
Linear Algorithms for the Selection Problem

Pedro Ribeiro

DCC/FCUP

2018/2019

Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 1 / 16



Selection Problem

Selection Problem
Given an unordered array with n elements, find its k-th smaller item

One example is to find the median

How quickly can we do this? Can we do it more quickly than by
sorting?

Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 2 / 16



Selection Problem vs Sorting

We talked about an Ω(n log n) lower bound for a comparison-based
sorting algorithm

Suppose that now the problem is ”order the input array so that the
smallest k items come before the largest n − k items”.

For the median: ”order the input array so that the smallest n/2 items
come before the largest n/2 items”.

Does the Ω(n log n) lower bound still hold for this problem? No!
I It breaks down because any input will have multiple possible

permutations as correct answers
I Ex: For input [3, 2, 4, 1] we could output any of [1, 2, 3, 4], [2, 1, 3, 4],

[1, 2, 4, 3], or [2, 1, 4, 3].
I In fact we are now going to show how to solve this problem in linear

time, by solving the selection problem in linear time.

Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 3 / 16



Randomized Selection

Supose we partition around a specific pivot. What do we know about
the position of the k-th element? Do we know in which partition it is?

Yes! Just by looking at the partition sizes, we know where the
element we are looking for is!

Ex: Suppose we are looking for the 67-th smallest element:
I Let LESS be the set of elements smaller than the pivot,

and GREATER the set of elements bigger than the pivot
I If we get a LESS of size 100, then we just need to find the 67-th

element of LESS
I If we get a LESS of size 40, then we need to find the

67− 40− 1 = 26-th element of GREATER

We will only recurse on one partition instead of two! What is the
complexity of something like this?

Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 4 / 16



Randomized Selection

Randomized Selection (QuickSelect)
Given an array of size n and an integer k ≤ n

1 Pick a pivot p at random from the array
2 Split the array into LESS and GREATER by comparing each element

to p as in QuickSort. Let L be the number of elements in LESS.
3 a) If L = k − 1 then output p

b) If L > k − 1 then output QuickSelect(LESS, k)
c) If L < k − 1 then output QuickSelect(GREATER, k − L− 1)

Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 5 / 16



Randomized Selection

Theorem
The expected number of comparisons for QuickSelect is O(n).

Before a formal proof, let’s start with some intuition.

If we split a candy bar at random, what would the expected size of the
largest piece be? 3/4 of the bar!

If the size of the largest partition was always 3/4 of the array, what would
the recurrence be? T (n) = (n − 1) + T (3n/4)

What would this recurrence solve to? T (n) ≤ 4n !

1, 3/4, 32/42, 33/43, ... (geometric series!)

And we have s =
∞∑

i=0
(3/4)i = 4 [s − (3/4)s = 1↔ s = 4] !

Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 6 / 16



Randomized Selection

Theorem
The expected number of comparisons for QuickSelect is O(n).

In our case, 3/4 is not the actual size of the largest partition, but only its
expected value.

What we really want is E[T (i)] rather than T (E[i ])

However, since the answer is linear... the average of T (i) is the same as
the T (average of i)!

Let’s see this more formally.

Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 7 / 16



Randomized Selection

Theorem
The expected number of comparisons for QuickSelect is O(n).

It takes n − 1 comparisons to split the array

These pieces are equally likely to have size 0 and n− 1, 1 and n− 2, 2 and
n − 3, etc

The piece we choose depends on k but since we are trying to obtain an
upper bound, we can imagine recursion always on the larger piece.

T (n) ≤ (n − 1) + 2
n

n−1∑
i=n/2

T (i)

= (n − 1) + avg [T (n/2), . . . ,T (n − 1)]

Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 8 / 16



Randomized Selection

Theorem
The expected number of comparisons for QuickSelect is O(n).

Now let’s use guess and prove. Assuming inductively that T (i) ≤ 4i for all
i < n, then:

T (n) ≤ (n − 1) + avg [4(n/2), 4(n/2 + 1), . . . , 4(n − 1)]
≤ (n − 1) + 4(3n/4)
≤ 4n

And we have verified our guess :)

Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 9 / 16



Deterministic Selection

Randomized selection works well in practice, but can we have a
deterministic linear time selection?

For a long time it was thought to be impossible but in 1972 a
deterministic algorithm was developed (by Blum, Floyd, Pratt, Rivest,
and Tarjan).

The main ideia is to try to find deterministically a good pivot, i.e.,
one that produces a good split.

Ideal? Median! But finding the median IS the problem...

We will give ourselves some leeway by allowing the pivot to be any
element that is “roughly” in the middle: at least 3/10 of the array
below the pivot and at least 3/10 of the array above.

Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 10 / 16



Deterministic Selection

Deterministic Selection (Median of Medians)
Given an array of size n and an integer k ≤ n

1 Group the array into n/5 groups of size 5 and find the median of each
group.

2 Recursively, find the true median of the medians. Call this p.
3 Use p as a pivot to split the array into subarrays LESS and

GREATER.
4 Recurse on the appropriate piece.

Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 11 / 16



Deterministic Selection

Theorem
Deterministic Selection makes O(n) comparisons to to find the k-th
smallest element in an array of size n

How many comparisons for finding the median of 5 elements? A constant
number (finding the exact minimum will be a good exercise).

Step 1 takes O(n) time then.

Step 2 takes time T (n/5).

Step 3... We claim that at least 3/10 of the array is ≤ p and at least 3/10
of the array is ≥ p. Assuming this is true we get:

T (n) ≤ cn + T (n/5) + T (7n/10)

Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 12 / 16



Deterministic Selection

Let’s prove our claim about the pivot.

First an example. Imagine an array of 15 elements that breaks into 3
groups of 5 like this:

{1, 2, 3, 10, 11}, {4, 5, 6, 12, 13}, {7, 8, 9, 14, 15}

The medians are 3, 6 and 9. The true median of the medians is 6.

There are 5 elements less than p and 9 elements greater.

And in general?

How many groups? g = n/5. In at least dg/2e of them (groups with
median ≤ p) at least 3 out of 5 elements are ≤ p. Therefore , the total
number of elements ≤ p is at least 3 dg/2e ≥ 3n/10. Similarly, the
number of elements ≥ p is also at least 3 dg/2e ≥ 3n/10.

Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 13 / 16



Deterministic Selection

Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 14 / 16



Deterministic Selection
T (n) ≤ cn + T (n/5) + T (7n/10)

We could again solve by the ”guess and prove” method.

Can we however look at the recurrence and see it is linear?

(recurrence where ”weight is on top”)

Even if we extend this pattern ”forever”, we will have:
T (n) ≤ cn + T (9n/10) whose sum is cn

∞∑
i=0

(9/10)i = 10cn

(again a geometric series)

So, T (n) ≤ 10cn and we’re done! [T (n) = O(n)]
Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 15 / 16



An ”extension” to the master theorem

Generally, if we have a problem of size n and we can solve it by performing
recursive calls on pieces whose total size is at most (1− ε)n for some
constant ε > 0 (plus some additional O(n) work), then the total time
spent will be just linear in n. This gives us:

”Extension” to Master Theorem
For constants c and a1, . . . , ak such that a1 + . . .+ ak < 1, the recurrence:

T (n) = T (a1n) + . . .+ T (akn) + cn

solves to

T(n) = Θ(n)

Pedro Ribeiro (DCC/FCUP) Linear Algorithms for the Selection Problem 2018/2019 16 / 16


