
Algorithms (CC4010) - 2018/2019 DCC/FCUP

Exercises #1

Loop Invariants

Theoretical Background

In order to prove the correctness of a loop using invariants, we must first find a suitable loop invariant
condition and then show the following three things:

• Initialization: It is true prior to the first iteration of the loop.

• Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.

• Termination: When the loop terminates, the invariant gives us a useful property that helps show
that the algorithm is correct.

We also need to show that the loop terminates:

• Progress: Each iteration gets us closer to the end until eventually we finish

Proving correction of loop based programs

1. Prime Numbers

Consider the following (non-efficient) function that checks if an integer number n is prime:

1: isPrime(n)

2: for i = 2 to b
√
nc

3: if n is dividable by i then return false

4: return true

(a) State an useful invariant of the loop towards proving the correction of the algorithm:

(b) Prove that the algorithm is correct using your previously defined invariant. Are the four condi-
tions mentioned above followed?

2. Second largest element

Consider you have an array A with n distinct integer numbers and that you want to find the second
largest number of the array. Write (pseudo) code for this algorithm using a single pass trough the
elements (with a loop) and prove its correction using invariants.

What is the invariant? Are the four conditions mentioned above followed?
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3. Insertion Sort

Prove the correction of the following program using loop invariants.

You can treat the inner while loop more informally (understanding what it does), but you should state
an invariant for the outer for loop [if you want to test yourself and obtain a full proof, you also need
to (separately) prove that the inner loop is correct].

(code and image taken from ”Introduction to Algorithms”)

4. Binary Search

Assuming you have an array A with n numbers sorted increasingly, in order to find if an element x
exists in the array you case use binary search. Let m be the middle position: if x = A[m] then we
found it; if x > A[m] then x can only be in the A[1 . . .m− 1] half; if x < A[m] then x can only be in
the A[m + 1 . . . n] half. This effectively reduces the search space in two.

Write (pseudo)code for an iterative version (not recursive) of this algorithm and prove its correction
using invariants.
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