
XML Description for Automata Manipulations?

José Alves Nelma Moreira Rogério Reis
{sobuy,nam,rvr}@ncc.up.pt

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

Abstract. GUItar is a visualization software tool for various types of au-
tomata (standard, weighted, pushdown, transducers, Turing machines,
etc.). It provides interactive manipulation of diagrams, comprehensive
graphic style creation, multiple export/import filters, and a generic for-
eign function calls (FFC) interface with external systems. In this paper
we describe GUItar’s XML framework and show how it allows for exten-
sibility, modularity and interoperability.

1 Introduction

FAdo [1,2,3] is an ongoing project which aims to provide a set of tools for sym-
bolic manipulation of automata and other models of computation. For diagram
graphical visualization and interactive manipulation the GUItar application [2] is
being developed in Python [4] and using the wxPython [5] graphical toolkit. GUItar
provides assisted drawing, interactive manipulation of diagrams, comprehensive
graphic style creation and manipulation facilities, multiple export/import filters
and extensibility, mainly through a generic foreign function call (FFC) mecha-
nism. Figure 1 shows the GUItar architecture. The basic frame of its interactive
diagram editor has a notebook that manipulates multiple pages, which one con-
taining a canvas for diagram drawing and manipulation.

In this paper we describe GUItar’s XML framework and show how it allows
for extensibility, modularity and interoperability. In Section 2 we present GUI-
tarXML, an XML format for the description of diagrams that allow several infor-
mation layers. This format is the base for the export/import methods described
in Section 3, where a generic mechanism for add new methods is also presented.
Section 4 presents the FFC’s configuration and manipulation mechanisms. These
allow the interoperability with external software tools. As an example we con-
sider the interface with the FAdo toolkit [2]. Finally in Section 5 we briefly
present the object library which will allow the dynamic construction of an au-
tomata database.

? This work was partially funded by Fundação para a Ciência e Tecnologia (FCT) and
Program POSI, and by project ASA (PTDC/MAT/65481/2006).

Node
Edge

Style

Draw Graph

Undo/Redo

Diagram Grid

Node

Edge

Label

Draw Assist.

Embedding

FloatCanvas

Notebook
Interface

Specifications
XML

GUItar XML

Export
Import

Node Manager
Edge Manager

GUI Mode

Properties Panel

Menubar

Toolbar

user

Object

Model

FFC

Fig. 1. GUItar architecture

2 GUItarXML

GUItarXML is an XML [6] format for the description of diagrams originally de-
signed for the GUItar application, but that aims to be as generic as possible. It is
based on GraphML [7], a simple language to describe the structural properties of
graphs. Although GraphML has an extension mechanism based on key/value pairs
to encode application specific data, because of efficiency and clarity reasons, we
chose not to use it. Instead, we encode that data directly as new elements. GUI-
tarXML describes graphs and digraphs or graph-like diagrams, such as automata,
and contains graphical information, style information, and specific automata in-
formation. A fragment of the GUItarXML Relax NG schema [8] is presented in
Figure 2. Diagrams are composed of a set of nodes connected by a set of edges.
They are encoded in graph elements and there can be an arbitrary number of
diagrams per GUItarXML document. The graph element can contain an arbitrary
number of node and edge elements, each of them identified by an id attribute
that must be unique. Edges have the source and target attributes that are the
ids of the endpoints of the edge. Although this information is enough for some
applications, some additional data may be required. Automata, for instance, re-
quire states and edges to have labels. The nodes and edges have a label element.
The labels can be either simple or compound. Simple labels are just text strings.
Compound labels have fields that can assume user-specified values. This is used,

include "styles.rnc"

include "defaults.rnc"

start = element guitarxml {

attribute version {text},

graph*,

style*,

state_object_group*

}

graph = element graph {

attribute id {text},

node*,

edge*,

graph_automata?,

defaults?

}

node = element node{

attribute id {text},

node_diag?,

node_draw?,

label?,

node_aut?

}

node_diag = element

diagram_data {

attribute x {text},

attribute y {text}

}

node_draw = element draw_data {

attribute obgroup {text},

attribute x {xsd:long},

attribute y {xsd:long},

attribute scalex {xsd:long}?,

attribute scaley {xsd:long}?

}

node_aut = element

automata_data {

attribute initial {"1"|"0"}?,

attribute final {"1"|"0"}?

}

edge = element edge{

attribute id {text},

attribute source {text},

attribute target {text},

element diagram_data{...},

edge_draw?,

label?

}

edge_draw = element draw_data {

attribute arrowlinestyle {text}?

attribute head1style {text}?,

attribute head2style {text}?,

attribute numheads {"0"|"1"|"2"}?,

attribute swapheads {"1"|"0"}?,

(point*)?,

...

}

label = element label {

attribute type {"simp"|"comp"},

attribute text {text}?,

attribute layout {text},

attribute style {text}?,

dict*

}

dict = element dict {

attribute key {text},

attribute value {text}

}

graph_automata = element

automata_data{

element sigma{

element symbol{

attribute value {text}

}*

}?,

element classification{

element class{

attribute value {text}

}*

}?

}

Fig. 2. A fragment of the Relax NG schema for diagrams.

for example, with weighted automata, transducers or Turing machines. Figure 3
shows a compound label with two fields: label and weight. These fields have the
values a and 0.3, respectively, so the final label value is a : 0.3.

< l a b e l type=”Compound” layout=”$ l a b e l : $ weight ”
s t y l e=” s t y l e 1 ”>

<d i c t key=” l a b e l ” va lue=”a”/>
<d i c t key=” weight ” value=” 0 .3 ”/>

</ l a b e l>

Fig. 3. Example of a compound label.

Embedding and drawing information are described in the diagram data and
the draw data elements, respectively. For the nodes, diagram data contains the
embedding coordinates. The draw data elements contain graphical data such
as the graphical object styles and drawing properties such as the node’s draw
coordinates and scale. The automata data elements describe specific automata
properties, like boolean attributes final and initial used to indicate, for nodes,
if a state is final or initial, respectively. Within graph element, general automata
information (if applicable) such as the alphabet is specified. The graph elements
also have the defaults element that contains style the default values.

<graph>
. . .

<edge . . .>
. . .

<draw data l i n e s t y l e=” red ” head1s ty l e=” red ”
numberofheads=”1” . . .>

. . .
</ edge>

. . .
</graph>

. . .
<s t y l e name=” red ” b a s e s t y l e=” d e f a u l t ” l i n ew id th=”2”

f i l l s t y l e=”Dot”>
< f i l l c o l o r r=”255” g=”0” b=”0”/>
< l i n e c o l o r r=”255” g=”0” b=”0”/>

</ s t y l e>

Fig. 4. Style usage example.

2.1 Styles

GUItar has a rich and powerful style set of facilities that allow the creation and
manipulation of the graphical representation of nodes and edges. GUItarXML
styles are similar in concept to cascading style sheets (CSS) [9]. CSS provide a
way for markup languages to describe their visual properties and formatting.
GUItar styles only focus on visual properties and allow the definition of style
classes. The style elements have the name attribute that can be used when
the style is to be applied to an object. An example is shown in Figure 4. The
basestyle attribute is the name of the base style for the style. Styles inherit
their properties from their base style. Besides those attributes, the style can
have the actual styling attributes such as line color, fill color, line width, etc.

<graph>
. . .

<node . . .>
. . .

<draw data obgroup=” f i n a l ” . . .>
. . .

</node>
. . .

</graph>
. . .

<s t a t e o b j e c t g r o u p name=” f i n a l ”>
<e l l i p s e s t y l e=” d e f a u l t ” primary=”True”>

<s i z e x=”35” y=”15”/>
</ e l l i p s e>
<e l l i p s e s t y l e=” d e f a u l t ”>

<s i z e x=”40” y=”20”/>
</ e l l i p s e>

</ s t a t e o b j e c t g r o u p>

Fig. 5. A node object group for final states.

Node styles are more complex than the edges styles. A node can be composed
of several sub-objects. Consider the classic representation of a final state pre-

Fig. 6. A GUItar diagram with red style edges and nodes with an initial and a final

state object group.

sented in Figure 5. That state representation is composed of two sub-objects that
are two concentric circles (or ellipses). These complex graphical objects are de-
fined in state object group elements. These elements contain some state style
specific options and one or more shape elements. Available shapes are: ellipse,
rectangle, floatingtext (a static label), and arrowspline (a multiple control
point spline arrow). Figure 6 shows an example of an automaton that makes use
of these styles.

Fig. 7. A GUItar diagram and the Vaucanson-G LATEX output.

3 Format Conversions

GUItarXML generic format is used for the conversion to, and from, other formats.
Currently GUItar implements conversion methods to export to the following for-
mats: GraphML, dot [10], Vaucanson-G [11] and FAdo. It has, also, methods to
import from all those formats except from Vaucanson-G. Conversion to GraphML
is simple, since GUItarXML is based on GraphML. An XSL transformation is used
to remove the styles and extra elements in nodes, edges, and graphs. The result
is a basic GraphML file with the basic topological data. The dot is a language for
the specification of graphs that is part of Graphviz, a package of graph visual-
ization tools [10]. GUItar exports to dot and currently dot graphs will retain all
data except for style data. The Vaucanson-G is a LATEXpackage that allows the
inclusion of automata-like diagrams in LATEX documents. When GUItar exports
to Vaucanson-G it creates a document with one VCDraw environment containing
the automata data. GUItar styles are converted to LATEX macros (see Figure 7).
Whenever an exact conversion is not possible, a reasonable approximation is
used. For example, Vaucanson-G doesn’t support drawing of complex states, so
the primary object is used as a base for the Vaucanson-G state.

FAdo’s format is used for the representation of deterministic finite automata
(DFA) and nondeterministic finite automata (NFA). GUItar uses its Xport mech-
anism to handle the export and import from that format.

Conversions to SVG (Scalable Vector Graphics) [12] and FSMXML [13] are
currently being implemented. The first format is a generic XML language for de-
scribing two-dimensional graphics. The second one is an XML format proposal for

the description of weighted automata, where the graphical information is based
on the Vaucanson-G styling and is mainly oriented for algebraic applications of
automata.

3.1 Xport Mechanism

The Xport mechanism allows an easy way to add new export and import methods
to GUItar, either coded in Python or as XSL transformations. This mechanism is
configured using an XML specification (see Figure 8).

The specification allows for multiple Xport to be defined. Each one has a
name, that is the string that will appear in the GUItar interface export/import
menus. The wildcard attribute can be a file wildcard used in the wxPython’s
file dialog wildcard argument.

Depending on what type of Xport it is, additional attributes are required. XSL
Xport require the attributes expfile (export) and impfile (import) that are file
paths of the XSL transformations. For regular Xport, the attribute import must
exist and contains the Python import statement for the module that contains
the conversion methods. The element export and the element import indicate
the methods used to perform the conversions.

4 Foreign Function Calls

The foreign function call (FFC) mechanism provides GUItar with a generic inter-
face to external Python libraries, or programs and mechanisms to interact with
foreign objects. In the first case, the FFC mechanism calls a function directly
from an external Python module (Module FFC). In the second case, it creates a
foreign object and then calls methods of that object (Object FFC). Both cases
require an XML configuration file that specifies, among other things, the names
of the available methods, their arguments, and their return values. Figure 9
presents the general FFC mechanism.

<xport data>
<xport name=”FAdo” import=”GF” wi ldcard=”FAdo f i l e s

(∗ . f a) | ∗ . f a ”>
<import method=” read o ”/>
<export method=” save o ”/>

</ xport>
<xs l xpo r t name=”GraphML” e x p f i l e=” gu i tar−graphml . x s l ”

i m p f i l e=”graphml−g u i t a r . x s l ” wi ldcard=”xml f i l e s
(∗ . xml) | ∗ . xml”/>

</ x s l xpo r t>
<xport data>

Fig. 8. Xport configuration for FAdo and for GraphML files.

Fig. 9. Module and Object FFC.

< f o r e i g n f u n c t i o n c a l l>
<depends import = . . .>

. . .
<module import = . . .> or <ob j e c t creatorname = . . .>
<method>

. . .
<menu data>

. . .
</menu data>

. . .
</module> or </ ob j e c t>

. . .
</ f o r e i g n f u n c t i o n c a l l>

Fig. 10. An FFC configuration file.

4.1 FFC Configuration Specification

FFC configuration files can contain several FFC definitions (module or object).
Module FFC’s must indicate the module they import (the import attribute that
uses Python’s import syntax), while object FFC’s must indicate the name of the
object creator they will use to create the object (creatorname attribute). A
more user friendly name and a description of the FFC method may be given in
the optional attributes name and description, respectively.

Each module or object can contain multiple method definitions. For each
method, a name, an id, it’s arguments, and it’s return values are needed (see
Figure 11). Arguments require the type attribute, that states its type. An op-
tional default value attribute can be given with the default value for this ar-
gument. Return values only require the type attribute. A FFC method can have
multiple arguments and multiple return values with an order that must agree
with their appearing order in the definition. The types for arguments and return
values can be Int, Float, Boolean, String, and also, one of the following:

File: a file. It has two additional attributes: dialogmode and filemode. The
dialogmode can be either save or load, and indicates the type of dialog to

<method name = . . . id = . . .>
<argument type = . . . d e f a u l t v a l u e = . . . />

. . .
<r e t u r n v a l u e type = . . . />

. . .
</method>

Fig. 11. Structure of method elements.

<menu data>
<menu t i t l e=”FAdo”>
<menu t i t l e=”DFA”>

<menu entry descr1=”Minimal” descr2=”Minimize automata”
ac t i on=”minimal”/>

<menu entry descr1=”Union” descr2=” Returns union o f two
DFAs” ac t i on=” union ”/>

</menu>
</menu>

</menu data>

Fig. 12. A menu data example. Nested menu elements will create sub-menus.

show. The filemode can be either path or file, and indicates if the value
is expected to be the path to the file (string) or a Python file object.

Canvas: a GUItarXML representation of a diagram in a canvas.
Object: a foreign object. The attribute creatorname is required to know which

object creator will be used.

FFC’s can, optionally, define their own menus. Those menus will be dynam-
ically created by GUItar on startup, just like GUItar’s own native menus. The
structure of the menu data element is presented in Figure 12.

Optionally, FFC’s can also include multiple depends elements that have the
import attribute and are used to indicate any module dependencies that the
FFC has. These dependencies are checked when the FFC’s are being loaded and
a warning is raised for the user, in case of failure.

4.2 Foreign Objects

A foreign object is a Python object which type is not recognized by GUItar.
Its GUItar type (see Section 4.1) will be Object, and to convert to and from a
GUItar object object creators are used. Object creators require two components:
an XML configuration file and a Python file containing the conversion methods.
Object creator configuration files may define multiple object creators, under the
condition that they are methods defined in the same module (see Figure 13). The
module containing the methods’ definition is the value of the import attribute.

<o b j e c t c r e a t o r g r o u p import=”GF”>
<depends import=”FAdo”/>
<depends import=”yappy”/>
<o b j e c t c r e a t o r name=”FAdoDFA” c l a s s=”DFA”>

<to method method=”GuitarToFA”>
<argument type=”Canvas” d e f a u l t v a l u e=” Current ”/>

</ to method>
<from method method=”FAToGuitar”>

<r e tu rn s type=”Canvas”/>
</ from method>

</ o b j e c t c r e a t o r>
</ o b j e c t c r e a t o r g r o u p>

Fig. 13. Example object creator configuration file for FAdo DFA objects.

Each object creator has a name attribute, which value is used in arguments
and return values of FFC methods. The class attribute contains the foreign
object Python class name. The attributes to method and from method name the
methods to be used in the conversions.

4.3 A FFC Example

To illustrate the use of a FFC object, we will use the FAdo DFA minimal method.
This method computes the minimal DFA equivalent to a given automaton.

< f o r e i g n f u n c t i o n c a l l>
<depends import=”FAdo”/>
<ob j e c t creatorname=”FAdoDFA”>
<method name=”minimal” id=”minimal” f r i end ly name=”Minimal”

d e s c r i p t i o n=” Returns equ iva l en t minimal DFA”>
<r e t u r n v a l u e type=” Object ” creatorname=”FAdoDFA”/>

</method>
. . .

</ f o r e i g n f u n c t i o n c a l l>

Fig. 14. Fragment of the FAdo DFA interface.

Figure 14 shows part of the definition of the FAdo DFA interface, highlighting
the minimal method.

Figure 15 shows the GUItar graphical interface and the menu selection of the
Minimal method. The user will be asked to choose which GUItar object wants to
be minimized and the object creator will create the correspondent DFA object.
The FAdo DFA minimal method takes no extra arguments, but if there were any
arguments, they would also be created using their appropriate creator. After

Fig. 15. GUItar graphical interface and the FAdo FFC interaction.

the termination of the FFC execution, the returned values are processed. In this
example, a DFA object is returned. That object is converted into a GUItar object
(GUItarXML string) which is automatically drawn in a new canvas.

5 Object Library

As seen in the example of Section 4.3, the GUItar framework allows the oper-
ation over several automata, using the FFC mechanisms. It is possible to trace
the operations (methods) used to generate objects and which objects are argu-
ments for that operations. In this way it is possible to relate the various objects
manipulated, and also determine some of their properties. This information can
be used for constructing automata databases, and store it in the automata data
elements (of the GUItarXML format). Currently we are developing a XML specifi-
cation for this information. However, we can already automatically display in the
GUItar graphical interface the relationships between the several objects, and save
them as GUItarXML diagrams. Each diagram has as nodes the created objects.
Each arc is labeled with the operation that takes the object that constitutes
arc source, to produce the one that constitutes its target. For each operation,
there are the same number of arcs (edges) as arguments. In Figure 16 we present
two object dependence diagrams. One for an application of the FAdo minimal
method and the other for the union of two automata.

6 Conclusions

In this paper we presented an ongoing work for the development of a set of
tools for the visualization, conversion and manipulation of automata. The XML
framework provides a means of obtaining extensibility and interoperability with
external automata manipulation tools. Although GUItar is already a functional

prototype, several improvements are needed. More format conversions must be
implemented and some of the existent ones must be extended. The FFC configu-
ration must be automated in order to easy the interaction with external systems.
The object library must be fully implemented.

Fig. 16. Examples of object dependence diagrams.

References

1. Moreira, N., Reis, R.: Interactive manipulation of regular objects with FAdo. In:
Proceedings of 2005 Innovation and Technology in Computer Science Education
(ITiCSE 2005), ACM (2005) 335–339

2. Almeida, A., Almeida, M., Alves, J., Moreira, N., Reis, R.: FAdo and GUItar: tools
for automata manipulation and visualization. In Maneth, S., ed.: 14th CIAA’09.
Volume 5642 of LNCS., Springer (2009) 65–74

3. FAdo: tools for formal languages manipulation. http://www.ncc.up.pt/FAdo (Ac-
cess date:1.1.2010)

4. Foundation, P.S.: Python language website.
http://python.org (Access date:1.12.2009)

5. Smart, J., Roebling, R., Zeitlin, V., Dunn, R.: wxWidgets 2.6.3: A portable C++
and Python GUI toolkit. (2006)

6. WWW Consortium: XML specification WWW page. http://www.w3.org/TR/xml
(Access date:1.12.2008)

7. GraphML Working Group: The GraphML file format.
http://graphml.graphdrawing.org (Access date: 01.12.2009)

8. van der Vlist, E.: RELAX NG. O’Reilly (2003)
9. WWW Consortium: CSS WWW page. http://www.w3.org/Style/CSS (Access

date:13.03.2010)
10. Graph Visualization Software: The dot language. http://www.graphviz.org (Ac-

cess date:1.12.2009)
11. Lombardy, S., Sakarovitch, J.: Vaucanson-G.

http://igm.univ-mlv.fr/~lombardy (Access date:1.12.2009)
12. WWW Consortium: Scalable vector graphics.

http://www.w3.org/Graphics/SVG/ (Access date: 01.12.2009)
13. Vaucanson Group: FSMXML.

http://www.lrde.epita.fr/cgi-bin/twiki/view/Vaucanson/XML (Access date:
01.12.2009)

