
Correctness and Loop Invariants

Pedro Ribeiro

DCC/FCUP

2018/2019

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 1 / 23

On Algorithms

What are algorithms? A set of instructions to solve a problem.

The problem is the motivation for the algorithm

The instructions need to be executable

Typically, there are different algorithms for the same problem
[how to choose?]

Representation: description of the instructions that is
understandable for the intended audience

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 2 / 23

On Algorithms
”Computer” Science version

An algorithm is a method for solving a (computational) problem

Algorithms are the ideas behind the programs and are independent
from the programming language, the machine, ...

A problem is characterized by the description of its input and output

A classical example:

Sorting Problem

Input: a sequence of 〈a1, a2, . . . , an〉 of n numbers
Output: a permutation of the numbers 〈a′

1, a
′
2, . . . , a

′
n〉 such that

a
′
1 ≤ a

′
2 ≤ . . . ≤ a

′
n

Example instance for the sorting problem

Input: 6 3 7 9 2 4
Output: 2 3 4 6 7 9

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 3 / 23

On Algorithms
What do we aim for?

What properties do we want on an algorithm?

Correction

It has to solve correctly all instances of the problem

Efficiency

The performance (time and memory) has to be adequate

This course is about designing correct and efficient algorithms and
how to prove they meet the specifications

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 4 / 23

About correction

In this lecture we will (mostly) worry about correction

I Given an algorithm, it is not often obvious or trivial to know if it is
correct, and even less so to prove this.

I By learning how to reason about correctness, we also gain insight into
what really makes an algorithm work

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 5 / 23

Loops

We will tackle one of the most fundamental (and most used)
algorithmic patterns: a loop (e.g. for or while instructions)

Example loop: summing integers from 1 to n

sum = 0
i = 1
while (i ≤ n) {

sum = sum + i
i = i + 1

}

We will talk about how to prove that a loop is correct

We will show how this is also useful for designing new algorithms

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 6 / 23

Loop Invariants

Definition of Loop Invariant

A condition that is necessarily true immediately before (and immediately
after) each iteration of a loop

Note that this says nothing about its truth or falsity part way through an
iteration.

Instructions are for computers, invariants are for humans

The loop program statements are ”operational”, they are ”how to
do” instructions

Invariants are ”assertional”, capturing ”what it means”
descriptions

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 7 / 23

Anatomy of a loop

Consider a simple loop: while (B) { S }
Q: precondition (assumptions at the beginning)
B: the stop condition (defining when the loop end)
S: the body of the loop (a set of statements)
R: postcondition (what we want to be true at the end)

Example loop: summing integers from 1 to n

sum = 0
i = 1
while (i ≤ n) {

sum = sum + i
i = i + 1
}

Q: sum = 0 and i = 1
B: i ≤ N
S: sum = sum + i followed by i = i + 1

R: sum =
n∑

i=1
i

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 8 / 23

The invariant?

P: an invariant (condition that holds at the start of each iteration)

To be useful, the invariant P that we seek should be such that:
P ∧ not(B)→ R

I For the example sum loop, it could be: sum =
i−1∑
i=1

i

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 9 / 23

How to show that an invariant is really one?

First, show that Q → P
(truth precondition Q guarantees truth of invariant P)

I For the example sum loop: sum=0 which is =
0∑

i=1

i

If P ∧ B, then after executing S , then P holds after executing S
(the statements S of the loop guarantee that P is respected)

I For the example sum loop:
i−1∑
i=1

+i =
i∑

i=1

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 10 / 23

How to show that an invariant is really one?

Initialization

The invariant is true prior to the first iteration of the loop

Maintenance

If it is true before an iteration of the loop, it remains true before the next
iteration

Termination

When the loop terminates, the invariant gives us a useful property that
helps show that the algorithm is correct

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 11 / 23

How to show that the loop terminates?

We need to show that each iteration makes progress towards
termination in some way

This is typically done by choosing an integer function that keeps
getting closer (i.e., decreasing or increasing) towards the stop
condition

I For the example sum loop: we could simply use the value of i , which
keeps getting closer to n

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 12 / 23

Motivation: a small puzzle

Suppose you have a jar of one or more marbles, each of which is either
RED or BLUE in color.

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 13 / 23

Red and Blue Marbles in a Jar

Suppose you have a jar of one or more marbles, each of which is either
RED or BLUE in color. You also have an unlimited supply of RED marbles
off to the side. You then execute the following ”procedure”:

Red and Blue Marbles in a Jar

while (# of marbles in the jar > 1) {

choose (any) two marbles from the jar;

if (the two marbles are of the same color) {

toss them aside;

place a RED marble into the jar;

} else { // one marble of each color was chosen

toss the chosen RED marble aside;

place the chosen BLUE marble back into the jar;

}

}

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 14 / 23

Red and Blue Marbles in a Jar

Does it terminate?

Let f (n) be the number of marbles in the jar

After each iteration, f (n) decreases exactly by one

When f (n) ≤ 1, the loop stops

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 15 / 23

Red and Blue Marbles in a Jar

Suppose we know the initial contents of the jar
(number of marbles of each color)

Can we predict which will be the last marble left in the jar?

More formally, we need a function f : N× N→ {RED,BLUE}

It turns that this function exists! The key to identifying it is to first
identify an invariant of the loop having to do with the number of
BLUE marbles in the jar

Consider the effect of one iteration:
I If both marbles chosen are the same, the number of blue marbles either

stays the same or decreases by two
I If the marbles are different, the number of blue marbles stays the same

An iteration does not affect the parity of the number of blues!
I If it was odd, it stays odd
I If it was even, it stays even

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 16 / 23

Red and Blue Marbles in a Jar

A: initial number if blue marbles

B: final number of blue marbles

Invariant

B is odd if and only if A is odd

This is the same saying that both A and B are odd, or both are even

Because at the end we are left with one marble either B = 0 or B = 1

So, if A is even, at the end B = 0 (the remaining marble is RED)

If A is odd, then at the end B = 1 (the remaining marble is BLUE)

Thus F (A,) = {RED if A is even, BLUE otherwise}
Interestingly, the color of the last remaining marble does not depend at all
upon the number of RED marbles initially in the jar.

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 17 / 23

Motivation: a drawing game

There are two players, call them Red and Blue. The game is played on a
rectangular grid of points, such as the one illustrated below.

6

5

4

3

2

1

1 2 3 4 5 6 7

Red and Blue take alternating turns, each time drawing an horizontal or
vertical line segment of their color connecting two unconnected points

Red’s goal is to form a closed curve

Blue wants to prevents this from happening

The game ends when red wins, or when no more segments can be drawn

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 18 / 23

Motivation: a drawing game

The game can be seen as a loop:

Red and Blue Marbles in a Jar

while (more line segments can be drawn) {

Red draws line segment;

Blue draws line segment;

}

Does either Red or Blue have a ”winning strategy”?

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 19 / 23

Motivation: a drawing game

A winning strategy for the blue player

Suppose red connects (i , j) with (i , j + 1) (horizontal line)
I Red responds by connecting (i − 1, j + 1) with (i , j + 1)

(if i = 1, then draw anywhere)

Suppose red connects (i , j) with (i + 1, j) (vertical line)
I Red responds by connecting (i + 1, j − 1) with (i + 1, j)

(if j = 1, then draw anywhere)

Informally, Blue responds to Red by making sure that the line segment
just drawn by Red can never occur as one of the two line segments
forming an ”upper right corner” of a closed curve of red segments.

Note that any closed curve of red line segments must include at least
one such corner. Thus, if Blue adheres to this strategy, Red can never
form a closed curve!

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 20 / 23

Motivation: a drawing game

Assuming that Blue follows this strategy, the following statement is true
after each step in the playing of the game:

Invariant

There does not exist on the grid a pair of red line segments that form an
upper right corner.

Of course, there is nothing special about upper right corners. Blue could
have just as easily chosen to prevent Red from forming any of the other
three kinds of corners instead.

Significantly, when the game ends (i.e., the loop terminates), the invariant
will hold, and Red will not have formed an upper right corner. Which
means that Red must not have won, so Blue must have won.

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 21 / 23

A puzzle for you to solve

Imagine a flower having 16 petals. Two players take alternating moves. A
move involves removing either one petal or two adjacent petals from the
flower, at the player’s choice. The winner is the one removing the last
petal.

Question: Does either player have a winning strategy?

And if we have n petals?

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 22 / 23

Back to computer programs

We will now interactively create some loop based code, showing is design,
what are the invariants, and how can we prove it is correct - I’ll add that

material here later

Pedro Ribeiro (DCC/FCUP) Correctness and Loop Invariants 2018/2019 23 / 23

