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Abstract. Computing short regular expressions equivalent to a given finite automaton is a hard
task. In this work we present a class of acyclic automata for which it is possible to obtain in time
O(n2 log n) an equivalent regular expression of sizeO(n). A characterisation of this class is made
using properties of the underlying digraphs that correspond to the series-parallel digraphs class.
Using this characterisation we present an algorithm for thegeneration of automata of this class and
an enumerative formula for the underlying digraphs with a given number of vertices.

1. Introduction

Computing a regular expression from a given finite automatoncan be achieved by well-known algo-
rithms based on Kleene’s theorem [20], establishing the equivalence between languages accepted by
finite automata and languages represented by regular expressions. However the resulting regular expres-
sion depends on the order in which the automaton’s states areconsidered in the conversion. In particular,
this is the case if the algorithm is based on thestate elimination algorithm[35]. Consider, for example,
the following automaton:

s1

s2

s3

s4

a, d

b

c
d

e

If we remove the states2 and then the states3, the expression(a + d)d + ((a + d)c + b)e is obtained.
But if we remove firsts3 and thens2, we obtain the regular expressionbe + (a + d)(ce + d). In the first
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case, the expressiona + d occurs two times, and in the second, the symbole occurs two times. The first
case corresponds to the application of the distributivity rule on the right, and the second to the application
of that rule on the left. In this last case the resulting expression has less symbols than the first one. If
our goal is to obtain an equivalent regular expression with short size from a given automaton, the order
in which we consider the automaton states is of great importance. Moreover, given an automaton with
n states andk alphabetic symbols the upper bound for the size of the equivalent regular expression is
O(nk4n) (and no general smaller lower bounds are known) [18, 6]. The problem of obtaining a minimal
regular expression equivalent to a given automaton is PSPACE-complete and NP-complete for acyclic
automata [19]. If an unary regular language (k = 1) is accepted by a (non)deterministic automaton with
n states there exists an equivalent regular expression of size (O(n2)) O(n), respectively [6].

In this work we characterise a class of acyclic automata for which it is easy to find an order of state
elimination such that the resulting regular expressions have size linear in the number of the automata
transitions. The characterisation of this class is made using properties of the underlying digraphs that
correspond to the series-parallel digraphs class.

The work reported in this paper was partially presented in Moraiset al. [25, 26] and Reis [27], and
is organised as follows. In the next section, we review some basic notions and introduce notation used
in this paper. Section 3 defines the class of series-parallel(SP) automata in terms of the underlying
digraphs and shows that it is possible to compute a linear size regular expression from anSP automaton.
Section 4 presents an efficient algorithm for determining ifan automaton isSP, and if it is the case shows
how to obtain the correspondent short regular expression. Section 5 introduces another characterisation
of SP digraphs that is used to give an enumerative formula. Some related work is discussed in Section 6
and Section 7 concludes.

2. Preliminaries

We recall the basics of digraphs, finite automata and regularexpressions that can be found in standard
books [18, 16, 1]. A digraphD = (V,E) consists of a finite setV of vertices and a setE of ordered
pairs of vertices, calledarcs. If (u, v) in E, u is adjacent to(or incident to)v andv is adjacent fromu.
For each vertexv, the indegreeof v is the numberni of vertices adjacent to it and theoutdegreeof v is
the numberno of vertices adjacent from it, and we writev(ni;no). An arc(u, v) can be denoted byuv.
A pathbetweenv0 andvn is a sequencev0v1, v1v2, . . . , vn−1vn of arcs, and is denoted byv0 · · · vn, or
v0 · · · vk · · · vn, for 1 ≤ k < n. A path issimpleif all the vertices in it are distinct. The length of a path
is the number of arcs in the path. A path is acycleif v0 = vn andn ≥ 1. A digraph that has no cycles is
calledacyclic. For an acyclic digraphD = (V,E), there is atopologicalorderingo of its vertices,i.e.,
such that if(u, v) ∈ E theno(u) < o(v).

An alphabetΣ is a nonempty set of symbols. A string over an alphabetΣ is a finite sequence of
symbols ofΣ. The empty string is denoted byǫ. The setΣ⋆ is the set of all strings overΣ. A languageL
is subset ofΣ⋆. If L1 andL2 are two languages, thenL1 ·L2 = {xy | x ∈ L1 andy ∈ L2}. The operator
· is often omitted. A regular expression (r.e.)r overΣ represents a (regular) languageL(r) ⊆ Σ⋆ and is
inductively defined by:∅ is a r.e andL(∅) = ∅; ǫ is a r.e andL(ǫ) = {ǫ}; a ∈ Σ is a r.e andL(a) = {a};
if r1 andr2 are r.e.,(r1 + r2), (r1r2) and(r1)

⋆ are r.e., respectively withL((r1 + r2)) = L(r1)∪L(r2),
L((r1r2)) = L(r1)L(r2) andL((r1)

⋆) = L(r1)
⋆. We adopt the usual convention that⋆ has precedence

over ·, and · has higher priority than+, and we omit outer parentheses. LetRΣ be the set of regular
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expressions overΣ. Two regular expressionsr1 andr2 are equivalent ifL(r1) = L(r2), and we write
r1 ≡ r2. In this work, we will take thesizeof a regular expressionr to be the number of symbols from
Σ contained inr, and we denote it by|r|.

A nondeterministic finite automaton(NFA) A is a quintuple(S,Σ, δ, s0, F ) whereS is finite set of
states,Σ is the alphabet,δ ⊆ S × Σ ∪ {ǫ} × S the transition relation,s0 the initial state andF ⊆ S the
set of final states. An NFA withoutǫ-transitions isdeterministic(DFA) if for each pair(s, a) ∈ S × Σ
there exists at most ones′ such that(s, a, s′) ∈ δ. For s ∈ S anda ∈ Σ, we denote byδ(s, a) = {p |
(s, a, p) ∈ δ}, and we can extend this notation tox ∈ Σ⋆, by δ(s, ax) = δ(δ(s, a), x). The language
accepted byA is L(A) = {x ∈ Σ⋆ | δ(s0, x)∩F 6= ∅}. Two NFA areequivalentif they accept the same
language. Thesizeof an NFA is the number of its transitions.

Theunderlying digraphof an NFAA = (S,Σ, δ, s0, F ) is the digraphD = (S,E) such thatE =
{(s, s′) | s, s′ ∈ S and∃a ∈ Σ ∪ {ǫ} such that(s, a, s′) ∈ δ}. Note that even there can be more than
one symbol ofΣ between two statess ands′, only one arc exists in the underlying graph. We callinitial
vertexthe vertex that corresponds to the initial state,final verticesthe ones that correspond to final states
andintermediate vertices, all the others. An automaton isusefulif in its underlying digraph, every vertex
is in a path from the initial vertex to a final vertex. An automaton isacyclic if its underlying digraph is
acyclic. We will use the above terminology both for digraphsand for automata.

An extended finite automaton(EFA) A is a quintuple(S,Σ, δ, s0, F ), whereS, Σ, s0 andF are as
before andδ : S × S → RΣ. We assume thatδ(s, s′) = ∅, if the transition froms to s′ is not defined.
A string x ∈ Σ⋆ is said to be accepted byA if x = x1 · · · xn, for x1, . . . , xn ∈ Σ⋆ and there is a
state sequences0, s1, . . . , sn with sn ∈ F , such thatx1 ∈ L(δ(s0, s1)),. . . ,xn ∈ L(δ(sn−1, sn)). The
language accepted byA is the set of all strings accepted byA. Thesizeof an EFA is the number of its
transitions. Theunderlying digraphof an EFA is a digraphD = (S,E) such that(s, s′) ∈ E if and only
if δ(s, s′) 6= ∅. Any NFA can be easily transformed into an equivalent EFA, with the same underlying
digraph: for each pair of states(s, s′) one needs to construct a regular expressiona1 + · · ·+ an such that
(s, ai, s

′) ∈ δ, ai ∈ Σ ∪ {ǫ}, 1 ≤ i ≤ n.
Finally, we recall the conversion of an EFAA into a regular expressionr, using thestate elimi-

nation algorithm(SEA). In each step, a non-initial and non-final state of the EFA is deleted and the
transitions are changed in such way that the new EFA is equivalent to the older one. Formally, let
A = (S,Σ, δ, s0, F ) be an EFA. Then

1. (a) If s0 ∈ F or existss ∈ S such thatδ(s, s0) 6= ∅, then add a new stateα to S, define
δ(α, s0) = ǫ andα is the new initial state.

(b) If |F | > 1, then add a new stateω and transitionδ(s, ω) = ǫ, for all s ∈ F . The set of final
states becomes{ω}.

Without lost of generality, letA′ = (S′,Σ, δ′, α, {ω}) denote the new EFA. We denote byrss′ the
regular expressionδ(s, s′).

2. If S′ = {α, ω}, then the resulting regular expression isrαωr⋆
ωω, and the algorithm terminates.

Otherwise continue to step 3.

3. Chooses ∈ S′ \ {α, ω}. Eliminates from A′, consideringS′ \ {s} the new set of states, and for
eachs1, s2 ∈ S′ \ {s},

δ′(s1, s2) = rs1s2
+ rs1sr

⋆
ssrss2

,
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Continue to step 2.

Let us observe that, in each step, if we haves(k; l), the contribution ofs for the size of the final
regular expression can be measured by

(k − 1)
k

∑

i=1

|rsis|+ (l − 1)
l

∑

j=1

|rssj
|+ (kl − 1)|rss|. (1)

This contribution is0 if s(1; 1). To illustrate, this dependence from the order of state elimination in the
resulting regular expression, consider the following automaton:

s1

s2 s3

s4
a

a b

a

b

a b

If the order of state elimination iss2, s1, s4, ands3 we obtain the regular expressiona+(b+aa)(ba+
a(b + a(b + aa))⋆(b + aaa) with 16 alphabetic symbols. If the order iss3, s4, s2, ands1, the resulting
expression isba(ba)⋆a + (a + bb + ba(ba)⋆bb)(ab + aa(ba)⋆bb)⋆aa(ba)⋆a)⋆(a + bb + ba(ba)⋆bb)(ab +
aa(ba)⋆bb)⋆ with 44 alphabetic symbols. In each step, we could try to simplify the regular expression
obtained, but our goal is to try to discover a state order thatleads to shorter regular expressions. One of
the advantage of this approach is to avoid the generation of bigger intermediate regular expressions.

3. SP Automata

In this section, we will consider only useful acyclic automata with one final state. The underlying di-
graphs of these automata are called in the literature (acyclic) st-digraphs [1]. In anst-digraph there exists
only one vertexα of indegree 0 (α(0;m), for m > 1), only one vertexω of outdegree 0 (ω(n; 0), for
n > 1), and each vertex occurs in some path fromα to ω. In an acyclic automaton, the verticesα andω
correspond to the initial and final state, respectively.

We are going to characterise a class of automata using the notion of digraph homeomorphism. Two
digraphs are homeomorphic if both can be obtained from the same digraph by a sequence of subdivisions
of arcs [16, 1]. Consider the digraph1

~R = ({s1, s2, s3, s4}, {(s1, s2), (s1, s3), (s2, s3), (s2, s4), (s3, s4)}),

represented in Figure 1.

Definition 3.1. A useful acyclic NFA with one final state isSP (series-parallel) if its underlying digraph
does not contain a subgraph homeomorphic to~R. We say that the underlying digraph is anSP digraph.

The digraph in Figure 2, is notSP, because its underlying digraph contains a subgraph homeomor-
phic to~R, namely, the one obtained by excluding the vertexs3 and the arcs(s4, s6), and(s5, s10) (with
dashed lines, in the figure). On the other hand, the digraph inFigure 3 isSP. The automaton presented
in the introduction is obviously notSP.
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s1

s2

s4

s3

Figure 1. Digraph~R.
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s10

Figure 2. A non-SP digraph.

Series-parallel graphs and digraphs are extensively studied in the literature. Initially they were stud-
ied in relation with series-parallel electrical circuits by Riordan and Shannon [28]. Duffin [5] charac-
terisedSP graphs by a forbidden undirected subgraph characterisation as the one in Definition 3.1. This
class of (di)graphs is also important because many NP-complete graph problems become polynomial (or
even linear) when restricted to it [32, 34].

In our preliminary work [26] this class of automata was called UDR as an acronym ofUnique for the
Distributivity Rule. If an automaton is notSP, there are at least two states (with outdegree or indegree
greater than 1) such that the order chosen to eliminate them leads to two different regular expressions,
where one results from the application of a distributivity rule to the other. In general, one of the choices
will lead to a shorter expression, but it is not easy to determine which. In the next section, we show that
this is not the case if the automaton isSP. In anSP automaton, in each step there is always a states(1; 1)
that we can select to eliminate.

Proposition 3.1. Any acyclic NFA is equivalent to anSP automaton.

Proof:
Every acyclic NFAA = (S,Σ, s0, F ) is equivalent to a regular expression indisjunctive normal form,
i.e., r1 + · · · + rn where for1 ≤ l ≤ n,

rl =

{

ǫ or,

al1 · · · alkl
alj ∈ Σ, 1 ≤ j ≤ kl.

From this r.e. we can construct an equivalent NFA

A′ = ({α} ∪ {ω} ∪
⋃

1≤l≤n

Sl,Σ, α, {ω})

1~R is a directed version of the complete graph with 4 vertices (K4).
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s1

s2

s3

s4

s5

s6

s7

Figure 3. AnSP digraph.

whereSl = {sl1 , . . . , slkl
}, 1 ≤ l ≤ n, and such that

δ′(α, al1) = {sl1},
δ′(slj , alj+1

) = {slj+1
}, for 2 ≤ j ≤ kl−1,

δ′(slkl
, ǫ) = {ω}.

The automatonA′ is trivially SP. ⊓⊔

An interesting open problem is to design a method to obtain, from an acyclic NFA, anSP automaton
with a minimal number of transitions (size).

Without loss of generality, we can just considerSP digraphs (instead of automata),D = (S,E, α, ω),
whereα denotes the initial vertex andω denotes the final vertex. It is obvious that,

Lemma 3.1. An st-digraph subgraph of anSP digraph is anSP digraph.

Lemma 3.2. Let D = (S,E, α, ω) be anSP digraph. Letα(0; k), ω(m; 0), andk,m > 1. Suppose
thatu andu′ are two distinct vertices adjacent fromα, andv andv′ are two distinct vertices adjacent to
ω. If there are two disjoint pathsαu · · · vω andαu′ · · · v′ω then there cannot exist a pathαu · · · v′ω nor
a pathαu′ · · · vω.

Proof:
Suppose that there exists a pathαu · · · v′ω, partially in dashed line in the picture below:

α

u

u′

v

v′

ω

It is obvious that there will be a subgraph ofD homeomorphic to~R. This subgraph will contain the
vertices{α, u, s′, ω} (corresponding to the vertices of~R), wheres′ is the first vertex common to the path
αu · · · v′ω and to the pathαu′ · · · v′ω (at leastv′ or u′). The proof is analogous if there exists a path
αu′ · · · vω. ⊓⊔
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If α(0; k) andk > 1, let U be the set of the vertices adjacent fromα. Foru ∈ U , let

Xu = {u} ∪ {s | s ∈ S \ {ω} and there exists a pathu · · · s}.

Consider the binary relation↓ in U × U , such thatu ↓ u′ if and only if Xu ∩Xu′ 6= ∅.

Lemma 3.3. If D is anSP digraph, the relation↓ is an equivalence relation onU .

Proof:
The reflexivity and the symmetry are trivial, we only need to prove the transitivity. Letu1, u2, u3 ∈ U ,
u1 ↓ u2, andu2 ↓ u3. Then there exists1 ∈ Xu1

∩Xu2
ands2 ∈ Xu2

∩Xu3
. If s1 = s2 thenu1 ↓ u3.

Suppose thats1 6= s2 and that there is no paths1 · · · s2 nor s2 · · · s1. Then, we will have the following
diagram:

α

u1

u2

u3

s1

s2

ω

The vertices{α, u2, s1, ω} define a subgraph homeomorphic to~R, which contradicts the fact thatD
is SP. ⊓⊔

Lemma 3.4. Let D = (S,E, α, ω) be anSP digraph. Letα(0; k), ω(0;m), andk,m > 1. Let U and
Xu, for u ∈ U be as above. If[u] is an equivalence class of the relation↓ with more than one element,
then there existss ∈ S \ {ω} such that:

1. s ∈ ∩u′∈[u]Xu′

2. For alls′ ∈ ∪u′∈[u]Xu′ , every pathα · · · s′ω containss.

Proof:
The existence ofs, satisfying 1 is a direct consequence of the argument given in the proof of the tran-
sitivity of ↓. If condition 2 does not hold, then the digraphD will have a subgraph homeomorphic to
~R. ⊓⊔

Now we can characterise the essential property of anSP digraph.

Theorem 3.1. Let D = (S,E, α, ω) be anSP digraph and|S| > 2. ThenD has at least a vertexs such
thats(1; 1).

Proof:
The proof is made by induction on the number of vertices of thedigraph,|S| = n. If n = 3, it is trivially
true. TheSP digraphs with4 vertices are enumerated in Figure 4, and it is easy to see thatall of them
have one vertexs such thats(1; 1). Assume that the theorem holds forSP digraphs with less thann > 4
vertices. We want to show that the same is true for aD = (S,E, α, ω) with |S| = n. If α(0; 1), let
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s1 s2 s3 s4 s1

s2

s3 s4 s1

s2

s3

s4

s1

s2

s3 s4 s1

s2 s3

s4

s1 s2

s3

s4 s1

s2 s3

s4 s1

s2

s3

s4

Figure 4. SP digraphs with 4 vertices.

u ∈ S \ {ω} be the vertex adjacent fromα. Then the digraphD′ = (S \ {α}, E \ {(α, u)}, u, ω) is
anSP digraph withn − 1 vertices, and by induction hypothesis it has a vertexs such thats(1; 1). An
analogous argument can be given ifω(1; 0). Let us suppose thatα(0; kα) andω(kω; 0), with kα, kω > 1.
As we are seeking for an intermediate vertex, we can ignore the arc(α, ω) ∈ E, if it exists. LetU , Xu

and↓ be as defined above. For everyu ∈ U , we have one of the following cases:

1. The class[u] has an unique element. LetD′ = (Xu ∩ {ω}, E′, u, ω), whereE′ has all the arcs
of D with vertices inXu ∩ {ω}. Then by Lemma 3.1,D′ is anSP digraph and has less thann
vertices. If |Xu ∩ {ω}| = 2, thenu(1; 1) in D. Otherwise, by induction hypothesis,D′ has a
vertexs′ such thats′(1; 1), and, inD we have alsos′(1; 1) (by Lemma 3.2).

2. The class[u] has more than one element. LetD′ = (∩u′∈[u]Xu′ , E′, α, s), whereE′ has all the
arcs ofD with vertices in∪u′∈[u]Xu′ ands as defined in Lemma 3.4. Then by Lemma 3.4,D′ is
anSP digraph and has less thann vertices. By induction hypothesis, it has a vertexs′ such that
s′(1; 1), and, inD we have alsos′(1; 1).

⊓⊔

Theorem 3.2. Let A = (S,Σ, α, δ, ω) be a useful acyclic NFA with an unique final state. We can obtain
a regular expression equivalent toA using the state elimination algorithm (SEA) in such way thatin each
step we remove a states with s(1; 1) if and only if A is SP.

Proof:
Suppose thatA is SP. If S = {α, ω} then there is nothing to be proven. Otherwise, by Theorem 3.1,
we can choose a states to eliminate such thats(1; 1). The resulting EFAA′ is SP, since with that
elimination step no automaton state increases its indegreenor its outdegree (at most the adjacent state to
s decreases its outdegree by one and the adjacent state froms decreases its indegree by one).

If we apply the SEA to a useful acyclic non-SP EFA A, then the underlying digraph ofA has a
subgraph homeomorphic to~R. Let s1, s2, s3, ands4 be the corresponding vertices. All of them have
either indegree or outdegree greater than 1, and all those degrees cannot decrease to 1 unless one of the
states is eliminated. ⊓⊔
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Corollary 3.1. Given anSP automatonA, it is possible to construct an equivalent regular expression
with size linear in the size ofA.

Proof:
In the application of the SEA, in each step ifs is the state to remove (ands(1; 1)), then there exists one
and only one pair of states(s1, s2) such thatδ′(s1, s2) = rs1s2

+ rs1srss2
and all the other transitions are

not changed. The size of the regular expression obtained is the number of transitions ofA with alphabetic
symbols (counting its multiplicities). ⊓⊔

4. An algorithm to decide if a digraph is SP

Fortuneet al. [9] have shown that the problem of determining if an acyclic digraphD = (V,E) has a
subgraph homeomorphic to a fixed digraphP = (V ′, E′) has a polynomial time algorithmO(nk+s),
wheren = |V |, k = |E′| ands = |V ′|. However, to determine if a digraph isSP, specialised algorithms
can be designed. Recognition of series-parallels graphs can be done in linear time [34] and several
parallel algorithms were described in the 1990’s [17, 7, 3].We present a new sequential algorithm that
can be easily adapted to obtain a short regular expression.

Let us suppose that we have already determined thatD = (V,E, α, ω) is an (acyclic)st-digraph,
with a topological orderingo (this can be achieved inO(n + m)). For v ∈ V , let Adj(v) be a list of
vertices adjacent tov, let od(v) be the outdegree ofv, let id(v) be the indegree ofv and letInc(v) be a
list of vertices adjacent from (incident to)v.

In Figure 5 we present the algorithm in pseudo-code. The vertices of the digraph are going to be
traversed in topological order. Each arc(u, v) ∈ E is annotated with a list of relevant vertices with
outdegree greater than1 that precedesv (in a path fromα). Those labels are denoted byA(u, v) and they
can be a list of vertices or a reference to another equivalentannotation. We writea ≡ b to denote thata
becomes a reference tob and we writea 6≡ b to test ifa is not a reference tob. We use← as the standard
assignment operator. The empty list is denoted by[] andl.v represents the concatenation ofv with the
list l. We use other standard list operations asfirst (first element of the list),last (last element of the
list) andbutlast (the list without the last element).

The algorithm proceeds as follows. While the visited vertices have indegree less than 2,i.e. they are
not a confluence, the relevant predecessors are collected (lines 17–21). If a vertexv has indegree greater
than1, then either we can “resolve” all the precedent bifurcations or the digraph must be nonSP (lines
4–16). A confluence is “resolved” if there are two vertices,w andu adjacent tov with labels that have
equal values but which are not references to the same object.In this case, those labels can be unified,
and ifw′ is the last element of those labels,od(w′) is decreased by1. When that value is1, the vertexu
is no longer relevant and can be deleted from the labels (lines 8–15).

Example 4.1. Consider the digraph in Figure 6, which has the vertices’ labels topologically ordered.
The algorithm execution can be summarised as follows:

1. Fors0, asod(s0) = 1 we haveA(s0, s1)← [ ].

2. Fors1, asod(s1) = 2 we haveA(s1, s2)← [s1] andA(s1, s8)← [s1].

3. Fors2, asod(s2) = 2 we haveA(s2, s3)← [s1, s2] andA(s2, s8)← [s1, s2].
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1 def spgp (S ,E ) :
2 for v ∈ S (S t o p o l o g i c a l l y ordered )
3 e← |Inc(v)|
4 while e > 1 do
5 m← max{|A(u, v)| | u ∈ Inc(v)}
6 L← [u ∈ Inc(v) | |A(u, v)| = m]
7 w ← first(L)
8 i f (∃u ∈ L \ {w}) (A(u, v) 6≡ A(w, v)) ∧ (A(u, v) = A(w, v)) then
9 w′ ← last(A(w, v))

10 od(w′)← od(w′)− 1
11 i f od(w′) = 1 then
12 A(u, v)← butlast(A(u, v))
13 A(w, v) ≡ A(u,w)
14 Inc(v)← Inc(v) \ {u}
15 e← e− 1
16 else return 0
17 i f v = α then p← [ ]
18 else p ≡ A(first(Inc(v)), v)
19 for v′ ∈ Adj(v)
20 i f od(v) 6= 1 then A(v, v′)← p.v
21 else A(v, v′) ≡ p
22 return 1

Figure 5. Determining if a digraph isSP.

4. Fors3, asod(s3) = 3 we haveA(s3, s4)← [s1, s2, s3], A(s3, s6)← [s1, s2, s3], andA(s3, s8)←
[s1, s2, s3].

5. Fors4, asod(s4) = 2 we haveA(s4, s5)← [s1, s2, s3, s4] andA(s4, s6)← [s1, s2, s3, s4].

6. Fors5, asod(s5) = 1 we haveA(s5, s6) ≡ A(s4, s5). The states5 is not relevant, the arc must be
equivalent to its predecessor.

7. Fors6, asid(s6) = 3 (is a confluence) andA(s4, s6) = A(s3, s6) (one of the arcs can be resolved),
we haveA(s5, s6) ≡ A(s4, s6), od(s4)← od(s4)− 1, andid(s6)← id(s6)− 1.

8. Becauseod(s4) = 1, we haveA(s4, s6)← butlast(A(s4, s6)), i.e., A(s4, s6)← [s1, s2, s3]. The
states4 is no more relevant and so can be removed from the annotations.

9. As id(s6) = 2 (the confluence is not yet resolved) andA(s3, s6) = A(s4, s6) (there is one more
arc to solve), thenA(s3, s6) ≡ A(s4, s6), od(s3)← od(s3)− 1, andid(s6)← id(s6)− 1.

10. Asod(s3) = 1 we haveA(s3, s6)← butlast(A(s3, s6)), i.e. A(s3, s6)← [s1, s2].



N. Moreira, R. Reis /SP Automata and Short Regular Expressions 11

s0

s1 s2 s3 s4

s5

s6s7

s8

Figure 6. Example of anSP digraph.

11. The confluence ins6 is already solved, becauseid(s6) = 1. We can go on. Asod(s6) = 1 the
vertex is not relevant andA(s6, s7) ≡ A(s5, s6).

12. Fors7, asod(s7) = 1, A(s7, s8) ≡ A(s6, s7).

13. It remains to processs8. As id(s8) = 3 (it is a confluence) andA(s7, s8) = A(s2, s8), we have
A(s2, s8) ≡ A(s7, s8), od(s2)← od(s2)− 1, andid(s8)← id(s8)− 1.

14. Nowod(s2) = 1, ands2 can be removed from the annotations,A(s2, s8) ← butlast(A(s2, s8))
(i.e.[s1]).

15. Although an arc was eliminated, the confluence remains ins8: id(s8) = 2. As A(s1, s8) =
A(s7, s8), we haveA(s1, s8) ≡ A(s7, s8), od(s1)← od(s1)− 1, andid(s8)← id(s8)− 1.

16. The vertexs1 is no more relevant (becauseod(s1) = 1), soA(s1, s8) ← butlast(A(s1, s8)) (i.e.
A(s1, s8)← [ ]), and all annotations have now the value[ ].

17. Asid(s8) = 0 all confluences where resolved and the algorithm returns thevalue1.

Theorem 4.1. The algorithmspgp is correct and has time complexityO(n2 log n).

Proof:
(Sketch)If the digraphD is not SP, it has a subgraph homeomorphic to~R. Let s1, s2, s3, ands4 be
the corresponding vertices. The vertexs3 has indegree greater than1. Whens3 is visited, there are
v, v′ ∈ Inc(s3) such thats1 ∈ A(v, s3) ands1, s2 ∈ A(v′, s3). Those labels can never refer to the same
object, thus the algorithm must return0. Suppose that the algorithm returns0. Then there existsv ∈ V
such thatv(e; k) with e > 1 and there existv′, v′′ ∈ Inc(v) such thatA(v′, v) andA(v′′, v) are different.
Let u ∈ (A(v′, v) \A(v′′, v)). The outdegree ofu is greater than1 (otherwise it was not relevant) and
u 6= α. Then there must exist two disjoint pathsα · · · u · · · v andα · · · v. There exists a pathu · · ·ω
that does not go throughv and a pathv · · ·ω that does not go throughu. ThusD has a subgraph
homeomorphic to~R, defined byα, u, v, s′, wheres′ is a common ancestor ofu andv (at leastω). Thus
the digraphD is notSP.

To analyse the time complexity of the algorithm, first note that the total cost of executing lines 17–
21 isO(m). For eachv ∈ V , the lines 4–16 are, in the worst case, executed inO(n log n) (as the
annotations can be sorted only once). Thus the time complexity of spgp isO(n2 log n). ⊓⊔
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Proposition 4.1. If A isSP, the algorithmspgp can be used to compute an equivalent regular expression
with size linear in the size ofA.

Proof:
Let A = (S,Σ, δ, α, ω) be an EFA. In the algorithmspgp we can extend the arc annotations to contain
the automaton’s transition labels. For(s, s′) ∈ S, let A(s, s′) be the list of vertices as before and
let R(s, s′) be the associated regular expression. Initially, these regular expressions are disjunction of
alphabetic symbols according to the transition relationδ,

(∀s, s′ ∈ S)R(s, s′) =
∑

δ(s,a)=s′

a

Whenever a states1(k; 1) is visited and its incident arcs have been resolved (lines 17–21) letrp be the
regular expression correspondent to the labelp. Note that in line 17,p is ǫ and in line 26 its value must
beR(first(Inc(v), v)). Then, in line 22, we add the instruction:

R(v, v′)← rp ·R(v, v′).

Whenever a confluence is resolved (in line 21) we add the instruction:

R(u, v)← R(u, v) + R(w, v).

And in line 12, we add another concatenation, ifw′ is not the initial state:

R(w, v)← rp ·R(w, v),

whererp is the regular expressionR(first(Inc(w′)), w′) (there must be at most one). In the end we
obtain the same regular expression of Corollary 3.1, asR(α, ω). ⊓⊔

5. Counting SP digraphs

In the context of electrical networks Riordan and Shannon [28] presented a formula for counting series-
parallel networks that arise from combinations of resistances in series and in parallel. The correspondent
digraphs differ from the ones we consider here as they allow multiple edges between the same order pair
of vertices (multidigraphs). They give an enumerative formula (based on a generating function) for the
number of (unlabelled) digraphs by number of edges and the correspondent sequence appears as number
A000084 in the OEIS [31]. Many more related enumerative formulas appear in the OEIS, and were
studied, for instance, by Moon [23], Golinelli [12] and Finch [8]. More recently Bodirskyet al. [2]
studied the asymptotically behaviour for the number of labelled series-parallel graphs.

In this section, we present recursive formulae for the number of SP (unlabelled) digraphs by num-
ber of vertices. We begin by giving a definition ofSP digraphs in terms of compositions of series and
parallel operations. This definition is similar to the ones usually called two-terminal series-parallel net-
works (see [34]), but differs by not allowing multiple edges. With some assumed abuse of notation we
refer this set asSP.

Definition 5.1. (SP II)
The set of series-parallelSP digraphs is defined recursively as follows:
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(i) L = ({α, ω}, {(α, ω)}, α, ω) ∈ SP

(ii) If D = (V,E, α, ω) ∈ SP andD′ = (V ′, E′, α′, ω′) ∈ SP such thatV ∩ V ′ = ∅, thenSDD′ =
(V ′′, E′′, α, ω′) ∈ SP, where

V ′′ = (V ∪ V ′ ∪ {β}) \ {ω,α′},

E′′ ={(v, v′) ∈ E | v′ 6= ω} ∪ {(v, β) | (v, ω) ∈ E} ∪
∪ {(v, v′) ∈ E′ | v 6= α′} ∪ {(β, v′) | (α′, v′) ∈ E′}.

(iii) Let D = (V,E, α, ω) ∈ SP andD′ = (V ′, E′, α′, ω′) ∈ SP whereV ∩ V ′ = ∅, (α, ω) 6∈ E, and
(α′, ω′) 6∈ E′, thenPDD′ = (E′′, V ′′, α′′, ω′′) ∈ SP, where

V ′′ = (V ∪ V ′ ∪ {α′′, ω′′}) \ {α, ω, α′, ω′},

E′′ ={(v, v′) ∈ E | v 6= α ∧ v′ 6= ω} ∪ {(α′′, v′) | (α, v′) ∈ E} ∪
∪ {(v, ω′′) | (v, ω) ∈ E} ∪ {(v, v′) ∈ E′ | v 6= α′ ∧ v′ 6= ω′} ∪
∪ {(α′′, v′) | (α′, v′) ∈ E′} ∪ {(v, ω′′) | (v, ω′) ∈ E′}.

(iv) If D = (V,E, α, ω) ∈ SP and(α, ω) 6∈ E, then the digraphPDL = (V,E ∪ {(α, ω)}, α, ω) ∈
SP.

Example 5.1. Applying rule (ii) to the first twoSP digraphs we obtain that the third digraph isSP:

s1

s2

s3 s4 r1

r2

r3

r4

s1

s2

s3 β

r2

r3

r4

Applying the rule (iv) to the last digraph above we obtain that following digraph isSP:

s1

s2

s3 s4

s5

s6

s7

In the same manner, and applying rule (iii) to the first twoSP digraphs bellow, we conclude that the third
digraph isSP:

s1 s2 s3 s4 r1

r2

r3 r4
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α

r2

r3

ω

s2 s3

The following theorem is analogous to other in the literature [34] and, for completeness, we give a proof
in Appendix 8.

Theorem 5.1. Definitions 5.1 and 3.1 define the same set of digraphs.

To count the number ofSP digraphs withn vertices we can use the Definition 5.1 with a modification
of rule (ii) to avoid double counting some identical digraphs. We illustrate the problem with a simple
example. Consider the following digraph:

It can be built using rule (ii) and considering the followingtwo digraphs:

Or considering this other pair of digraphs:

So when applying rule (ii) we must only take digraphs that areindecomposableby rule (ii). Two
digraphs areindecomposableby rule (ii) if the last rule used in their construction was not rule (ii).

Applying rule (ii) to two digraphsD andD′ with, n andn′ vertices respectively, a digraphSDD′

with n + n′ − 1 vertices is obtained. If we iterate this operation for digraphs(Di)i∈[1,k] with (ni)i∈[1,k]

vertices, respectively, we obtain a digraph which number ofvertices is





∑

i∈[1,k]

ni



− k + 1.
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Let Un be the number ofSP digraphs withn vertices, and letU (ii)
n be the number ofSP digraphs

with n vertices which last rule of construction was rule (ii). We have

U (ii)
n =

∑

τ

∏

j∈[1,k]

(Unj
− U (ii)

nj
)pj

k!
∏

l∈[1,k] pl!
, (2)

whereτ runs over all sets{(nj , pj)}j∈[1,k] with k > 1, (∀j ∈ [1, k]) (nj ≥ 2 ∧ pj > 0) and





∑

j∈[1,k]

njpj



− k + 1 = n.

Let U
(iii)
n be the number ofSP digraphs withn vertices which last rule of construction was rule

(iii). Because the parallel composition is commutative, when obtaining a digraphPDD′ with rule (iii),
the number of vertices ofD is not smaller than the number of vertices ofD′. Applying rule (iii) to two
digraphsD andD′ with, n andn′ vertices respectively, a digraphPDD′ with n + n′ − 2 vertices is
obtained. The number of these digraphs is then given by the following formula:

U (iii)
n =

∑

n′+n′′=n+2
n′≥n′′

n′′>2

(U
(ii)
n′ + U

(iii)
n′ )(U

(ii)
n′′ + U

(iii)
n′′ ). (3)

It remains to determine the number ofSP digraphs produced by rule (iv). These digraphs can be
obtained from anySP digraph withn vertices, produced by rules (ii) or (iii). So its number is

U (iv)
n = U (ii)

n + U (iii)
n . (4)

The total number ofSP digraphs withn vertices is

Un = U (ii)
n + U (iii)

n + U (iv)
n . (5)

Now we can simplify equation (3) to

U (iii)
n =

∑

n′+n′′=n+2
n′≥n′′

n′′>2

Un′Un′′

4
. (6)

To complete the counting we consider the following base values:

U2 = 1, U3 = 2, U
(ii)
3 = 1, U

(iii)
3 = 0, U

(iv)
3 = 1.

Table 1 summarises the number ofSP digraphs with no more than 20 vertices.
This enumeration process was easily adapted for a generation algorithm ofSP digraphs, and so of

SP automata.
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Table 1. Number ofSP digraphs for some small values ofn.

n n

2 1 3 2

4 8 5 38

6 228 7 1382

8 9342 9 62944

10 453724 11 3235216

12 24131728 13 178448548

14 1364523112 15 10339603930

16 80365190044 17 620051361254

18 4883464795602 19 38186977218324

20 303643041719194

6. Other related work

There are not many papers in the literature on the characterisation of the conversion from NFA’s to
regular expressions, as was pointed by Ellulet al. [6]. If the automaton’s underlying graph is planar it

is possible to obtain an equivalent regular expression of size less thaneO(
√

(n)), wheren is the number
of states of the automaton [6]. Generalising this result andbased on graph separator techniques, Gruber
and Holzer [13] presented algorithms that when applied ton-state deterministic finite automata obtain
regular expressions of sizeO(2.6n).

Giammarresiet al. [11] characterised the automata generated by the Thompson method [33] for
converting regular expressions to automata. They called the underlying digraphs, Thompson digraphs.
By induction on the structure of those digraphs we can prove that

Corollary 6.1. Every acyclic Thompson digraph isSP.

In the same way, Caron and Ziadi [4] characterised the automata generated by the Glushkov method
for transforming regular expressions into finite automata [35]. As these automata may have more than one
final state, we cannot directly compare the acyclic Glushkovdigraphs and theSP digraphs. Introducing
ǫ-transitions it is possible to obtain anSP automata equivalent to an acyclic Glushkov automaton. It is
also easy to see that everySP automaton is an acyclic Glushkov automaton.

More recently Han and Wood [15] studied the relation betweenthe size of the resulting regular
expression and the state elimination order in the SEA algorithm. They proved that in order to obtain
a more succinct expression, states that correspond to cutvertices (on the underlying digraph) should be
eliminated after all others. Gulan and Fernau [14], integrated the method presented in this paper and in
Moraiset al. [25, 26] into an iterative heuristic for general NFA.

Sakarovitch [29, 30] analysed the conversion algorithms between equivalent regular expressions and
finite automata, and establishes some relationships between the regular expressions obtained from a
given automaton by applying different methods of computinga regular expression from an automaton.
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Lombardy and Sakarovitch [22] consider the problem of retrieving an automatonA from an equivalent
regular expression that was obtained fromA. Although their main focus is not on the size of the rep-
resentations, their approach clarifies the relationships between these conversions and can lead to better
characterisations. Recently [21] they corrected the proofof their main theorem that states that if an NFA
is co-deterministic it is possible to retrieve a new co-deterministic NFA.

7. Conclusion

In this work we show that if the underlying digraph of an acyclic NFA is series-parallel then it is possible
to obtain in timeO(n2 log n) an equivalent regular expression of sizeO(n). We also presented an
enumerative formula for the number ofSP digraphs withn vertices,Un. For now, we do not know a
(closed form) generating function forUn, and so no asymptotic analysis was possible. We plan to explore
the methodology purposed by Fusyet al. [10] for the enumeration of families of graphs.
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A. Appendix

Theorem A.1. Definitions 5.1 and 3.1 define the same set of digraphs.

Proof:
First we show by induction on the number of rules’ applications that a digraph described by Defini-
tion 5.1 does not contain a subgraph homeomorphic to~R (Definition 3.1). This is true if the digraph isL.
Suppose that all digraphs obtained by less thann applications of rules (i)-(iv) do not contain a subgraph
homeomorphic to~R. Let D = (V,E, α, ω) be a digraph that results fromn applications of rules (i)-(iv).
The last rule must be one of rules (ii)-(iv). In the case of rule (ii), D = SD′D′′ andD is obtained by the
serial composition of two digraphsD′ = (V ′, E′, α′, ω′) andD′′ = (V ′′, E′′, α′′, ω′′), that by induction
hypothesis do not contain a subgraph homeomorphic to~R. Any pathv′ · · · v′′ (in D), with v′ ∈ V ′ and
v′′ ∈ V ′′ must containβ, so if D contained a subgraph homeomorphic to~R it should be a subgraph of
D′ or D , which is an absurd. If the last rule applied was rule (iii), thenD = PD′D′′. In this case, there
are no paths between any vertex ofD′ and any vertex ofD′′, different fromα andω. So the conclusion
follows, as in the previous case. Finally, suppose that the last rule is rule (iv) andD = PD′L. The
arc (α, ω) /∈ E′ and it is easy to see that ifD contained a subgraph homeomorphic to~R it should be a
subgraph ofD′, which is an absurd.

We show now by induction on the number of arcs that if a digraphdoes not contain a subgraph
homeomorphic to~R, then it can be built by rules (i)-(iv). It is easy to see that all digraphs with equal
or less than 4 arcs that has that property can be built using rules (i)-(iv) (see Figure 4, forn = 4).
Suppose that the statement is valid for all digraphs with less thatn arcs and that satisfy Definition 3.1.
Let D = (V,E, α, ω) be a digraph withn arcs and that does not contain a subgraph homeomorphic
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to ~R. If D has a cutvertexβ, that is a vertex that belongs to all pathsα · · ·ω, thenD = SD′D′′ with
D′ = (V ′, E′, α, β) andD′′ = (V ′′, E′′, β, ω). Every vertex inD belongs to some pathα · · ·ω, so
we takeV ′ as being the set of all vertices that belong to a pathα · · · β and E′ as being the natural
restriction ofE to V ′. The digraphD′′ is defined in the same way.D andD′′ can not contain a subgraph
homeomorphic to~R and by induction hypothesis they can be built using rules (i)-(iv). ThusD verifies the
Definition 5.1. IfD does not have a cutvertex then there exist two pathsA andB from α to ω that do not
intersect each other (see for instance [16, page 27]). IfA orB is an arc, thenD′ = (V,E\{(α, ω)}, α, ω)
does not contain a subgraph homeomorphic to~R andD = PD′L. ThusD verifies the Definition 5.1. If
neitherA norB is an arc, then, as in Lemma 3.2, there can not exist a path between any vertex inA and
any vertex ofB, different fromα andω. Let V ′ be the set of vertices ofD belonging to pathsα · · ·ω
with non empty intersection withA. Let D′ = (V ′, E′, α, ω), whereE′ is the natural restriction ofE to
V ′. Let D′′ = (V \ V ′, E′′, α, ω) be defined analogously by considering the pathB. Then,D′ andD′′

can not contain a subgraph homeomorphic to~R and by induction hypothesis they can be built using rules
(i)-(iv). But thenD = PD′D′′ results from applying rule (iii) toD′ andD′′. ⊓⊔
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