Homework \#3
 Linear Selection and Sorting \& String Matching
 Due: Nov. 26, 2018

- The assignment should be delivered digitally by email. Your message should be sent to pribeiro@dcc.fc.up.pt with subject "[ALG HWK3] - FirstName Last Name StudentNumber"
- Your delivery should be an electronic document. This could be something like:
- scanned handwritten answers (make sure they are legible)
- a plain text file (.txt)
- a PDF created with another program (we recommend the usage of LaTeX)
- You may work in a (small) group, but you should do your individual writeup. This means you can collaborate by talking about the problems, but you should not copy writeups.
- Please acknowledge any help you got and state any references you consulted (including internet pages) and any students with whom you talked about the problem.
- Answers should be submitted until $23: 59$ of the due date. Up to 24 h of delay will get you a 25% penalty. 24 h to 48 h of delay will get you a 50% penalty. After 48 h your work will not be counted.

Median of Medians

1. Consider the deterministic median of medians selection algorithm given on class, that initially divides the numbers to sort into $n / 5$ groups of size 5
(a) Imagine that you now you divide them into $n / 9$ groups of size 9 . Show that the resulting selection algorithm is still linear, that is, it can compute the k-th smallest element in $O(n)$. (for simplicity you can assume in your proof that n is a multiple of 9).
(b) Imagine that you now you divide them into $n / 3$ groups of size 3 . Show that the resulting selection algorithm is not linear. What would the runtime complexity be in this case? (for simplicity you can assume in your proof that n is a multiple of 3).
Hint for the two previous questions: how many elements can you now guarantee that are smaller and how many are greater than the median of medians? what is the resulting recurrence?

Sorting numbers

2. Let k be a positive integer. Show how you can sort n numbers in the range 1 to n^{k} in $\mathcal{O}(n)$ time.

Hint: what linear sorting algorithms do you know? which one could be applicable here? how to take advantage of the fact that the numbers are between 1 and n^{k} ?

Sorting points in a circle

3. Suppose you have n points $\left(x_{i}, y_{i}\right)$ uniformly distributed inside a circle of radius r and center in the origin coordinate $(0,0)$. Suppose you want to sort the points according to their distance $d_{i}=\sqrt{x_{i}^{2}+y_{i}^{2}}$ to the origin. Show how you could do this in an average-case running time of $\Theta(n)$.
Hint: can you adapt bucket sort to this case? what points should each bucket contain?

Wildcard KMP

4. Describe a modification of Knuth-Morris-Pratt (KMP) algorithm in which you only want to report the first occurrence and the pattern can contain any number of wildcard symbols ${ }^{*}{ }^{\prime}$, each of which matches an arbitrary substring. For instance, the pattern "al*thm*s" matches "ilovealgorithmscourse": the first wildcard matches "gori" and the second wildcard matches an empty substring. The algorithm should run in $\mathcal{O}(n+m)$, where n is the size of the text and m the size of the pattern.
Hint: consider the case were you have just one wildcard: essentially you need to have a match of what is before the wildcard, followed by anything, followed by a match of what is after the wildcard...

Simple Suffix Arrays

5. Suppose you already have available a suffix array $S A$ of a string s with length n, and its corresponding $L C P$ array (containing the longest common prefix of consecutive suffixes). Describe an algorithm (based on suffix arrays) that computes $L(s, k)$ the length of the biggest substring that appears in s at least k times. Indicate its runtime complexity.

For instance, $L($ "banana", 2$)=3$ because "ana" appears 2 times and has length 3 (no other larger substring appears at least 2 times.).
Besides describing the algorithm, you should exemplify its functioning for computing L ("senselessness", 2) (don't forget to show its corresponding suffix and LCP arrays).
Hint: in what positions of $S A$ appear the common substrings?

Palindromes

6. A palindrome is a word which reads the same backward as forward, such as "madam". Given a string S of size n, describe an algorithm using suffix trees or suffix arrays (choose one) that can compute $P(S)$, the size of the largest palindrome which is a substring of the word, and indicate its runtime and memory complexity (assume you can build a suffix tree or array in $\mathcal{O}(n)$).
For instance, $P($ "banana" $)=5$, because the largest substring which is also a palindrome is "anana". Another example is $P($ "pedro" $)=1$, because there are no repeated letters. Yet another example would be $P($ "racecar" $)=7$ because the entire word "racecar" is a palindrome.
Besides describing the algorithm, you should exemplify its functioning for computing P ("adambcmada").
Hint: the homework should have at least one exercise without hints, right?
