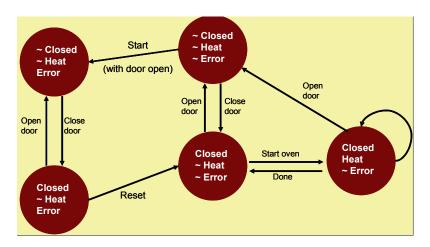
Aula 7

Um micro-ondas

Suponhamos um seguinte desenho de um controlador de um micro-ondas

- ullet o aquecimento tem de estar off se a porta está aberta
- Se se pressionar o botão de *Start* com a porta aberta, entra em modo de erro
- $\bullet\,$ Deixa o modo de erro se se pressionar no Reset

Um micro-ondas



Um micro-ondas

```
MODULE main
VAR
    start: boolean;
    reset: boolean;
    closed : boolean;
    error : boolean;
    heat : boolean;

ASSIGN
    init(error) := FALSE;
    init(heat) := FALSE;
    next(error) :=
        case
```

```
start & ! closed : TRUE;
    closed & reset : FALSE;
    TRUE : error;
esac;

next(heat) :=
    case
        start & closed : TRUE;
    ! closed : FALSE;
    TRUE : heat;
    esac;

SPEC AG (!closed -> AX (!heat))
SPEC EF (heat)
```

Um elevador (simplificado)

Supor um modelo de elevador com uma cabina que pode andar por 4 andares mas seguindo sempre o padrão: 0,1,2,3,2,1,0,1,2,3...

```
MODULE main
VAR
 cabin: 0..3;
dir: {up,down};
request: array 0 .. 3 of boolean;
ASSIGN
 init(cabin):=0;
 init(dir):= up;
 init(request[0]):= FALSE;
 init(request[1]):= FALSE;
 init(request[2]):= FALSE;
 init(request[3]):= FALSE;
next(cabin):= case
 dir = up \& cabin < 3 : cabin + 1;
 dir = down & cabin >0 : cabin - 1;
 TRUE: cabin;
 esac;
next(dir):= case
   dir = up & cabin= 2: down;
   dir = down & cabin= 1: up;
  TRUE: dir;
  esac;
```

Um elevador (simplificado)

As chamadas podem ser feitas de qualquer andar, mas não se a cabina estiver nesse andar. Caso contrário, a chamada só desaparece se a cabina passar pelo referido andar.

```
next(request[0]):= case
    next(cabin)= 0 : FALSE;
    request[0]: TRUE;
    TRUE: {TRUE,FALSE};
    esac;

next(request[1]):= case
    next(cabin)= 1 : FALSE;
    request[1]: TRUE;
    TRUE: {TRUE,FALSE};
    esac;
.
```

Um elevador (simplificado)

Especificações a verificar:

- \bullet O elevador não entra em deadlock (i.e pode sempre passar a um estado seguinte)
- Todas as chamadas são satisfeitas
- Não é verdade que todas as chamadas são satisfeitas simultaneamente
- Se a cabina está subir não pode estar no andar 3
- Se a cabina está no primeiro andar e a subir, então irá a seguir para o segundo

LTL e CTL

O CTL não é estritamente mais expressivo que o LTL. Por exemplo

$$Fp \to Fq$$

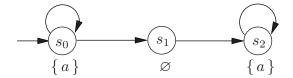
não se pode exprimir em CTL... O seu significado é

Todos os caminhos em que p é se verifica, também se verifica q.

Vê o que significa $AFp \to AFq$, ou $AG(p \to AFq)$.

LTL E CTL

 $\mathrm{FG}\varphi$ não é AFAG φ

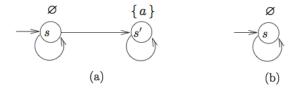


 $M, s_0 \models FGa \text{ mas } M, s_0 \not\models AFAGa$

LTL e CTL

Mas AGEFa não se pode exprimir em LTL:

A partir de qualquer estado é possível atingir um estado em que a é verdade.



Não existe nenhuma formula φ em LTL equivalente. Porque se houvesse $M_a, s \models AGEFa$ e $M_b, s \not\models AGEFa$, mas ambos satisfazem φ .

Analogamente, tem-se que $\mathrm{FX}a\equiv\mathrm{XF}a\equiv\mathrm{AXAF}a$ mas não a AF $\mathrm{AX}a.$

\mathbf{CTL}^*

\mathbf{CTL}^*

CTL onde não é obrigatório que um operador LTL $\{X, G,F,U\}$ seja antecedido por um operador A ou E.

Exemplos:

- $A[(pUr) \lor (qUr)],$
- $E(GF\phi)$
- $A[Xp \lor XXp]$

O CTL* é estritamente mais expressivo que o LTL e o CTL, é computacionalmente muito menos eficiente \dots

Sintaxe do CTL*

Fórmulas de Estado

São avaliadas num estado.

$$\phi ::= \top \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (A[\alpha]) \mid (E[\alpha])$$

Fórmulas de Caminho

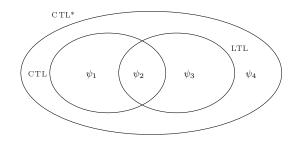
São avaliadas num caminho.

$$\alpha ::= \phi \mid (\neg \alpha) \mid (\alpha \land \alpha) \mid (\alpha \cup \alpha) \mid (G\alpha) \mid (F\alpha) \mid (X\alpha)$$

LTL, CTL e CTL*

Uma fórmula α LTL corresponde a A[α] do CTL*. O CTL é o fragmento de CTL* em que

$$\alpha ::= (\alpha U \alpha) | (G \alpha) | (F \alpha) | (X \alpha)$$



$$\begin{array}{rcl} \psi_1 & = & \operatorname{AGEF}p \\ \psi_2 & = & \operatorname{AG}(p \to AFq) \\ \psi_3 & = & \operatorname{A}[\operatorname{GF}p \to Fq] \\ \psi_4 & = & \operatorname{E}[\operatorname{GF}p] \end{array}$$

LTL versus CTL

Aspect	$Linear\ time$	Branching time
"behavior" in a state s	$\begin{array}{c} \text{path-based:} \\ trace(s) \end{array}$	state-based: computation tree of s
temporal logic	LTL: path formulae φ $s \models \varphi \text{iff}$ $\forall \pi \in Paths(s). \ \pi \models \varphi$	CTL: state formulae existential path quantification $\exists \varphi$ universal path quantification: $\forall \varphi$
complexity of the model checking problems	PSPACE–complete $\mathcal{O}\left(\mathit{TS} \cdot\exp(\varphi)\right)$	$PTIME$ $\mathcal{O}(TS \cdot \Phi)$
implementation- relation	trace inclusion and the like (proof is PSPACE-complete)	simulation and bisimulation (proof in polynomial time)
fairness	no special techniques needed	special techniques needed