Pedro Ribeiro

DCC/FCUP

2014/2015
On this lecture

- Non-Comparison Based Sorting
- Counting Sort
- Radix Sort
- Bucket Sort
We have already talked about several algorithms for sorting.

They were based on comparisons: questions of the form "$a < b$?"

- Quicksort
- Mergesort
- Heapsort

We have shown that for these comparison-based algorithms we have a lower bound on the number of comparisons needed: $\Theta(n \log n)$

Today we are going to talk about algorithms not based on comparisons (and thus not restricted to the previous lower bound).
Counting Sort

- **Assumption:** integers to be sorted are in the range 0 to \(k \)

Counting Sort - Sort elements in \(A \), with sorted output in \(B \)

\[
\text{CountingSort}(A,B,k):
\]

1. \(C[0..k] \leftarrow \text{new array} \)
2. \(\text{for } i = 0 \text{ to } k \)
 - \(C[i] = 0 \)
3. \(\text{for } i = 1 \text{ to } A\text{.length} \)
 - \(C[A[i]] = C[A[i]] + 1 \)
 - \(// \ C[i] \text{ now contains the number of elements equal to } i. \)
4. \(\text{for } i = 1 \text{ to } k \)
 - \(C[i] = C[i] + C[i-1] \)
 - \(// \ C[i] \text{ now contains the number of elements less than or equal to } i. \)
5. \(\text{for } i = A\text{.length downto } 1 \)
 - \(B[C[A[i]]] = A[i] \)
 - \(C[A[i]] = C[A[i]] - 1 \)
Counting Sort

(a) A and C after first counting loop
(b) C after third loop
(c), (d) and (e) first iterations of last loop
(f) final state of array B

(figure from CLRS)
What is the **time complexity**?

Let \(n = A.length \)

- First loop: \(\Theta(k) \)
- Second loop: \(\Theta(n) \)
- Third loop: \(\Theta(k) \)
- Fourth loop: \(\Theta(n) \)

Total: \(\Theta(n + k) \)

If \(k \) is \(O(n) \) then this sort runs in **linear time**! \(\Theta(n) \)
Stable sorting

A sorting algorithm is said to be **stable** if in case of a tie it keeps the order of the original array.

- This property may be important, for instance, when "satellite" data is carried around the elements being sorted.
 - Ex: sorting persons - tuples (name, age) - only by age

- **Counting Sort is stable!** (because of the order of the last loop)
 - This is why it may be used as a subroutine in Radix Sort, as we'll see.
Imagine you are sorting "by columns", i.e., by considering at a time each possible digit position.

Intuitively, you would probably imagine starting with the most significant digit.

RadixSort solves the sorting problem somehow "counter-intuitively", by starting with the least significant digit.
Radix Sort

- **Assumption:** each element in the array \(A \) has \(d \) digits, where 1 is the lowest order digit, and \(d \) the highest-order digit

Radix Sort

```
RadixSort(A,d):
  for i = 1 to d
    Use a stable sort to sort array A on digit i
```

329 720 720 329
457 355 329 355
657 436 436 436
839 457 839 457
436 657 355 657
720 329 457 720
355 839 657 839

(figure from CLRS)
Radix Sort

- Radix Sort is akin to **sorting by different fields**
 - Ex: sort dates by year, then by month, then by day
 - We could do a comparison-based sort: compare year, if tie, compare month, if tie compare day
 - or
 - do 3 consecutive stable sorts: first by day, then by month, and finally by year

- **Complexity** of Radix Sort depends on the used sorting algorithm

- An usual choice is... Counting Sort! In this case we have $\Theta(d(k + n))$
 - We can sort n b-bit numbers in $\Theta((b/r)(n + 2^r))$ with counting sort
 - Each key has $\lceil b/r \rceil$ digits of r bits each (our d)
 - Each digit is an integer in the range 0 to $2^r - 1$ (our k)
Sorting Keys that are not numerical

- Counting and Radix sort do not depend on having numerical keys.

- They depend on having the possibility to "break" the key into "digits" (parts) and to map each part into a numerical value.

- For instance, if we have strings, we can break by chars, and map each char into a number (a = 0, b = 1, ..., z = 25)

<table>
<thead>
<tr>
<th>EAR</th>
<th>SEA</th>
<th>EAR</th>
<th>BOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>COW</td>
<td>DOG</td>
<td>SEA</td>
<td>COW</td>
</tr>
<tr>
<td>DOG</td>
<td>BIG</td>
<td>DIG</td>
<td>DIG</td>
</tr>
<tr>
<td>NOW</td>
<td>→</td>
<td>EAR</td>
<td>→</td>
</tr>
<tr>
<td>SEA</td>
<td>COW</td>
<td>COW</td>
<td>EAR</td>
</tr>
<tr>
<td>BOX</td>
<td>NOW</td>
<td>NOW</td>
<td>FOX</td>
</tr>
<tr>
<td>BIG</td>
<td>BOX</td>
<td>BOX</td>
<td>NOW</td>
</tr>
<tr>
<td>FOX</td>
<td>FOX</td>
<td>FOX</td>
<td>SEA</td>
</tr>
</tbody>
</table>
Bucket Sort

- Assumption: keys follow an uniform distribution over a certain range
- Idea: make \(n \) equal sized ”buckets”, distribute input over buckets, sort each bucket and then concatenate results
- Rationale: If the input is uniformly distributed, than there will not be many numbers in each bucket!
Bucket Sort

- Without loss of generality, let’s assume for now that the range is 0..1

Bucket Sort - each bucket is a list

BucketSort(A):

- \(n = A.length \)
- \(B[0..n.1] \leftarrow \) new array of lists
- \(\text{for } i = 0 \text{ to } n-1 \)
 - \(B[i] = \) empty list
- \(\text{for } i = 0 \text{ to } n \)
 - insert \(A[i] \) into \(B[\lfloor nA[i] \rfloor] \)
- \(\text{for } i = 0 \text{ to } n-1 \)
 - sort list \(B[i] \)
- concatenate lists \(B[0], B[1], \ldots, B[n-1] \) together, in order
Bucket Sort

What is the **execution time**?

- Everything except the cycle with sorts takes $\Theta(n)$
- We need to analyse the **time taken by the sorts**
- Let’s assume we use **Insertion Sort** (good for lists) - each is $O(n^2)$

Execution Time of Bucket Sort (with Insertion Sort)

n_i: random variable denoting the number of elements in bucket i

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$
We want to analyse the average-case running time of bucket sort: calculate the expected value of running time.

\[
E[T(n)] = E[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)]
\]

\[
= \Theta(n) + \sum_{i=0}^{n-1} E[O(n_i^2)] \quad \text{(by linearity of expectation)}
\]

\[
= \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2])
\]

What is the value of \(E[n_i^2]\)? (expected size of each bucket \(i\))
Claim: $\mathbb{E}[n_i^2] = 2 - 1/n$

Let’s define random variable X_{ij} with values:
- 1 if $A[j]$ falls on bucket i, 0 otherwise

With this, $n_i = \sum_{j=1}^{n} X_{ij}$

\[
\mathbb{E}[n_i^2] = \mathbb{E}[(\sum_{j=1}^{n} X_{ij})^2]
\]

\[
= \mathbb{E}\left[\sum_{j=1}^{n} \sum_{k=1}^{n} X_{ij}X_{ik}\right]
\]

\[
= \mathbb{E}\left[\sum_{j=1}^{n} X_{ij}^2 + \sum_{1\leq j \leq n} \sum_{1\leq k \leq n, k\neq j} X_{ij}X_{ik}\right]
\]

\[
= \sum_{j=1}^{n} \mathbb{E}[X_{ij}^2] + \sum_{1\leq j \leq n} \sum_{1\leq k \leq n, k\neq j} \mathbb{E}[X_{ij}X_{ik}]
\]
Let's first solve $\mathbb{E}[X_{ij}^2]$. The probability of j being in bucket i is $1/n$, since the keys are uniformly distributed.

$$
\mathbb{E}[X_{ij}^2] = 1^2 \times \frac{1}{n} + 0^2 \times \left(1 - \frac{1}{n}\right) = \frac{1}{n}
$$

Now, when $k \neq j$, variables X_{ij} and X_{ik} are independent:

$$
\mathbb{E}[X_{ij}X_{ik}] = \mathbb{E}[X_{ij}] \mathbb{E}[X_{ik}] = \frac{1}{n} \times \frac{1}{n} = \frac{1}{n^2}
$$

Finally:

$$
\mathbb{E}[n_i^2] = \sum_{j=1}^{n} \frac{1}{n} + \sum_{1 \leq j \leq n} \sum_{1 \leq k \leq n, k \neq j} \frac{1}{n^2}
= n \times \frac{1}{n} + n(n-1) \times \frac{1}{n^2}
= 1 + \frac{n-1}{n}
= 2 - \frac{1}{n}
$$
Bucket Sort

We want to analyse the average-case running time of bucket sort: calculate the expected value of running time.

\[
\mathbb{E}[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(\mathbb{E}[n_i^2])
\]

\[
= \Theta(n) + n \times O(2 - 1/n)
\]

\[
= \Theta(n)
\]

Hence, Bucket Sort will have linear complexity on the average-case!

Even if the input does not follow a uniform distribution, bucket sort may still run in linear time, as long as the sum of the squares of the bucket sizes is linear in the total number of elements.