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Abstract

Nondeterministic finite automata with don’t care states, namely states which

neither accept nor reject, are considered. A characterization of deterministic

automata compatible with such a device is obtained. Furthermore, an optimal

state bound for the smallest compatible deterministic automata is provided. It

is proved that the problem of minimizing deterministic don’t care automata is

NP-complete and PSPACE-hard in the nondeterministic case. The restriction

to the unary case is also considered.
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1. Introduction

Finite state automata are well-known and widely investigated language ac-

ceptors. On each input string x, the behavior of a finite automaton is an answer
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yes/no to the question of the membership of x to the accepted language. In

some situations, however, we could have some input sequences for which the

answer of the automaton is not interesting, or even situations where the au-

tomaton does not need to consider all possible strings over the input alphabet.

For example, an automaton could receive its input from another machine or

program, which produces only sequences in a special form, thus excluding all

the other sequences which are definable over the input alphabet. We give a cou-

ple of trivial but immediate examples over the alphabet {-, 0, 1, . . . , 9}. If the

inputs of the automaton represent numbers in decimal notation produced by a

(correct) program, the automaton cannot expect sequences starting by 0 (with

the only exception of the sequence 0) as 00123, sequences starting by -0, and

sequences containing the symbol - after the leftmost position, as 4-9-2014. On

the other hand, if the inputs represented calendar dates, the last string would

be a valid input, while a string as -1234 would be invalid (unless a strange and

counterintuitive format is used).

In these cases, we do not need to define the behavior of the automaton,

namely acceptance or rejection, on the strings which are not interesting or will

never appear as input. This suggests us the idea of studying finite automata

with three kinds of states: accepting states, rejecting states, and don’t care

states. We call these models automata with don’t care states or, shortly, don’t

care automata. A quite natural problem we consider in the paper is the state

reduction of these models. Of course, to perform this reduction, we can arbi-

trarily accept or reject strings on which the behavior of the automaton is not

specified.

This idea is not completely new, if fact, in digital systems design, Moore

automata (or equivalently Mealy automata) are used to specify several kinds of

algorithms, protocols and processes which then are used in sequential circuits

synthesis. Usually, the automata are incomplete (lacking either outputs or tran-

sitions for some inputs), and the elimination of redundant states reduces the size

of the logic needed to be implemented, tested or verified. However, the stan-
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dard algorithm for minimizing deterministic complete automata is not enough

for incomplete ones. The first algorithm for the exact solution was described by

Paull and Unger [15], and Pfleeger [17] proved that the minimization of incom-

plete deterministic Moore machines is a NP-complete problem. Since then many

other exact and heuristic algorithms have been proposed, some considering that

the initial machine is nondeterministic [18, 11, 16, 12, 3]. The standard Paull

and Unger approach is based on the identification of sets of compatible states

and the obtention of a minimal closed cover. The use of don’t care states has

been also considered for different purposes in the case of automata on infinite

words [4].

In this paper, we mainly investigate nondeterministic automata with don’t

care states (dcNFA). Given such a device A, we are interested in finding a

smallest deterministic finite automaton (DFA) B which is “compatible” with it,

in the sense that all the strings accepted by A are also accepted by B and all the

strings rejected by A are also rejected by B, while on the remaining strings B can

have an arbitrary behavior. This problem can be reformulated as a separation

problem: given two disjoint languages L1 and L2, find a language L with minimal

state complexity that separates L1 and L2, i.e. such that L1 ⊆ L ⊆ Lc2 (where

Lc is the complement of L). In the context of model checking, this version of

the problem was considered by Chen et al. [1], but there the general Paull and

Unger algorithm for deterministic automata was used.

Here we obtain a precise characterization of the DFAs which are compatible

with a given dcNFA. This result is useful to obtain an upper bound for the

number of states of the smallest compatible DFAs. We also show that this bound

is tight. We also study computational complexity aspects. To this respect, we

show that the problem of obtaining a smallest DFA compatible with a given

dcDFA is NP-complete, and PSPACE-hard if the given don’t care automaton is

nondeterministic.

We conclude the paper by presenting some state complexity results concern-

ing dcNFAs over a one-letter alphabet.
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2. Automata with don’t care States

Given an alphabet Σ, we consider the usual notions of deterministic finite

automata (DFAs) and nondeterministic finite automata (NFAs) (with multiple

initial states). Given an automaton A, we denote the language accepted by it

as L(A). We also assume that the reader is familiar with the notion of minimal

DFA. We now introduce the main notion we are interested in.

Definition 1. A don’t care nondeterministic finite automaton (dcNFA) A is a

tuple 〈Q,Σ, δ, I, F⊕, F	〉, where A⊕ = 〈Q,Σ, δ, I, F⊕〉 and A	 = 〈Q,Σ, δ, I, F	〉

are two NFAs such that L(A⊕) ∩ L(A	) = ∅. A state q ∈ Q is called an ac-

cepting (rejecting) state if q ∈ F⊕ (q ∈ F	, respectively). If q /∈ F⊕ ∪ F	 then

q is called a don’t care state. There are two languages associated with A, the

accepted L⊕(A) = L(A⊕) and the rejected language L	(A) = L(A	).

The automaton A is a don’t care deterministic finite automaton (dcDFA) if

the set I consists exactly of one element i and δ is a partial function from Q

to Q, namely, for each q ∈ Q, a ∈ Σ, δ(q, a) contains at most one element.

Two dcNFAs are equivalent if they have the same accepted language and the

same rejected language. Notice that given a dcNFA A, its accepted (rejected)

language consists of all words having a computation path from an initial state

to an accepting (a rejecting, respectively) state. Hence, if all the states of A are

reachable from the initial state, then the sets F⊕ and F	 must be disjoint.

A DFA can be immediately transformed into an equivalent dcDFA by choos-

ing as sets of accepting and rejecting states, the set of final states and its com-

plement, respectively. Hence, we can see dcDFAs as generalizations of DFAs.

The situation is different for nondeterministic devices where, due to the different

interpretation of the rejection, NFAs and dcNFAs are incomparable. Indeed, a

string is rejected by a NFA when all computations on it do not lead to final

states, while for the rejection by a dcNFA it is enough at least one computation

leading to a rejecting state. For this purpose, the definition of dcNFA requires

that the accepted and rejected languages are disjoint. This can restrict the non-
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deterministic possibilities: fixed the set of states and the sets of accepting and

rejecting states, not all the possible transition graphs define a dcNFA.

We also observe that unspecified transitions have different meanings for

DFAs and for dcDFAs. In the first case, they lead to rejection. This can

be explicitly represented, in a standard way, by inserting an extra state, called

trap or dead state. All DFAs we consider in the paper have a total transition

function. On the other hand, in the case of dcDFAs, unspecified transitions rep-

resent, according to Definition 1, don’t care conditions. Since we do not need

them to accept or to reject strings in the two languages associated to a dcDFA,

we will never add any extra state to a dcDFA.

In this paper, given a don’t care automaton A we are interested in finding

automata that agree with A on its accepted and rejected languages. This leads

to the following definition.

Definition 2. Let A be a dcNFA. A language L is said to be compatible with A

whenever L⊕(A) ⊆ L and L	(A) ⊆ Lc. An NFA (or DFA) B is compatible with

A when L(B) is compatible with A.

Example 1. Consider the dcDFA A represented in Figure 1. We label each

⊕
s0

s1 s2

⊕
s3

s4	
s5

a a a

bbb

Figure 1: The dcDFA A of Example 1.

accepting state with a ⊕ and each rejecting state with a 	, leaving don’t care

states unlabeled. Hence, F	 = {s5} and F⊕ = {s0, s3}. Trivially, L⊕(A) =

(a3b3)?(ε + a3) and L	(A) = (a3b3)?(a3b2). The language L = (a3b3)?(ε +

a + a2 + a3) is compatible with A. Notice that L is accepted by a DFA with

the same transition graph of A (plus the trap state) and with set of final states

{s0, s1, s2, s3}. In the next sections, we will present several smaller DFAs com-
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patible with A.

Let G = (V,E) be an undirected graph. We recall that each complete

subgraph of G is called a clique. We also say that a subset α ⊆ V forms a clique

if the subgraph of G induced by α, namely the graph (α,E ∩ (α × α)), is a

clique. Furthermore, a clique α ⊆ V is maximal if any other subset of V which

properly contains α does not form a clique. A clique covering of a graph G is a

set of cliques such that every vertex of G belongs at least to one clique.

A self-verifying automaton (SVFA) A is a dcNFA where it is required that for

each input string there exists at least one computation ending in an accepting

or in a rejecting state, i.e., L⊕(A) = (L	(A))c. This implies that the only

language compatible with A is its accepted language L⊕(A). Hence, each SVFA

can be transformed into an equivalent (and unique) minimal DFA. In [10] an

optimal bound for the number of states of the minimal DFA equivalent to any

given SVFA has been obtained. The authors associate with each n-state self-

verifying automaton a graph with n vertices and prove that the state set of the

minimum DFA equivalent to the given SVFA should be isomorphic to the set

of the maximal cliques of such a graph. In the next sections, we use a similar

approach to obtain minimal DFAs compatible with a given automaton with

don’t care states.

3. Conversion into Compatible Deterministic Automata

In this section we study how to convert any given dcNFA A into compatible

DFAs. In particular we are interested in finding a minimal DFA compatible

with A. As we will see, it is possible to have several minimal nonisomorphic

smallest compatible DFAs.

Let us suppose that all the states of A = 〈Q,Σ, δ, I, F⊕, F	〉 are reachable

from the initial state. For each q ∈ Q, we denote by L⊕q and L	q , respectively,

the set of strings accepted and the set of strings rejected starting from q, that

is, L⊕q = {x ∈ Σ∗ | δ(q, x) ∩ F⊕ 6= ∅} and L	q = {x ∈ Σ∗ | δ(q, x) ∩ F	 6= ∅}.

Using the facts that q is reachable and that accepted and rejected languages by
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A are disjoint (Definition 1), it can also be concluded that those two languages

are disjoint.

For the same reason, applying the subset construction to A, it turns out that

L⊕α ∩ L	α = ∅ for each subset α ⊆ Q whose states are all reachable by a same

string, where L×α =
⋃
q∈α L

×
q , for × ∈ {⊕,	}. So, by a suitable marking of

accepting and rejecting states, from A we can get the subset dcDFA As (with

only reachable states) with L×(As) = L×(A), for × ∈ {⊕,	}.

As in [10], to study the structure of DFAs which are compatible with A, we

introduce a compatibility relation on the state set Q. Intuitively, two states p, q

of A are compatible if and only if two computations starting from p and q cannot

give contradictory answers on the same string. Formally:

Definition 3. Two states p, q of A are compatible if and only if

(L⊕p ∪ L⊕q ) ∩ (L	p ∪ L	q ) = ∅.

The compatibility graph of A is the undirected graph whose vertex set is Q, and

which contains the edge {p, q} if and only if states p and q are compatible.

It follows from the above discussion that if α is a state of the automaton As,

then all states p, q in the set α must be compatible. Hence, each reachable state

of As is represented by a clique in the compatibility graph.

In the case of SVFAs, it was proved that if for two reachable subsets α, β ⊆ Q

of the subset automaton the set α∪β is a clique of the compatibility graph then α

and β are equivalent [10]. In our case, since the automaton As deriving from the

subset construction could contain don’t care states, we cannot properly define a

similar equivalence over As states. However, we can prove the following result

which characterizes DFAs that are compatible with A in terms of functions that

map states into cliques of the compatibility graph.

Theorem 4. A DFA A′ = 〈Q′,Σ, δ′, i′, F ′〉 is compatible with a given dcNFA

A = 〈Q,Σ, δ, I, F⊕, F	〉 if and only if there is a function φ : Q′ → 2Q such that:

1. I ⊆ φ(i′),
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2. for q ∈ Q′, a ∈ Σ, δ(φ(q), a) ⊆ φ (δ′(q, a)),

3. for q ∈ Q′, φ(q) ∩ F⊕ 6= ∅ implies q ∈ F ′ and φ(q) ∩ F	 6= ∅ implies

q /∈ F ′.

Furthermore, if A′ is compatible with A then:

4. for each x ∈ Σ∗, δ(I, x) ⊆ φ(δ′(i′, x)),

5. the set φ(Q′) is a clique covering of the compatibility graph of A.

Proof. First, let us suppose that A′ is compatible with A. For each q ∈ Q′, we

define

φ(q) = {p ∈ Q | ∃x ∈ Σ∗ s.t. q = δ′(i′, x) and p ∈ δ(I, x)}.

By considering the empty string, we observe that I ⊆ φ(i′), proving 1. Now,

given a ∈ Σ, let q′ = δ′(q, a). To prove 2 we show that p′ ∈ δ(φ(q), a) implies p′ ∈

φ(q′). To this aim, let us consider p ∈ φ(q) such that p′ ∈ δ(p, a). By the

definition of φ, there is a string x ∈ Σ∗ such that q = δ′(i′, x) and p ∈ δ(I, x).

Hence, q′ = δ′(q, a) = δ′(i′, xa) and p′ ∈ δ(p, a) ⊆ δ(I, xa). According to the

definition of φ this implies p′ ∈ φ(q′). Finally, the condition 3 follows from our

definition of φ.

To prove the converse, first of all it is useful to derive 4 from 1 and 2. We

use an induction on the length of the string x. The basis x = ε is trivial. Now,

let us consider a nonempty string x = ya with y ∈ Σ∗ and a ∈ Σ, and suppose

condition 4 true for y. Given p ∈ δ(I, x), there is a state p′ ∈ δ(I, y) such

that p ∈ δ(p′, a). Let q′ = δ′(i′, y). From the induction hypothesis we get that

p′ ∈ φ(δ′(i′, y)) = φ(q′) and, by condition 2, δ(φ(q′), a) ⊆ φ(δ′(q′, a)) and, by

putting all together, we complete the proof of 4:

p ∈ δ(p′, a) ⊆ δ(φ(q′), a) ⊆ φ(δ′(q′, a)) = φ(δ′(i′, x)).

Now, given x ∈ L⊕(A), let p ∈ δ(I, x)∩F⊕. Since p ∈ φ(δ′(I, x)), by condition 3

x should be accepted by A′. In a similar way, if x ∈ L	(A) then x should be

rejected by A′. Hence we conclude that A′ is compatible with A.
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Concerning the second part of the theorem, we already proved 4. To prove 5,

first we show that, for each q ∈ Q′, the set φ(q) is a clique of the compatibility

graph of A, namely, each two states p, r ∈ φ(q) are compatible. Let x, u ∈ Σ∗

such that q = δ′(i′, x) = δ′(i′, u), p ∈ δ(I, x), and r ∈ δ(I, u). By contradiction,

suppose p and r not compatible. Then, there is z ∈ Σ∗ such that, without loss of

generality, δ(p, z) ∈ F⊕ and δ(r, z) ∈ F	. It follows that z distinguishes strings

x and u, which contradicts the fact that these strings lead to the same state in

the automaton A′. This allows us to conclude that p, r must be compatible and,

hence, φ(q) is a clique. Furthermore, since all the states of A are reachable, as

a consequence of 4 for each p ∈ Q there is a state q ∈ Q′ such that p ∈ φ(q).

This completes the proof of 5.

Using Theorem 4, we now derive a “pseudo-subset construction” which al-

lows to find some DFAs compatible with A. We remind the reader that we

suppose that all the states of A are reachable from the initial state. Then we

define a DFA A′ = 〈Q′,Σ, δ′, i′, F ′〉 as follows:

• Q′ is the set of all maximal cliques of the compatibility graph of A; in

the following, given a maximal clique α ⊆ Q, we use the same name α to

denote the corresponding state in Q′;

• i′ is a clique that includes the set I of initial states of A;

• for α ∈ Q′, a ∈ Σ, δ′(α, a) is a state β ∈ Q′ such that δ(α, a) ⊆ β;

• the set F ′ of final states is a subset of Q′ that contains all states α s.t.

α ∩ F⊕ 6= ∅ and does not contain any state α s.t. α ∩ F	 6= ∅, namely,

each state of Q′ that contains a state from F⊕ is marked as final, each

state that contains a state from F	 is marked as nonfinal, while each one

of the remaining states can be freely marked either as final or as nonfinal.

The above definition leaves some degrees of freedom, which allow to obtain

different DFAs. For any possible choice, it can be immediately verified that the

function φ : Q′ → 2Q defined as φ(α) = α satisfies the conditions of Theorem 4.

Hence, it turns out that each DFA A′, defined as above, is compatible with A.
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Example 2. Let us consider the dcDFA A of Example 1 (Figure 1). Its com-

patibility graph is depicted in Figure 2 (left). Applying the above construction

we obtain 4 different DFAs, which are summarized in the Figure 2 (right). We

have two choices for the initial state and two choices for the transition from

state {s1, s2, s5} on b. These choices are represented by dotted arrows.

s0

s5

s4

s3

s2

s1

s0 s1
s2 s3

s0 s1
s2 s4

s1 s2
s5

a

b

a

b

a

b

b

Figure 2: The compatibility graph of the dcDFA A in Fig. 1 and four compatible DFAs.

In the previous construction, we used the covering of the compatibility graph

defined by maximal cliques. In general, we could also use a different covering,

provided that the trivial function φ mapping each clique of the considered cover

in itself satisfies the conditions 1, 2, and 3 of Theorem 4. For instance, further

DFAs, compatible with the dcDFA A of Example 2, are depicted in Figure 3.

We can observe that in this example the compatibility graph of A cannot be

s5
s0 s2
s4

s1 s3
b

a

a

a

b

a

a, b

Figure 3: More DFAs compatible with the dcDFA A in Figure 2.

covered using less than 3 cliques. Hence, there are no DFAs compatible with A

with less than 3 states, the number of maximal cliques in the compatibility

graph. However, in general the situation can be different, as illustrated in the

next example.

10



Example 3. Let us consider the dcDFA A depicted in the upper part of Figure 4

with its compatibility graph, which contains 4 maximal cliques. This graph has

⊕
s0

s1

	
s2

s3

a

b

a

b

a

b

a

b

s0 s1

s2s3

s0 s1 s2 s3

b

a

b

a

s0 s3 s1 s2

a

b

a

b

Figure 4: The dcDFA A of Example 3 with its compatibility graph, and two compatible DFAs.

the following two coverings consisting each one of two cliques: {{s0, s1}, {s2, s3}}

and {{s0, s3}, {s1, s2}}. For these coverings we obtain two DFAs which are com-

patible with A (see also Figure 4). Since these DFAs have only two states and

each DFA consisting only of one state cannot be compatible with A, it turns

out that they are the smallest DFAs which are compatible with A. In Figure 5

it is depicted a dcNFA Â having the same compatibility graph as A, with two

compatible DFAs whose states correspond to all maximal cliques of that graph.

We observe that in the automaton Â the strings a, b, bca, and bcb lead to the set

of states {s0, s1}, {s0, s3}, {s2, s3}, and {s1, s2}, respectively. Hence, observ-

ing the compatibility graph and using condition 4 of Theorem 4 we can conclude

that in this example all maximal cliques of the compatibility graph are necessary.

Hence, each DFA compatible with Â should have at least 4 states.

Example 3 shows that we can have different dcNFAs A and Â with the same

compatibility graph but with smallest compatible DFAs of different sizes. The

following theorem summarizes the situation, providing bounds for such a size in
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⊕
s0 s1

	
s2s3

a

a, b

b

c

a

b

a, b

c

s0 s1 s1 s2

s2 s3s0 s3

a, c

b

c

a

b

b

a, c
c

a

b

s0 s1 s0 s3 s1 s2 s2 s3a, c

b

a

c

b

c

a

b

b

a, c

Figure 5: The dcNFA Â of Example 3 (top left), with two compatible DFAs (top right and

bottom).

terms of cliques of the compatibility graph:

Theorem 5. For each dcNFA A, there exists a compatible DFA whose number

of states is bounded by the number of maximal cliques in the compatibility graph

of A. Furthermore, each DFA compatible with A should have at least as many

states as the smallest number of cliques that cover the compatibility graph of A.

Proof. From the above pseudo-subset construction we know that there exists

a DFA which is compatible with A and has a number of states equal to the

number of maximal cliques of the compatibility graph. The lower bound follows

from condition 5 of Theorem 4.

4. State Complexity

In this section, we study descriptional complexity aspects. First we state

an upper bound for the number of states of smallest DFAs compatible with a

given dcNFA, showing that it can be effectively reached, i.e. it is tight. The

arguments are adapted from those used for SVFAs [10].
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Theorem 6. For each integer n ≥ 2 and each n-state dcNFA there exists a

compatible DFA with at most f(n) states, where

f(n) =


3bn/3c, if n ≡ 0 (mod 3),

4 · 3bn/3c−1, if n ≡ 1 (mod 3),

2 · 3bn/3c, if n ≡ 2 (mod 3).

Furthermore this bound can be effectively reached.

Proof. The upper bound immediately derives from Theorem 5 and from a result

by Moon and Moser [13] stating that the maximum number of maximal cliques

in a graph with n vertices is given by the function f(n). The lower bound is a

consequence of Theorem 10 in [10], where for each integer n an n-state SVFA An

with multiple initial states such that the smallest equivalent DFA requires f(n)

states was provided. Figure 6 illustrates the case of n multiple of 3. Notice that

a maximal clique in the compatibility graph of An contains exactly one state

from each column.

Since SVFAs with multiple initial states are a special case of dcNFAs, the

claimed result follows.

(0,1) (0,2) · · · (0,m−1)
⊕

(0,m)

(1,1) (1,2) · · · (1,m−1)
	

(1,m)

(2,1) (2,2) · · · (2,m−1)
	

(2,m)

a

b

a

b

a a

b b

a

b

a

b

a a

b b

a

b

a

b

a a

b b

a

a

a

Figure 6: Automaton An of Theorem 6 in the case of n = 3m, m ≥ 1.

The optimality proof in Theorem 6 is a consequence of the optimality of the

same bound for SVFAs with multiple initial states. Since the optimal bound in
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the case of SVFAs with a single initial state is slightly different (1+f(n−1)), one

could ask what happens in the case of dcNFAs with a single initial state. We are

going to prove that in this case the optimal bound remains that of Theorem 6.

To this aim, for each n we consider an automaton A′n, obtained by modifying

the automaton An used to give the optimality in Theorem 6, as follows. We

start from the same set of states of An and from the same transition graph. One

of the initial states of An is chosen as the initial state of A′n. Furthermore, we

add a transition on a new input symbol c from a selected state of An to all the

states that in An are initial. (An example of such a modification is depicted in

Figure 7.) In this way each time the automaton A′n makes a transition on the

letter c, it is able to simulate a computation of An on a factor w ∈ {a, b}∗. We

(0,1) (0,2) · · · (0,m−1)
⊕

(0,m)

(1,1) (1,2) · · · (1,m−1)
	

(1,m)

(2,1) (2,2) · · · (2,m−1)
	

(2,m)

a

b

a

b

a a

b b

c

c

c

c

a

b

a

b

a a

b b

a

b

a

b

a a

b b

a

a

a

Figure 7: An example of automaton A′n in the case of n multiple of 3. The state (0,m)

has been chosen as initial state. Furthermore, a transition on c from (0,m) to each (0, j),

with 1 ≤ j ≤ m has been added.

will show that each DFA compatible with A′n requires f(n) states, where f is

the function given in Theorem 6, by making use of the following general lemma:

Lemma 7. Let Σ be an alphabet and c /∈ Σ be an extra symbol. Given a

dcNFA A over Σ, a nonempty set K ⊆ (Σ ∪ {c})∗, two languages J ′, J ′′ ⊆ Σ∗,

consider the languages L′ = KcL⊕(A)∪J ′ and L′′ = KcL	(A)∪J ′′. If L′∩L′′ =

∅ then each DFA accepting a language L, with L′ ⊆ L ⊆ L′′c should have at
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least as many states as a smallest DFA compatible with A.

Proof. Given a language L ⊆ (Σ ∪ {c})∗, with L′ ⊆ L ⊆ L′′c, let us fix a

string w ∈ K and consider the language L̃ = {x ∈ Σ∗ | wcx ∈ L}. We observe

that x ∈ L⊕(A) implies wcx ∈ KcL⊕(A) ⊆ L′ ⊆ L and so x ∈ L̃. In a similar

way, x ∈ L	(A) implies wcx ∈ KcL	(A) ⊆ L′′ ⊆ Lc and x ∈ L̃c. This means

that each DFA accepting L̃ should be compatible with the given dcNFA A.

Now we observe that if two strings x, y ∈ Σ∗ are distinguishable for the

language L̃ then the strings wcx and wcy are distinguishable for L. In fact,

for z ∈ Σ∗, xz ∈ L̃ and yz /∈ L̃ implies wcxz ∈ L and wcyz /∈ L. Hence, we

can conclude that each DFA accepting L should have at least as many states

as the smallest DFA accepting the language L̃, which, as already noticed, is

compatible with A. This completes the proof.

Notice that in Lemma 7 we do not need that K,J ′, J ′′ are regular.

Theorem 8. For each integer n there is an n-state dcNFA with a unique initial

state such that the smallest compatible DFA requires f(n) states, where f(n) is

the function given in Theorem 6.

Proof. Given n, let us consider the automaton An used in Theorem 6 and a

dcNFA A′n defined as above explained. We denote by J ′ and J ′′ the languages

accepted and rejected by computations of the original automaton An that start

from the initial state of A′n, and K the set of strings (over Σ ∪ {c}) that in A′n

lead from the initial state to the initial state. Clearly, J ′ ⊆ L⊕(An) and J ′′ ⊆

L	(An). The reader can verify that L⊕(A′n) = KcL⊕(An) ∪ J ′ and L	(A′n) =

KcL	(An) ∪ J ′′, and that those two languages are disjoint. Hence, the claimed

result follows from Lemma 7.

After considering the restriction to dcNFAs having only one initial state, we

further restrict to the case of deterministic transitions where, clearly, the bound

of Theorem 6 can be reduced. In fact, given an n-state dcDFA A we can just

arbitrarily mark each don’t care state as accepting or rejecting in order to obtain

a compatible DFA with the same number of states. Furthermore, if the set of
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don’t care states of A is empty and A is minimal then we clearly cannot obtain

a smaller compatible DFA. Hence, in the deterministic case n is a tight bound.

We can also observe that if A contains a don’t care trap state then a compat-

ible DFA can be always obtained by moving each transition leading to the trap

state to an arbitrarily chosen state and by arbitrarily choosing final states among

the remaining don’t care states. Hence, the resulting DFA contains n−1 states.

For each n this bound cannot be further reduced. Consider in fact the n-state

automaton consisting of a loop of n− 1 states accepting the language (abn−2)∗

and rejecting all the strings in (abn−2)∗abk with 0 ≤ k < n − 2, plus a don’t

care trap state. Clearly, each two states on the loop are incompatible. Hence,

they belong to different cliques of the compatibility graph. By Theorem 5, we

conclude that each compatible DFA should have at least n− 1 states.

5. Time Complexity

In this section we shortly study time complexity of the reductions of dcDFAs

and dcNFAs to minimal compatible DFAs. In the first case we prove NP-

completeness. Our starting point is the following problem, which has been

proved to be NP-complete by Pfleeger [17]:

Given an “incomplete” DFA A and k > 0, is there a way to assign

a state to each unspecified transition so that the resulting complete

automaton has a minimal equivalent DFA with at most k states?

A clarification is necessary to explain the meaning of “incomplete” in this con-

text. As already mentioned in the Section 2, reaching an undefined transition

in a DFA is conventionally interpreted as the definitive rejection of the input

and, hence, undefined transitions can be made defined by introducing a trap

state, which is not final and, so, rejecting. In the above mentioned problem, an

undefined transition will never be reached (e.g., because some restrictions on the

form of possible input words) and, hence, it represents a don’t care condition.

Hence, an “incomplete” DFA A = 〈Q,Σ, δ, i, F 〉 in the previous problem, can be

transformed in a complete dcDFA by adding a trap state qt which is the only
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don’t care state, and by choosing F as the set of accepting states and Q−F as

the set of rejecting states. We obtain the following result.

Theorem 9. The problem of deciding if, given a dcDFA A and an integer k > 0

(in binary), there exists a compatible DFA with at most k states is NP-complete.

Proof. The NP-hardness follows from the above discussion.3 To show that the

problem belongs to NP, we observe that in polynomial time it is possible to

nondeterministically generate a DFA B with at most k states and verify if it

is compatible with A. More into details, compatibility is verified by checking

if L⊕(A) ⊆ L(B) and L	(A) ⊆ (L(B))c. To do that, from A and B we build

a product automaton and verify that for each reachable state (p, q), when the

component p is an accepting state of A then the component q is a final state

of B and when the component p is a rejecting state of A then the component q

is a nonfinal state of B.

Notice that the compatible DFA B guessed in the procedure described in

the proof of Theorem 9 has a description of size O(k) which, since A is deter-

ministic, is polynomial in the size of A. We are now wondering what happens

in Theorem 9 when the automaton A is nondeterministic. The size of the “wit-

ness” compatible DFA B could be exponential in the size of A and in the length

of k (written in binary), but polynomial in the value of k. Then we obtain the

following result.

Theorem 10. The problem of deciding if, given a dcNFA A and an integer k >

0 written in unary, there exists a compatible DFA with at most k states is NP-

complete.

Determinization of NFAs has been proved to be PSPACE-hard [9]. Hence,

for k written in binay we obtain the following corollary.

3It could also be deduced using NP-completeness of the inference of a DFA from a finite

set of words [8].
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Corollary 11. The problem of deciding if, given a dcNFA A and an integer k >

0 (in binary), there exists a compatible DFA with at most k states is PSPACE-

hard.

6. State Complexity in the Unary Case

In Theorem 6 we proved an upper bound f(n) for the number of the states in

the smallest DFA compatible with each given n-state dcNFA and we showed that

it can be effectively reached by witness automata over a two letter alphabet. We

now discuss the unary case, namely the case of languages and automata defined

over a one letter alphabet, which in the following we assume to be Σ = {a}.

Since each unary n-state NFA can be simulated by a DFA with eO(
√
n lnn)

many states [2], a number which is lower than f(n), we can conclude that in

the unary case the number of states which are necessary for a DFA compatible

with a given dcNFA is lower than in the general case.

We further deepen the discussion concerning unary dcNFAs. First, we recall

that a unary NFA is in Chrobak normal form if its transition graph consists of an

initial deterministic path and s ≥ 0 disjoint loops. The last state of the path is

connected via s outgoing edges to each of the loops. This is the only place where

a nondeterministic decision can be taken by the automaton. Chrobak proved

that each unary n-state NFA can be turned into this normal form, obtaining

an automaton having O(n2) states in the initial path and at most n states in

the loops [2]. These upper bounds have been reduced respectively to n2 − n

and n − 1 [5, 6] (except when the given NFA is the trivial loop of length n

which, in the worst case, cannot be further reduced).

We now show that even unary dcNFAs can be converted in Chrobak normal

form within the same state bounds. (A unary automaton with don’t care states

in Chrobak normal form and two compatible DFAs are represented in Figure 8.)

Theorem 12. For each unary n-state dcNFA different from the trivial loop of

length n there exists an equivalent dcNFA in Chrobak normal form with an initial
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Figure 8: A unary dcDFA in Chrobak normal form and two compatible DFAs.

path of µ ≤ n2 − n states and s ≥ 0 disjoint loops of lengths `1, `2, . . . , `s > 0

with `1 + `2 + · · ·+ `s ≤ n− 1.

Proof. Given a unary n-state dcNFA A different from the trivial loop of length n,

we can transform the unary NFAs A⊕ and A	 into two equivalent automata

in Chrobak normal form B⊕ and B	, satisfying the required state bounds. We

can also suppose that the initial paths of those two automata have the same

length, otherwise we can modify the automaton with the shortest initial path

by suitably “unrolling” its loops.

From B⊕ and B	, we could obtain a dcNFA equivalent to A (namely, with

the same accepted and rejected languages) by merging the initial paths of B⊕

and B	 (namely, by identifying the corresponding states in the initial paths and

marking any state as accepting or rejecting in the case it is marked as accepting

or rejecting in one of the two automata), and by taking as set of loops the

union of the set of loops of B⊕ and B	. Hence, the resulting automaton has at

most n2 − n states in the initial path and at most 2n− 2 in the loops.

However, by closely inspecting the conversion of unary NFAs in Chrobak

normal form as presented in [6, Thm. 3.5], we can do better: Given a unary

NFA M , some “cardinal loops” are selected from its transition graph. Their

lengths will be the lengths `1, `2, . . . , `s of the loops in the equivalent automaton

in Chrobak normal form produced by the construction. Furthermore, the choice

of the cardinal loops does not depend on the finality of the states in M . (The
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interested reader can find all the details in [6, Def. 3.2, Th. 3.3].) Hence, since

the two NFAs A⊕ and A	 derived from the given n-state dcNFA A have the same

transition graph, we can conclude that the automata B⊕ and B	 in Chrobak

normal form so obtained have the same set of loops and, thus, their transition

graphs are isomorphic. The dcNFA B can be obtained just taking another

copy of such transition graph and by marking any state q as accepting if q

is accepting in B⊕ and by marking q as rejecting if it is accepting in B	.

Thus, B⊕ = B⊕ and B	 = B	. This allows to conclude that L⊕(A) = L⊕(B)

and L	(A) = L	(B). Hence, A and B are equivalent.

The following lemmata will be used later to discuss the gap between unary

dcNFAs and compatible DFAs:

Lemma 13. A unary dcNFA (not necessarily in Chrobak normal form) cannot

accept a string am
′

along a path containing a state belonging to a loop of length

`′ and reject another string am
′′

along a path containing a state belonging to a

loop of length `′′, if `′ and `′′ are relatively prime.

Proof. By contradiction, if the automaton accepts am
′

and rejects am
′′

as in the

statement, then by repeatedly traversing the loops under consideration, it also

accepts strings am
′+k`′ and rejects strings am

′′+h`′′ , for each k, h ≥ 0. From

results on diophantine equations it turns out that if gcd(`′, `′′) = 1 then there

are integers ĥ, k̂ > 0 such that m′ + k̂`′ = m′′ + ĥ`′′. Hence the string am
′+k̂`′

should be accepted along a path and rejected along a different path, which is a

contradiction.

We observe that if a loop of a unary dcNFA in Chrobak normal form does

not contain any accepting neither any rejecting state then it can be removed

without affecting the accepted and the rejected languages.

Lemma 14. Let A be a unary dcNFA in Chrobak normal form such that each

loop contains at least one accepting or one rejecting state. If the lengths of all

loops form a set of pairwise relatively prime numbers and A contains at least two

loops, then there exists a compatible language which is either finite or co-finite.
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Proof. As a consequence of Lemma 13, if the length of the loops are pairwise

relatively prime numbers then the automaton A cannot accept a string in a loop

and reject another string in a different loop. This implies that the set Q` of all

states of A which are in the loops cannot contain both accepting and rejecting

states. If Q` does not contain any accepting state, then only a finite number

of strings is accepted by A. Then, there exists a compatible language which is

finite. In a similar way, if Q` does not contain any rejecting state, then we can

conclude that there is a compatible language which is co-finite.

We remind the reader that the transition graph of a unary DFA consists of a

(possibly empty) initial path followed by one loop. When the accepted language

is either finite or co-finite, a loop of one state is enough. Hence, it can be easily

concluded that for the dcNFA A in Lemma 14 there exists a compatible DFA

having the same initial path as A and a loop of length 1.

On the other hand, it is well-known that the maximum state gap between

unary n-state NFAs and equivalent DFAs (eΘ(
√
n lnn)) is achieved only when the

lengths of the loops of NFAs converted in Chrobak normal form are relatively

prime numbers [2]. (The DFA is obtained by replacing the loops by one loop

whose length is the product of the loop lengths of the given Chrobak normal

form NFA. In the worst case, this loop cannot be reduced.) From Lemma 14 it

turns out that such a gap cannot be achieved from unary dcNFAs to compatible

DFAs. This is also known in the case of SVFAs, as observed in [10]. On the

other hand, it has been shown that the state gap between unary n-state SVFAs

and DFAs grows at least as eΩ(
3√
n ln2 n) [7]. Hence, this gives a lower bound for

the gap from dcNFAs to DFAs:

Theorem 15. For each sufficiently large integer n there is a dcNFA with at

most n states such that each compatible DFA requires at least eΩ(
3√
n ln2 n).

Let us now turn our attention to the deterministic case. As in the general

case, we can easily construct examples of unary n-state dcDFAs having smallest

compatible DFAs with n states. Concerning the separation problem, we are

able to prove the following:
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Theorem 16. Let A′ and A′′ be two unary DFAs with initial paths of lengths µ′,

µ′′, loops of lengths `′, `′′, and accepting languages L′, L′′, respectively, with

L′ ⊆ L′′. Then there is a language L which is accepted by a DFA with an initial

path of max(µ′, µ′′) states and a loop of gcd(`′, `′′) states such that L′ ⊆ L ⊆ L′′.

Proof. Let us start by considering the case µ′ = µ′′ = 0. Given ` = gcd(`′, `′′)

we prove that the following language satisfies the claimed properties:

L = {am | ∃ak ∈ L′ s.t. m ≡ k (mod `)} .

From the definition, it follows that L′ ⊆ L and L is accepted by a DFA consisting

of a loop of ` states. Hence, it remains to prove that L ⊆ L′′, namely ak ∈ L′

implies ak+γ` ∈ L′′, for each γ ≥ 0. Since the transition graphs of A′ and A′′

are loops of lengths `′ and `′′, respectively, and L′ ⊆ L′′, from ak ∈ L′ we obtain

that ak+α`′+β`′′ ∈ L′′, for each α, β ≥ 0. By results on diophantine equations,

it follows that ak+γ` ∈ L′′ for each γ ≥ γ0, for a suitable constant γ0. We

now consider γ < γ0 and we choose an integer h such that γ′ = γ + h `
′′

` > γ0.

Then ak+γ′` ∈ L′′. Furthermore, since k + γ′` = k + γ` + h`′′ and A′′ is a

loop of `′′ states, we also get that ak+γ` ∈ L′′. As a consequence, we conclude

that L ⊆ L′′.

When µ′+µ′′ 6= 0, we can modify one of the two automata by “unrolling” its

loop in order to have both initial paths of the same length µ = max(µ′, µ′′). We

can now define an automaton A accepting a separating language which agrees

with L′ on strings of length less than µ, while it is defined by suitably shifting

the previous construction for the remaining lengths, i.e.,

L = {am+µ | ∃ak+µ ∈ L′ s.t. m ≡ k (mod `)} ∪ {am | m < µ} .

7. Final remarks

We studied automata with accepting states, rejecting states and states that

neither accept nor reject. An obvious follow-up is the study of how standard
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operations on finite automata can be extended. Some results on this subject

have been recently presented in [14].

In the unary case the problems addressed in this paper are not fully solved

and deserve further investigation. In particular it should be interesting to find

a tight bound for the number of states of DFAs compatible with unary n-state

dcNFAs.
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