Exercises \#3 Solving Recurrences

Theoretical Background

4 methods for solving recurrences:

- Unrolling: unroll the recurrence to obtain an expression (ex: summation) you can work with
- Substitution: guess the answer and prove by induction
- Recursion Tree: draw a tree representing the recursion and sum all the work done in the nodes
- Master Theorem: If the recurrence is of the form $\mathbf{a T}(\mathbf{n} / \mathbf{b})+\mathbf{c n}^{\mathbf{k}}$ (this is one version of the theorem):
(1) $T(n)=\Theta\left(n^{k}\right) \quad$ if $a<b^{k}$
(2) $T(n)=\Theta\left(n^{k} \log n\right) \quad$ if $a=b^{k}$
(3) $T(n)=\Theta\left(n^{\log _{b} a}\right) \quad$ if $a>b^{k}$

For the following exercises, assume that $T(n)$ takes constant time for sufficiently small n.

1. Solve the following recurrences by unrolling. State the answer using Θ notation.
(a) $T(n)=T(n-2)+1$
(b) $T(n)=T(n-1)+n^{2}$
2. Show that the following conjectures are true by using the substitution method.
(a) $T(n)=T(n-1)+2$ is $\Theta(n)$
(b) $T(n)=2 T(n / 2)+n$ is $\Theta(n \log n)$
3. Draw a recursion tree for the following recurrences and use it to obtain asymptotic bounds as tight as possible.
(a) $T(n)=3 T(n / 2)+n$
(b) $T(n)=T(n / 2)+n^{2}$
4. Solve the following recurrences using the master method:
(a) $T(n)=2 T(n / 4)+1$
(b) $T(n)=2 T(n / 4)+\sqrt{n}$
(c) $T(n)=2 T(n / 4)+n$
(d) $T(n)=2 T(n / 4)+n^{2}$
5. Consider the recurrence $T(n)=8 T(n / 2)+n^{2}$
(a) Use the substitution method to try to prove that $T(n)=O\left(n^{2}\right)$. The proof should fail. Can you understand why?
(b) Use the master method to find the a tight asymptotic bound. Try to prove that bound directly. Does the math work?
(c) Use a stronger induction hypothesis (by subtracting a lower order term) and make a correct proof of that tighter bound.
6. Give asymptotic upper and lower bounds (as tight as possible) for the following recurrences. You can use any method you want.
(a) $T(n)=7 T(n / 3)+n^{2}$
(b) $T(n)=7 T(n / 2)+n^{2}$
(c) $T(n)=2 T(n / 4)+n^{2}$
(d) $T(n)=T(n-2)+n^{3}$
(e) $T(n)=T(n / 2)+T(n / 4)+T(n / 8)+n$
(f) $T(n)=T(n-1)+\frac{1}{n}$
(g) $T(n)=4 T(n / 3)+n \log _{2} n$
