
Algorithms 2018/2019 (CC4010) – December 11th, 2018

Test #2 - Auxiliary Material

Linear Algorithms for the Selection Problem

• Selection Problem: determining the k-th smallest item of a set
• QuickSelect: randomized algorithm for selection problem with linear expected running time
• Median of Medians: (recursive) deterministic algorithm for selection problem with linear worst case time

Sorting in Linear Time

• CountingSort: compute the frequency of each element; use frequency array to produce the output
• RadixSort: use stable sort algorithm to sort each ”digit”, starting from the lowest significance one
• BucketSort: use buckets to store the elements on equally sized intervals/ranges; sort each bucket indepen-

dently and concatenate the results

String Matching

• String Matching: find all occurrences of a pattern P in text a T
• Naive String Matching: brute force algorithm trying all possible shifts of a pattern
• Automaton for String Matching: use DFA with |P | states and |alphabet| transitions in each state
• Knuth Morris Pratt Algorithm: use π function (longgest proper prefix which is also a proper suffix) to

skip many characters when there is a mismatch
• Rabin-Karp Algorithm: use rolling hash function as heuristic to skip some possible shifts
• Trie: prefix tree representing set of words
• Suffix Tree: stores all suffixes of a given word
• Suffix Array: sorted array of all suffixes of a given word
• LCP Array: stores longest common prefix between pairs of consecutive suffixes

Greedy Algorithms and Dynamic Programming

• Optimization Problem: when want to find the best solution according to e certain criteria (ex: max or min)

• Greedy Algorithm: follows the problem solving heuristic of making the locally optimal solution
• Optimal Substructure: when the optimal solution contains in itself optimal solutions for subproblems
• Greedy Choice Property: when the optimal solution is consistent with the choice of the greedy algorithm
• Dynamic Programming (DP): algorithmic technique based on storing the solutions of subproblems instead

of recomputing them
• Overlapping Subproblems: when there are many equal subproblems (the search space is ”small”)

NP-completeness

• Decision Problem: problems in which the answer is boolean: YES or NO
• P: set of decision problems that can be solved in polynomial time
• NP: set of decision problems for which if the answer is YES thn there is a proof of that that can be checked

in polynomial time
• coNP: set of decision problems for which if the answer is NO then there is a proof of that that can be checked

in polynomial time
• NP-hard: set of problems that are as hard as any NP problem
• NP-complete: set of problems which are both NP and NP-hard
• Problem A is poly-time reducible to problem B (written as A ≤p B) if we can solve problem A in polynomial

time given a black-box algorithm for problem B.

