
Sorting in Linear Time

Pedro Ribeiro

DCC/FCUP

2018/2019

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 1 / 18



Sorting with and without comparisons

We have already talked about several algorithms for sorting

They were based on comparisons: questions of the form ”a < b?”
I Quicksort
I Mergesort
I There are others such as Heapsort, ...

We have shown that for these comparison-based algorithms we have a
lower bound on the number of comparisons needed: Θ(n log n)

Today we are going to talk about algorithms not based on
comparisons (and thus not restricted to the previous lower bound)

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 2 / 18



Counting Sort

Assumption: integers to be sorted are in the range 0 to k

Counting Sort - Sort elements in A, with sorted output in B
CountingSort(A,B,k):

C[0..k] ← new array
for i = 0 to k

C[i] = 0
for i = 1 to A.length

C[A[i]] = C[A[i]] + 1
// C [i ] now contains the number of elements equal to i .
for i = 1 to k

C[i] = C[i] + C[i-1]
// C [i ] now contains the number of elements less than or equal to i .
for i = A.length downto 1

B[C[A[i]]] = A[i]
C[A[i]] = C[A[i]] -1

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 3 / 18



Counting Sort

(a) A and C after first counting loop
(b) C after third loop
(c), (d) and (e) first iterations of last loop
(f) final state of array B
(figure from CLRS)

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 4 / 18



Counting Sort

What is the time complexity?
Let n = A.length

First loop: Θ(k)
Second loop: Θ(n)
Third loop: Θ(k)
Fourth loop: Θ(n)
Total: Θ(n + k)

If k is O(n) then this sort runs in linear time! Θ(n)

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 5 / 18



Stable sorting

Stable sorting
A sorting algorithm is said to be stable if in case of a tie it keeps the order
of the original array

This property may be important, for instance, when ”satellite” data is
carried around the elements being sorted

I Ex: sorting persons - tuples (name, age) - only by age

Counting Sort is stable! (because of the order of the last loop)
I This is why it may be used as a subroutine in Radix Sort, as we’ll see

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 6 / 18



Radix Sort

Imagine you are sorting ”by columns”, i.e., by considering at a time
each possible digit position

Intuitively, you would probably imagine starting with the most
significant digit.

RadixSort solves the sorting problem somehow ”counter-intuitively”,
by starting with the least significant digit.

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 7 / 18



Radix Sort

Assumption: each element in the array A has d digits, where 1 is the
lowest order digit, and d the highest-order digit

Radix Sort
RadixSort(A,d):

for i = 1 to d
Use a stable sort to sort array A on digit i

(figure from CLRS)
Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 8 / 18



Radix Sort

Radix Sort is akin to sorting by different fields
I Ex: sort dates by year, then by month, then by day

We could do a comparison-based sort: compare year, if tie, compare
month, if tie compare day
or
do 3 consecutive stable sorts: first by day, then by month, and finally
by year

Complexity of Radix Sort depends on the used sorting algorithm

An usual choice is... Counting Sort! In this case we have Θ(d(k + n))

I We can sort n b-bit numbers in Θ((b/r)(n + 2r )) with counting sort
F Each key has db/re digits of r bits each (our d)
F Each digit is an integer in the range 0 to 2r − 1 (our k)

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 9 / 18



Sorting Keys that are not numerical

Counting and Radix sort do not depend on having numerical keys

They depend on having the possibility to ”break” the key into
”digits” (parts) and to map each part into a numerical value

For instance, if we have strings, we can break by chars, and map
each char into a number (a = 0, b = 1, . . . , z = 25)

EAR SEA EAR BOX
COW DOG SEA COW
DOG BIG DIG DIG
NOW -> EAR -> DOG -> DOG
SEA COW COW EAR
BOX NOW NOW FOX
BIG BOX BOX NOW
FOX FOX FOX SEA

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 10 / 18



Bucket Sort

Assumption: keys follow an uniform distribution over a certain range

Idea: make n equal sized ”buckets”, distribute input over buckets,
sort each bucket and then concatenate results

Rationale: If the input is uniformly distributed, than there will not
be many numbers in each bucket!

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 11 / 18



Bucket Sort

Without loss of generality, let’s assume for now that the range is 0..1

Bucket Sort - each bucket is a list
BucketSort(A):

n = A.length
B[0..n.1] ← new array of lists
for i = 0 to n-1

B[i] = empty list
for i = 1 to n

insert A[i] into B[bnA[i ]c]
for i = 0 to n-1

sort list B[i]
concatenate lists B[0], B[1], ..., B[n-1] together, in order

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 12 / 18



Bucket Sort
An example

(figure from CLRS)
Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 13 / 18



Bucket Sort

What is the execution time?

Everything except the cycle with sorts takes Θ(n)

We need to analyse the time taken by the sorts

Let’s assume we use Insertion Sort (good for lists) - each is O(n2)

Execution Time of Bucket Sort (with Insertion Sort)
ni : random variable denoting the number of elements in bucket i

T (n) = Θ(n) +
n−1∑
i=0

O(n2
i )

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 14 / 18



Bucket Sort

We want to analyse the average-case running time of bucket sort:
calculate the expected value of running time.

E[T (n)] = E[Θ(n) +
n−1∑
i=0

O(n2
i )]

= Θ(n) +
n−1∑
i=0

E[O(n2
i )] (by linearity of expectation)

= Θ(n) +
n−1∑
i=0

O(E[n2
i ])

What is the value of E[n2
i ]? (expected size of each bucket i)

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 15 / 18



Bucket Sort

Claim: E[n2
i ] = 2− 1/n

Let’s define an indicator random variable Xij with values:
1 if A[j] falls on bucket i , 0 otherwise

With this, ni =
n∑

j=1
Xij

E[n2
i ] = E[(

n∑
j=1

Xij)2]

= E[
n∑

j=1

n∑
k=1

XijXik ]

= E[
n∑

j=1
X 2

ij +
∑

1≤j≤n

∑
1≤k≤n,k 6=j

XijXik ]

=
n∑

j=1
E[X 2

ij ] +
∑

1≤j≤n

∑
1≤k≤n,k 6=j

E[XijXik ]

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 16 / 18



Bucket Sort

Let’s first solve E[X 2
ij ]. The probability of j being in bucket i is 1/n, since

the keys are uniformly distributed.

E[X 2
ij ] = 12 × 1

n + 02 × (1− 1
n ) = 1

n

Now, when k 6= j , variables Xij and Xik are independent:

E[XijXik ] = E[Xij ] E[Xik ] = 1
n ×

1
n = 1

n2

Finally:

E[n2
i ] =

n∑
j=1

1
n +

∑
1≤j≤n

∑
1≤k≤n,k 6=j

1
n2

= n × 1
n + n(n − 1)× 1

n2

= 1 + n−1
n

= 2− 1
n

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 17 / 18



Bucket Sort

We want to analyse the average-case running time of bucket sort:
calculate the expected value of running time.

E[T (n)] = Θ(n) +
n−1∑
i=0

O(E[n2
i ])

= Θ(n) + n × O(2− 1/n)
= Θ(n)

Hence, Bucket Sort will have linear complexity on the average-case!

Even if the input does not follow a uniform distribution, bucket sort may
still run in linear time, as long as the sum of the squares of the bucket
sizes is linear in the total number of elements.

Pedro Ribeiro (DCC/FCUP) Sorting in Linear Time 2018/2019 18 / 18


