Algorithms 2018/2019 (CC4010) - November 6th, 2018

Test \#1 - Auxiliary Material

Loop Invariants and Correctness

To prove the correctness of a loop, find a suitable loop invariant condition and then show the following things:

- Initialization: It is true prior to the first iteration of the loop.
- Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
- Termination: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.
We also need to show that the loop terminates:
- Progress: Each iteration gets us closer to the end until eventually we finish

Asymptotic Notation

- $\mathbf{f}(\mathbf{n})=\mathbf{O}(\mathbf{g}(\mathbf{n}))$ if there are positive constants n_{0} and c such that $f(n) \leq c g(n)$ for all $n \geq n_{0}$.
- $\mathbf{f}(\mathbf{n})=\boldsymbol{\Omega}(\mathbf{g}(\mathbf{n}))$ if there are positive constants n_{0} and c such that $f(n) \geq c g(n)$ for all $n \geq n_{0}$.
- $\mathbf{f}(\mathbf{n})=\boldsymbol{\Theta}(\mathbf{g}(\mathbf{n}))$ if there are positive constants n_{0}, c_{1} and c_{2} such that $c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $n \geq n_{0}$.
- $\mathbf{f}(\mathbf{n})=\mathbf{o}(\mathbf{g}(\mathbf{n}))$ if for any positive constant c there exists n_{0} such that $f(n)<c g(n)$ for all $n \geq n_{0}$.
- $\mathbf{f}(\mathbf{n})=\omega(\mathbf{g}(\mathbf{n}))$ if for any positive constant c there exists n_{0} such that $f(n)>c g(n)$ for all $n \geq n_{0}$.

Solving Recurrences

- Unrolling: unroll the recurrence to obtain an expression (ex: summation) you can work with
- Substitution: guess the answer and prove by induction
- Recursion Tree: draw a tree representing the recursion and sum all the work done in the nodes
- Master Theorem: If the recurrence is of the form $\mathbf{a T}(\mathbf{n} / \mathbf{b})+\mathbf{c n}^{\mathbf{k}}$ (this is one version of the theorem):
(1) $T(n)=\Theta\left(n^{k}\right) \quad$ if $a<b^{k}$
(2) $T(n)=\Theta\left(n^{k} \log n\right) \quad$ if $a=b^{k}$
(3) $T(n)=\Theta\left(n^{\log _{b} a}\right) \quad$ if $a>b^{k}$

Amortized Analysis

- Aggregate method: examine/bound total cost and calculate the average
- Accounting method: impose extra charge on inexpensive operations, saving for future expensive operations
- Potential method: define a potential function on the data structure state and use it to bound the cost

Probabilistic Analysis

- Expectation: For a discrete random variable X over sample space $S, \mathbf{E}[X]=\sum_{e \in S} \operatorname{Pr}(e) X(e)$
- Linearity of Expectation: For any two random variables X and $Y: \mathbf{E}[X+Y]=\mathbf{E}[X]+\mathbf{E}[Y]$
- Indicator Random Variable: The indicator random variable $\mathbf{I}\{\mathbf{A}\}$ associated with event A is defined as: $I\{A\}=1$ if A occurs, 0 if A does not occur.
- Las Vegas algorithm: always outputs the correct answer, but runtime is a random variable.
- Monte Carlo algorithm: always terminates in given time bound, and outputs the correct answer with at least some (high) probability.

Lower Bounds

- Information Theory: answers to the queries must give enough information to specify any possible output
- Adversarial Strategy: answering the queries with the goal of delaying as much as possible the final answer

