < m+ n− 3
L1 ∩ L2 mn− 3m− 3n+ 12, m,n ≥ 4 3 3 m+ n− 7
L1 − L2 mn− 2m− 3n+ 9 4 4 < m+ n− 6
L1 ⊕ L2 mn−m− n 5 5 m+ n− 3
L1L2 m+ n− 2, m,n > 1 1 1 1
L? m− 1, m > 2 2 2 2
LR 2m−3 + 2, m ≥ 3 2 2 2m−3 − 1
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cantly smaller than the ones for general regular languages.

Unary convex languages In the case of unary languages, prefix, suffix, factor, and
subword partial orders coincide. Table 14 summarizes the state complexity of basic
operations on unary free, unary closed, unary ideals and unary convex languages. For
nondeterministic state complexity, some results were given in Table 13.

Freeness Operations Here we analyse the state complexity of freeness operations for
prefix, suffix, bifix and factor orders that were studied by Pribavkina and Rodaro [179].
Given a regular language L, the �-free language L� for � ∈ {≤,�,v}, is respec-
tively2:
• prefix: L≤ = L− LΣ+

• suffix: L� = L− Σ+L

• factor: Lv = L− (Σ+LΣ? ∪ Σ?LΣ+)
The bifix operation is defined by Lb = L≤ ∩ L�. If L is an ideal, prefix, suffix
and factor operations were studied by Brzozowski and Jirásková [23]. In this case,
the resulting languages are minimal generators for left, right and two sided ideals,

2In [179] the superscripts for prefix, suffix and factor operations were respectively p, s and ι.

Table 11: State complexity of some operations on prefix-, suffix-, factor-, and subword-
closed languages. The last two columns correspond to factor and subword, respectively.
The last but one row contains the state complexity of the closure of prefix, suffix, and
factor respectively. The last row contains the state complexity of the subword closure,
considering unbounded and binary alphabets, respectively.

Closed
≤ |Σ| � |Σ| v,b |Σ|v |Σ|b

L1 ∪ L2 mn 2 mn 4 mn 2 2
L1 ∩ L2 mn−m−n+2 2 mn 2 mn−m−n+2 2 2
L1 − L2 mn− n+ 1 2 mn 4 mn− n+ 1 2 2
L1 ⊕ L2 mn 2 mn 2 mn 2 2
L1L2 m2n−2+2n−2 3 mn−fn+f 3 m+ n− 1 2 2
L2 (m+4)2m−3−1 2 1

2 (m2+m)−1 3 2m− 1 2 2
L? 2m−2 + 1 3 m 2 2 2 2
LR 2m−1 2 2m−1 + 1 3 2m−2 + 1 3 2m

�L m 1 2m−1 2 2m − 1 2

bL
2m−2 + 1

2Ω( m
3 )

m− 2
2
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Table 12: State complexity of basic operations on ideals. The last two columns corre-
spond to two-sided and all-sided ideals, respectively.

Ideal
right |Σ| left |Σ| -sided |Σ|two |Σ|all

L1 ∪ L2 mn−m−n+2 2 mn 4 mn−m−n+2 2 2
L1 ∩ L2 mn 2 mn 2 mn 2 2
L1 − L2 mn−m+1 2 mn 4 mn−m+1 2 2
L1 ⊕ L2 mn 2 mn 2 mn 2 2
L1L2 m+2n−2 1 m+n−1 1 m+n−1 1 3

L? m+ 1 2 m+ 1 2 m+ 1 2 2
If ε ∈ L, then L = Σ? and sc(L?) = 1.

LR 2m−1 2 2m−1 + 1 3 2m−2 + 1 3 2m−4

respectively. Table 15 presents the state complexity of prefix, suffix, factor and bifix
operations on regular languages (and correspondent ideals). The state complexity of
this operations is much lower in the case of right and two-sided ideals than for general
regular languages.

Universal Witnesses Most complex languages, i.e. that are "universal witnesses", for
some classes of convex languages were investigated recently. Brzozowski et al. [21, 22]
presented the most complex languages for right, left and two-sided ideals, respectively.
For suffix-free languages with state complexity greater than 4 no universal witnesses
can exist [37]. This is because it is not possible to satisfy simultaneously all the condi-
tions (1)–(5) of page 13 (adapted for this class of languages). Most complex languages
for prefix-convex languages (right-ideals, prefix-closed, prefix-free and proper) were
deeper studied by Brzozowski and Sinnamon [34]. For binary operations, it was ob-
served that if the operands are languages with different alphabets, larger complexity
bounds can be obtained. The same generalization was considered for general regular
languages and ideal regular languages [19, 35]. In this situation, universal witnesses
may be slightly different than the ones we presented before.

4.3.2. Star-free Languages

Star-free languages are the smallest class containing the finite languages and closed
under Boolean operations and catenation. This class of languages corresponds exactly
to the regular languages of star height 0. The minimal DFAs of star-free languages
are permutation-free (i.e. no word performs a non-trivial permutation of a subset of
its states). This is the famous Schützenberger result that a language is star free if
and only if its syntactic monoid is aperiodic [178]. Bordhin et al. [9] showed that the



30 Y. Gao, N. Moreira, R. Reis, S. Yu

Table 13: Nondeterministic state complexity of some operations on closed and ideal
languages. Empty cells in column two (five) indicate that bounds are for all closed
(ideal) languages.

Closed Ideal
� nsc |Σ| nsc |Σ|

L1 ∪ L2
m+ n+ 1
max{m,n}

2
1

right
left
sided

m+ n

m+ n− 1
m+ n− 2
min{m,n}

2
2
2
1

L1 ∩ L2
mn

min{m,n}
2
1

mn

max{m,n}
2
1

L1L2
m+ n

m+ n− 1
3
1

m+ n− 1 1

L2 2m
2m− 1

3
1

2m− 1 1

L?
≤, �
v,b

m

1
2
1

m+ 1
m− 1

2
1

LR

≤
�,v
b

m+ 1
m+ 1
m+ 1
m

2
3

2m−2

1

right
left
sided

m

m+ 1
m

1
3
1

L

≤
�,v
b

2m

1 + 2m−1

1 + 2m−1

m+ 1

2
2

2m

1

right
left

2-sided
-sided

2m−1

2m−1

2m−2

2m−2

m− 1

2
2
2

2m−2

1
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Table 14: State complexity of basic operations on unary convex languages.

Unary
Free Closed Ideal Convex

L1 ∪ L2 max{m,n} max{m,n} min{m,n} max{m,n}
L1 ∩ L2 m = n min{m,n} max{m,n} max{m,n}
L1 − L2 m m n max{m,n}
L1 ⊕ L2 max{m,n} max{m,n} max{m,n} max{m,n}
L1L2 m+ n− 2 m+ n− 2 m+ n− 1 m+ n− 1
L? m− 2 2 m− 1 n2 − 7n+ 13
LR m m m m

Table 15: State complexity of prefix, suffix, factor and bifix operations on regular
languages and on ideals (right, left and two sided, respectively).

Regular Ideal
sc |Σ| sc |Σ|

L≤ m+ 1 2 m+ 1 2
L� (m− 1)2m−2 + 2, m ≥ 4 4 n(n−1)

2 + 2 1
Lv (m− 2)2m−3 + 3, m ≥ 4 3 n+ 1 1
Lb (m− 2)2m−2 + 3, m ≥ 4 4

state complexity of the determination of a star-free language L is 2nsc(L). Figure 9
presents a family of ternary NFAs for which the bound is tight. Holzer et al. [102]
showed that star-free languages have no magic numbers.

0 1 2 · · · m � 1

b, c

a, b

b

a, c

b

a, c a, c

b

Figure 9: Minimal m-state NFAs with equivalent minimal 2m-state DFA for star-free
languages

Brzozowski and Liu [32] and Brzozowski and Szykuła [38] studied the state com-
plexity of the basic regular operations on star-free languages, and their results are
summarized in Table 16. The bounds obtained for general regular languages are
reached except in the catenation for n = 2, the reversal, and operations on unary
languages. Holzer et al. [109, 110] studied the same languages for the operational
nondeterministic state complexity. The bounds coincide with the ones for general
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regular languages and are tight for binary languages. The witness languages for union
and catenation are am−1(bam−1)? and bn−1(abn−1)?. For intersection, witnesses are
b?(ab?)m−1 and a?(ba?)n−1. The first witness for union is also a witness for the star
operation. The language family presented in Figure 6 is star-free and thus a witness
for the reversal operation. On unary star-free languages, the upper bounds for oper-
ational nondeterministic state-complexity coincide with general case, except for the
complementation. Holzer et al. [110] showed that for reversal and star the bounds are
tight. For union, the presented lower bound misses the upper bound by one state.
For intersection, the presented bound is tight in the order of magnitude (Θ(mn)) and
the bound for complementation is Θ(n2). The lower bound for catenation misses the
upper bound for unary general languages by one state.

Table 16: State complexity of basic regular operations on star-free regular and unary
languages, where ◦ ∈ {∪,∩, \,⊕}. For non-unary star-free languages and n = 2,
m ≥ 2. For non-unary star-free languages if m ∈ [1, 2], the bound for reversal is tight
for |Σ| ≥ m, and if m ≥ 3, for |Σ| ≥ m− 1.

Star-free
sc |Σ| Unary

L1 ◦ L2 mn 2 max{m,n}

L1L2
(m− 1)2n + 2n−1, if n ≥ 3 4

m+ n− 1
3m− 2, if n = 2 3

L?
2, if m = 1 1 2, if m = 1

2m−1 + 2m−2, if m ≥ 2 4 m, if m ∈ [2, 5]
m2 − 7m+ 13, if m > 5

LR 2m − 1 m− 1 m

There are some important subclasses of star-free languages besides the finite ones.
The piecewise-testable languages are finite Boolean combinations of languages of the
form Σ?a1Σ?a2Σ? · · ·Σ?akΣ? where k ≥ 0 and ai ∈ Σ. And a subclass of these is the
set of languages thar are finite unions of languages of the form Σ?1a1Σ?2a2Σ?3 · · ·Σ?kakΣ?
where k ≥ 0, ai ∈ Σ and Σi ⊆ Σ \ {ai}, for 1 ≤ i ≤ k. Jirásková and Masopust [132,
133] studied the state complexity of the reversal on these two classes. In both cases,
the bound is 2m−1. For the latter subclass the bound is met by a ternary language,
and for the piecewise-testable languages an alphabet with m− 1 elements is needed.

4.4. Some More Results

We briefly cite some more work on operational state complexity. Câmpeanu and
Ho [44] and Brzozowski and Konstantinidis [28] considered uniform finite languages.
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Krieger et al. studied decimations of languages [148]. Câmpeanu and Konstantini-
dis [45] analysed a subword closure operation. Union-free languages were considered
by Jirásková and Masopust [129, 130]. The same authors studied the state complexity
of projected languages [131]. Determination and operational state complexity of basic
operations on (strongly) bounded regular languages were investigated by Herrmann
et al. [98]. The chop (or fusion) of two words is their catenation where the touching
symbols are merged if equal, or is undefined otherwise. The chop operation and its
iterated variants (star and plus) where studied by Holzer et al. [101, 99, 100]. The
(nondeterministic) state complexity results are similar to the ones for catenation, star
and plus, with the exception of chop-star where the complexities also depend on the
alphabet size. This comes as a surprise as chop based regular expressions are known
to be exponentially more succinct than classical catenation based ones. Bassino et
al. [4] provided upper bounds of the state complexity of basic operations on cofinite
languages as a function of the size the of complementary finite language (taken as the
summation of the lengths of all its words). The average state complexity on finite lan-
guages is addressed in two works. Gruber and Holzer [87] analysed the average state
complexity of DFAs and NFAs based on a uniform distribution over finite languages
whose longest word is of length at most n. Based on the size of finite languages as the
summation of the lengths of all its words and a correspondent uniform distribution,
Bassino et al. [3] establish that the average state complexities of the basic regular
operations are asymptotically linear.

5. State Complexity of Combined Operations

The number of standard individual operations on regular languages is clearly limited
and almost all of their state complexities have been already obtained. However, in
many practical cases, not only these individual operations but also their combinations
are used, for example, the operations expressed by the regular expressions in the
programming language Perl. These combinations are called combined operations.

In 2011, Salomaa et al. [188] proved that there cannot exist an algorithm such that,
for a given composition of basic regularity preserving operations, computes the state
complexity of the corresponding composed operation. The undecidability result holds
already for arbitrary compositions of intersection and marked concatenation and the
proof relies on a reduction from Hilbert’s Tenth Problem. Although the composition
of state complexities of individual component operations of a combined operation
would give an upper bound for the state complexity of the combined operation, the
upper bound is usually too high to be meaningful [150, 187, 206]. For example, for two
regular languages L1 and L2 accepted by anm-state and an n-state DFA, respectively,
the exact state complexity of (L1 ∪L2)∗ is actually 2m+n−1− 2m−1− 2n−1 + 1, while
the composition of their individual state complexities is 2mn−1 + 2mn−2. Clearly,
O(2m+n) and O(2mn) are totally different.

Since the number of combined operations is unlimited and the state complexities
of many of them are very difficult to compute, it would be good if we have a general
estimation method that generates close upper bounds of the state complexities of
combined operations which are good enough to use in practice. Such an estimation
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method has been proposed by Ésik et al. [66], and Salomaa and Yu [193]. A further
concept in this direction, approximation of state complexity has been introduced Gao
and Yu [78].

In the following, we will survey both the results of state complexities of combined
operations and the results of estimations and approximations of state complexities of
combined operations.

5.1. State Complexity of Combined Operations on Regular Languages

The state complexities of a number of basic combined operations on regular languages
have been studied. Most of these combined operations are composed of two basic
individual operations. The results are shown in Table 17.

In 1996, Birget [8] obtained the the state complexity of Σ?L, where L is a regular
language. This combination of complementation, catenation and star is the first com-
bined operation composed of different individual operations whose state complexity
was established. In 2007, Salomaa et al. [187] pointed out that the mathematical
composition of state complexities of individual component operations of a combined
operation is usually much higher than the state complexity of the combined opera-
tion. This is because the result of a component operation of the combined operation
may not be among the worst-cases of the succeeding component operation. They
established the state complexity of (L1∪L2)? and indicated that the state complexity
of (L1 ∩L2)? should be at least reasonably close to the mathematical composition of
state complexities of intersection and star. Later, Jirásková and Okhotin [136] proved
that the state complexity of (L1 ∩ L2)? is exactly the same as the mathematical
composition of state complexities of intersection and star.

Gao et al. [75], in 2008, established the state complexities of (L1L2)? and (LR1 )?,
where L1 and L2 are regular languages. The state complexity of (L1L2)? is 2m+n−1−
2m−1 − 2n−1 + 1 which is lower than the mathematical composition of the state
complexities of catenation and star. Interestingly, the state complexity of (LR1 )? is
the same as that of LR1 which is 2m. The worst-case example over a three-letter
alphabet for LR1 [208] also works for (LR1 )?.

In 2008, Liu et al. [150] studied the state complexities of (L1 ∪ L2)R, (L1 ∩ L2)R,
and (L1L2)R, where L1 and L2 are regular languages. The tight bounds for (L1∪L2)R
were proved and the state complexity of (L1 ∩L2)R is the same as that of (L1 ∪L2)R

because of De Morgan’s laws and LR = L
R. They also gave an upper bound for the

last combined operation which was proved to be tight, in 2012, by Cui et al. [57].
Cui et al. [56] established the state complexities of L1(L2 ∪L3) and L1(L2 ∩L3) in

2011. The state complexity of L1(L2∪L3) is lower than the mathematical composition
of the state complexities of union and catenation, whereas the state complexity of
L1(L2 ∩ L3) is the same as the corresponding composition.

In 2012, Jirásková and Shallit [139] proved the state complexity of the combined
operation L?1

? to be 2Θ(m logm), where L1 is a regular language accepted by an m-
state DFA. A seven-letter alphabet was used in the proof for the lower bound. The
boundary of a language L is the language L? ∩ (L)?. Jirásek and Jirásková studied
the state complexity of the boundary operation and the trivial upper bound of 9

164m
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Table 17: State complexities of some basic combined operations on regular languages.

Regular
sc |Σ|

Σ?L1 2m−1 ([8]) 2
L?1

? 2Θ(m logm) ([139]) 7
L?1 ∩ (L1)? 3

84m + 2m−2 − 2 · 3m−2 −m+ 2 ([117]) 5
(L1 ∪ L2)? 2m+n−1 − 2m−1 − 2n−1 + 1 ([136, 187]) 2
(L1 ∩ L2)? 2mn−1 + 2mn−2 ([136]) 6
(L1L2)? 2m+n−1 + 2m+n−4 − 2m−1 − 2n−1 +m+ 1 ([75]) 4
(LR1 )? = (L?1)R 2m ([75]) 3
(L1 ∪ L2)R 2m+n − 2m − 2n + 2 ([150]) 3
(L1 ∩ L2)R 2m+n − 2m − 2n + 2 ([150]) 3
(L1L2)R 3 · 2m+n−2 − 2n + 1 ([57, 150]) 4
L?1L2 5 · 2m+n−3 − 2m−1 − 2n + 1 ([57]) 4
L1L

?
2 (3m− 1)2n−2 ([58]) 3

LR1 L2 3 · 2m+n−2 ([57]) 4
L1L

R
2 m2n − 2n−1 −m+ 1 ([58]) 3

L1(L2 ∪ L3) (m− 1)(2n+p − 2n − 2p + 2) + 2n+p−2 ([56]) 4
L1(L2 ∩ L3) m2np − 2np−1 ([56]) 4
L?1 ∪ L2 3 · 2m−2 · n− n+ 1 ([79]) 3
L?1 ∩ L2 3 · 2m−2 · n− n+ 1 ([79]) 3
LR1 ∪ L2 2m · n− n+ 1 ([79]) 4
LR1 ∩ L2 2m · n− n+ 1 ([79]) 4
(L1 ∪ L2)L3 mn2p − (m+ n− 1)2p−1 ([57]) 4
(L1 ∩ L2)L3 mn2p − 2p−1 ([57]) 4
L1L2 ∪ L3 (m2n − 2n−1)p ([57]) 4
L1L2 ∩ L3 (m2n − 2n−1)p ([57]) 3

L1L2L3
m2n+p − 2n+p−1 − (m− 1)2n+p−2 5
−2n+p−3 − (m− 1)(2p − 1) ([66])
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was improved for m ≥ 5 and an alphabet of size at least 5 (see Table 17). For binary
and ternary alphabets, the state complexity of the boundary is Θ(4n). Combined
operations with complement, extending the Birget result cited above, were studied
by Moreira et al. [167]. There some nondeterministic state complexity upper bounds
were obtained.

Gao et al. presented the state complexities of four combined operations: L?1 ∪ L2,
L?1 ∩ L2, LR1 ∪ L2, and LR1 ∩ L2, where L1 and L2 are regular languages accepted by
m and n-state DFAs, respectively. The state complexities of the four combined oper-
ations are all n− 1 less than the mathematical composition of the state complexities
of their component operations. Although the gaps are the same, the reasons causing
them are different. For L?1 ∪ L2 and L?1 ∩ L2, the gap n − 1 exists because there are
n − 1 unreachable states in the constructions of resulting DFAs. For LR1 ∪ L2 and
LR1 ∩ L2, it is because n states are equivalent and can be merged into one in the
constructions.

Cui et al. [58, 57] gave the state complexities of a number of combined operations
including: L?1L2, L1L

?
2, LR1 L2, L1L

R
2 , (L1 ∪ L2)L3, (L1 ∩ L2)L3, L1L2 ∪ L3, and

L1L2 ∩ L3. The state complexities of the first five combined operations are less than
the corresponding mathematical compositions and the state complexities of the others
are the same as the compositions. The state complexity of L1L

R
2 is equal to that of

catenation combined with antimorphic involution (L1θ(L2)) in biology [58]. Up to
now, the state complexities of all the combined operations composed of two basic
individual operations have been obtained. These results may serve as the basis of
the research on the state complexities of combined operations with more complex
structures in the future.

Besides these basic combined operations, a few combined operations on k operand

regular languages have also been investigated, e.g. (
k⋃
i=1

Li)?, k ≥ 2. These results

are summarized in Table 18. The state complexity of L1 ∩ L2 ∩ · · · ∩ Lk, k ≥ 2 was
shown to be n1n2 · · ·nk by Birget [7], and Yu and Zhuang [207] in 1991, where Li
is a regular language accepted by an ni-state DFA, 1 ≤ i ≤ k. Ésik et al. [66] later
extended the result to combined Boolean operations. A combined Boolean operation
f(L1, L2, . . . , Lk) is a function which can be constructed from the projection functions
and the binary union, intersection and the complementation operations by function
composition, e.g. L1 ∪ L2 ∩ L2 ∩ · · · ∩ Lk. Its state complexity was proved to be also
n1n2 · · ·nk. Ésik et al. [66] presented the state complexities of L1L2L3 and L1L2L3L4
in the same paper. The worst-case examples for the two combined operations are
modifications of the worst-case examples proposed by Yu et al. [208] for catenation.
On the basis of these results, Gao [70] established the state complexity of L1L2 · · ·Lk,
which formula is too complex to figure here. Using algebraic combinatorics and Brzo-
zowski universal witness dialects, Caron et al. [47] gave a recursive definition for the
state complexity for multiple catenation and improved the size of the alphabet of the
set of witnesses from 2k − 1 to k + 1.

In 2012, Gao et al. [72] gave the state complexities of a series of combined operations

composed of arbitrarily many individual operations, including: (
k⋃
i=1

Li)?, (
k⋃
i=1

Li)2,
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k⋃
i=1

L?i ,
k⋂
i=1

L?i ,
k⋃
i=1

L2
i ,

k⋂
i=1

L2
i ,

k⋃
i=1

LRi , and
k⋂
i=1

LRi . Tight bounds were established for

all these combined operations.
In Table 18, we can see that all the results on the state complexities of combined

operations on k operand languages were proved with increasing alphabets. Clearly,
it is comparatively easier to design worst-case examples with increasing alphabets
than fixed ones. However, the most crucial reason is that it is impossible to design
a worst-case example for a combined operation on arbitrary k operand languages
which are over a fixed alphabet and accepted by arbitrary n1, n2, . . ., nk-state DFAs,
respectively. This is because there exists only a limited number of different DFAs
with a fixed number of states if the alphabet is fixed. Therefore, when k is large
enough and ni is an arbitrary positive integer, 1 ≤ i ≤ k, some of the DFAs may have
the same number of states and some of them may be indeed the same according to
pigeonhole principle [72]. Thus, the research on the state complexities of combined
operations on k operand languages uses increasing alphabets in general.

5.2. State Complexity of Combined Operations on Prefix-free Regular Languages

Since the research history of combined operations is much shorter than that of in-
dividual operations, there remains a lot of work to be done on state complexity of
combined operations for subregular language classes. The state complexities of sev-
eral combined operations on prefix-free regular languages were obtained by Han et
al. [96], in 2010. In 2015, Palmovský snd Šebej studied the star-complement-star.
These results are shown in Table 19. The bounds for the results with intersection
and concatenation combined with star are specially small but the surprise could be
the complexity for the star-of-union, as the complexity of star is linear on prefix-free
languages. But, of course, prefix-freeness is not closed under union.

5.3. Estimation and Approximation of State Complexity of Combined Operations

We can summarize at least two problems concerning the state complexities for com-
bined operations. First, the state complexities of combined operations composed of
large numbers of individual operations are extremely difficult to compute. Second, a
large proportion of results that have been obtained are pretty complex and impossible
to comprehend [77]. For example, Ésik et al. [66] have shown that the state complex-
ity of the catenation for four regular languages with state complexities m,n, p, q,
respectively, is

9(2m− 1)2n+p+q−5− 3(m− 1)2p+q−2− (2m− 1)2n+q−2 + (m− 1)2q + (2m− 1)2n−2.

Clearly, in these situations, close estimations and approximations of state complex-
ities are usually good enough to use.

5.3.1. Estimation of State Complexity of Combined Operations

An estimation method through nondeterministic state complexity to obtain the upper
bound was first introduced by Salomaa and Yu [193]. Assume we are considering the
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Table 18: State complexities of some combined operations on k regular languages,
k ≥ 2. Here f denotes any k-ary Boolean operation.

Regular
sc |Σ|

(
k⋃
i=1

Li)?
k∏
i=1

(2ni−1 − 1) + 2

k∑
j=1

nj−k

([71]) 2k + 1

(
k⋃
i=1

Li)2

k∏
h=1

(nh − 1)[
k∏
i=1

(2ni − 1) + 1] 2k + 1

+[
k∏
j=1

nj −
k∏
l=1

(nl − 1)]2

k∑
m=1

nm−k
([71])

k⋃
i=1

L?i ( 3
4 )k2g −

k∑
i=1

[
i−1∏
j=1

( 3
42nj − 1)

k∏
t=i+1

( 3
42nt)] + 1 ([73]) 2k

k⋂
i=1

L?i ( 3
4 )k2g −

k∑
i=1

[
i−1∏
j=1

( 3
42nj − 1)

k∏
t=i+1

( 3
42nt)] + 1 ([73]) 2k

k⋃
i=1

L2
i

k∏
i=1

(ni2ni − 2ni−1) ([72]) 2k
k⋂
i=1

L2
i

k∏
i=1

(ni2ni − 2ni−1) ([72]) 2k
k⋃
i=1

LRi
k∏
i=1

(2ni − 1) + 1 ([72]) 3k
k⋂
i=1

LRi
k∏
i=1

(2ni − 1) + 1 ([72]) 3k

f(L1, . . . , Lk) n1n2 · · ·nk ([7, 66, 207]) 2k
L1L2 · · ·Lk see details in [47, 70, 66, 77] k + 1

Table 19: State complexities of some combined operations on prefix-free regular languages.

Prefix-Free Regular
sc |Σ|

(L1 ∪ L2)? 5 · 2m+n−6 ([96]) 4
(L1 ∩ L2)? mn− 2(m+ n) + 6 ([96]) 4
(L1L2)? m+ n− 2 ([96]) 2
(LR1 )? = (L?1)R 2m−2 + 1 ([96]) 3
L?

? 2m−3 + 2 ([173]) 2
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combination of a language operation g1 with k arguments together with operations
gi2, i = 1, . . . , k. The nondeterministic estimation upper bound, or NEU-bound for the
deterministic state complexity of the combined operation g1(g1

2 , . . . , g
k
2 ) is calculated

as follows:

(i) Let the arguments of the operation gi2 be DFAs Aij with mi
j states, i = 1, . . . , k,

j = 1, . . . , ri, ri ≥ 1.
(ii) The nondeterministic state complexity of the combined operation is at most the

composition of the individual state complexities, and hence the language

g1(g1
2(L(A1

1), . . . , L(A1
r1

)), . . . , gk2 (L(Ak1), . . . , L(Akrk
)))

has an NFA with at most

nsc(g1)(nsc(g1
2)(m1

1, . . . ,m
1
r1

), . . . ,nsc(gk2 )(mk
1 , . . . ,m

k
rk

))

states, where nsc(g) is the nondeterministic state complexity (as a function) of
the language operation g.

(iii) Consequently, the deterministic state complexity of the combined operation
g1(g1

2 , . . . , g
k
2 ) is upper bounded by

2nsc(g1)(nsc(g1
2)(m1

1,...,m
1
r1 ),...,nsc(gk

2 )(mk
1 ,...,m

k
rk

)) (2)

Table 20 shows the state complexities and their corresponding NEU-bounds of the
four combined operations [193]: (1) star of union, (2) star of intersection, (3) star
of catenation, and (4) star of reversal. This method works well when a combined

Table 20: State complexities of four combined operations and their corresponding NEU-
bounds on regular languages [78].

Regular
sc NEU-bound

(L1 ∪ L2)? 2m+n−1 − 2m−1 − 2n−1 + 1 2m+n+2

(L1 ∩ L2)? 3/4 2mn 2mn+1

(L1L2)? 2m+n−1 + 2m+n−4 − 2m−1 − 2n−1 +m+ 1 2m+n+1

(LR1 )? 2m 2m+2

operation ends with the star operation. However, it does not work well in general for
combined operations that are ended with reversal [66, 193]. For example, the state
complexity of (L(A) ∩ L(B))? is 2m+n − 2m − 2n + 2, where A and B are m-state
and n-state DFAs, respectively. But using the above method, we would obtain an
estimate 2mn+1. We note that in this particular case if reversal is distributed over
intersection we can again recover a good estimate. Thus, it may be possible to have a
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general estimation method that takes in account algebraic properties of the considered
model.3

5.3.2. Approximation of State Complexity of Combined Operations

Although an estimation of the state complexity of a combined operation is simpler
and more convenient to use, it does not show how close it is to the state complexity.
To solve this problem, the concept of approximation of state complexity was proposed
by Gao and Yu [77]. The idea of approximation of state complexity comes from the
notion of approximation algorithms [80, 142, 143]. A large number of polynomial-
time approximation algorithms have been proposed for many NP-complete problems,
e.g. the traveling-salesman problem, the set-covering problem, and the subset-sum
problem, etc. Since it is considered intractable to obtain an optimal solution for an
NP-complete problem, near optimal solutions obtained by approximation algorithms
are often good enough to use in practice. Assume there is a maximization or a
minimization problem. An approximation algorithm is said to have a ratio bound of
ρ(n) if for any input of size n, the cost C of the solution produced by the algorithm
is within a factor of ρ(n) of the cost C? of an optimal solution [55]:

max
(
C

C?
,
C?

C

)
≤ ρ(n).

The concept of approximation of state complexity is similar to that of approximation
algorithms. An approximation of state complexity of an operation is a close estima-
tion of the state complexity of the operation with a ratio bound showing the error
range of the approximation [77]. In spite of similarities, there are some fundamental
differences between an approximation algorithm and approximation of state complex-
ity. The efforts in the area of approximation algorithms are in designing polynomial
algorithms for NP-complete problems such that the results of the algorithms approx-
imate the optimal results whereas the efforts in approximation of state complexity
are in searching directly for the estimations of state complexities such that they are
within some certain ratio bounds [77]. The aim of designing an approximation algo-
rithm is to transform an intractable problem into one that is easier to compute and
the result is not optimal but still acceptable. In comparison, an approximation of
state complexity may have two different effects:
(1) it gives a reasonable estimation of a certain state complexity, with some bound,

the exact value of which is difficult or impossible to compute; or
(2) it gives a simpler and more comprehensible formula that approximates a known

state complexity [78].
Gao et al. gave a formal definition of approximation of state complexity in [78]. Let
ξ be a combined operation on k regular languages. Assume that the state complexity
of ξ is θ. We say that α is an approximation of the state complexity of the operation
ξ with the ratio bound ρ if, for any large enough positive integers n1, . . . , nk, which

3This observation was made to us by an annonymous referee.
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are the numbers of states of the DFAs that accept the argument languages of the
operation, respectively,

max
(
α(n1, . . . , nk)
θ(n1, . . . , nk) ,

θ(n1, . . . , nk)
α(n1, . . . , nk)

)
≤ ρ(n1, . . . , nk).

Note that in many cases, ρ is a constant. Some examples of approximation of state
complexity of combined operations are shown in Table 21.

Table 21: Approximations of state complexities of six combined operations and their
corresponding ratio bounds on regular languages.

Regular
Approximation Ratio bound

(L1 ∪ L2)? 2m+n+2 ≈ 8 [78]
(L1 ∩ L2)? 2mn+1 8/3 [78]
(L1L2)? 2m+n+1 ≈ 4 [78]
(LR1 )? 2m+2 4 [78]
(L1\R)? 2m−1 + 2m−2 4

3 [77]
L1\R? 2m+1 8

3 [77]

6. Conclusions

In the last two decades, a huge amount of results were obtained on the operational
state complexity of regular languages. Results are roughly split between: individual
and combined operations; regular and different classes of subregular languages; de-
terministic and nondeterministic complexity; different alphabet sizes; and worst case
versus average case. All this work also suggests new directions of research, as well as
several open problems.

As it is evident by this survey, many results on this area are functions parametrized
by some measures, mostly the state complexities of the operation arguments. Given
the amount and diversity of these functions, it is useful to have a software tool that
helps to structurally organize, visualize and manipulate this information. Towards
this goal, a first step was taken by the development of DesCo, a Web-based informa-
tion system for descriptional complexity results [180, 168]. DesCo keeps information
about language classes, languages operations, models of computation, measures of
complexity and complexity functions (both operational and transformational). For
instance, given an operation, it is possible to obtain the complexity functions for all
language classes and all complexity measures (that are registered in the database).

To obtain a witness for a tight upper bound, many authors performed experiments
using computer software. The reason why some witnesses would work for several (or
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almost all) complexity bounds only recently has been addressed. Universal witnesses
(and their variants) for operational state complexity of regular languages can be
considered a major breakthrough. Conditions for a family of languages to be universal
include also other measures as the syntactic complexity and the number of atoms. The
study of necessary or sufficient conditions for the maximality of all these measures
is a new direction of research. This approach was also extended to other classes
of subregular languages and in some cases universal witnesses, i.e. most complex
languages may not exist. It is an open problem whether this approach extends to
other complexity measures, in particular to nondeterministic state complexity and
transition complexity.

Besides the worst-case complexity of an operation, researchers also studied the
range of possible values that can be achieved, as a function of the complexities of the
arguments and the alphabet size. A magic value is a value that cannot occur (for that
kind of complexity, operation and alphabet size). In general, if growing alphabet sizes
are allowed no magic numbers exist (and even for binary alphabets they are rare).
The distribution of possible complexity values and the density of languages (or tuples
of languages) that achieve that values can also be valuable for average-case analysis.

Witnesses with alphabets of increasing size were used in the quest of magic num-
bers, for the state complexity of certain operations over subregular languages, and
almost for all results on combined operations with an arbitrary number of operands.
This questions if the alphabet size should be a parameter of the complexity under
study. In particular, it should be investigated which situations cannot be charac-
terized without increasing alphabets, and the ones for which languages with fixed
alphabets can exist but are not yet known.

For binary operations, it is natural to consider that operand languages may have
different alphabets. However, in state complexity results it is usually assumed, and
we assumed here, that operands are over the same alphabet and DFAs are complete.
In the case of incomplete DFAs, transition complexity is an interesting measure and
some operational complexity results were studied [76, 154]. In those papers opera-
tional state complexity considering incomplete DFAs was also presented. Note that,
an incomplete DFA can be completed by adding at most one more state. For bi-
nary operations, considering complete DFAs with different alphabets corresponds to
consider incomplete DFAs over the union of the alphabets. State complexity of (ba-
sic) binary operations over languages with different alphabets was studied by Brzo-
zowski [19], and called unrestricted (state) complexity. Results in that case can be
slightly different from the ones presented in this survey.

For many automata applications, a major direction of research is average-case state
complexity. An essential question for average results is the probability distribution
that is chosen for the models. The few results that exist use a uniform distribution,
and even in this case the problem is very difficult. Recently, using the framework
of analytic combinatorics, some average-case results were obtained for the size of
NFAs equivalent to a given regular expression [171, 10, 11, 12]. It is also worthwhile
to mention the average-case computational complexity analysis of the Brzozowski
minimization algorithm carried on by Felice and Nicaud [67, 69]. This work can
be specially relevant for the operational state complexity because the authors give
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some characterizations of the state complexity of reversal. Another approach for
average-case analysis is to consider experimental results based on samples of uniformly
random generated automata. There are some random generators for non-isomorphic
DFAs [1, 5, 68]. Uniform random generators for non-isomorphic NFAs using Markov
chains were presented in [97]. However for NFAs, the fact that there is no known
generic polynomial algorithm for graph isomorphism, the problem seems unfeasible in
general. A promising line of research is to consider random generators for interesting
subclasses of NFAs.
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