Algorithms (CC4010) - 2018/2019 DCC/FCUP

Exercises #2

Asymptotic Analysis

Theoretical Background

Remember the asymptotic notation:

e f(n) = O(g(n)) if there exist positive constants ng and ¢ such that f(n) < cg(n) for all n > nyg.
e f(n) = Q(g(n)) if there exist positive constants ng and ¢ such that f(n) > cg(n) for all n > ny.

) = ©(g(n)) if there exist positive constants ng, ¢; and ca such that ¢1g(n) < f(n) < eag(n) for all

e f(n) = o(g(n)) if for any positive constant ¢ there exists ng such that f(n) < cg(n) for all n > ny.

e f(n) = w(g(n)) if for any positive constant ¢ there exists ng such that f(n) > cg(n) for all n > ny.

Asymptotic Notation

1. Is 2t = O(2)? Is 227 = O(2"). Justify your answer with brief proofs.

2. For each pair of functions f(n) and g(n), indicate whether f(n) is O, 0,Q,w, or © of g(n). Your answer
should be in the form of a ”yes” or "no” for each cell of the table.

f(n) g(n) Olo|Q|w|©

(a) 2n® —10n2 | 25n% +37n
(b) 56 log, 30
(c) logsn log, n
() n3 gn

(e) n! Al

() n! n"

(g) mnlogyn + n? n?

(h) vn logy 1

(i) logs(logzm) logz n

§) logy 1 logy n?

3. For each of the following conjectures, indicate if they are true or false, explaining why.

You can assume that functions f(n) and g(n) are asymptotically positive, i.e., they are positive from
some point on (Ing : f(n) > 0 for all n > ny)

(a) f(n) =0O(g(n)) implies that g(n) = O(f(n))

(b) f(n) = O(g(n)) implies that g(n) = Q(f(n))

(©) f(n) +9(n) = ©(min(f(n),g(n)))

(d) f(n) +g(n) = ©(maz(f(n),g(n)))

(e) (n+ c)* = ©O(n*), where c and k are positive integer constants
(£) f(n) +o(f(n)) = ©(f(n))

(g) n® =©(16°8")

Growth Ratio

4. Tmagine a program A running with time complexity ©(f(n)), taking ¢ seconds for an input of size
k. What would your estimation be for the execution time for an input of size 2k for the following
functions: n, n? , n, 2", logy n. Is this growth ratio constant for any k or is it changing?

5. Consider two programs implementing algorithms A and B, both trying to solve the same problem for
an input of size n. They measured the execution times for test cases of different sizes and got the
following table:

Algorithm ‘ n=100 n=200 n=300 n=400 n =500
A 0.003s 0.024s 0.081s 0.192s 0.375s
B 0.040s 0.160s 0.360s 0.640s 1.000s

(a) Which program is more efficient? Why?

(b) Could you produce a program that uses both algorithms in order to produce an algorithm C that
would be at least as good as A and B for any test case?

