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Greedy Algorithms

A greedy algorithm is an algorithm that follows the problem solving
heuristic of making the locally optimal choice at each stage with the
hope of finding a global optimum.

Greedy Algorithm

At each step choose the ”best” local choice

Never look ”behind” or change any decisions already made

Never look to the ”future” to check if our decision has negative
consequences
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Greedy Algorithms
A first example

Coin Change Problem (Cashier’s Problem)

Input: a set of coins S and a quantity K we want to create with the coins

Output: the minimum number of coins to make the quantity K
(we can repeat coins)

Input/Output Example

Input: S = {1, 2, 5, 10, 20, 50, 100, 200}
(we have an infinite supply of each coin)
K = 42

Output: 3 coins (20 + 20 + 2)
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Coin Change Problem

A greedy algorithm for the coin change problem

In each step choose the largest coin that we will not take us past quantity
K

Examples (with S = {1, 2, 5, 10, 20, 50, 100, 200}):

K = 35
I 20 (total: 20) + 10 (total: 30) + 5 (total: 35)[3 coins]

K = 38
I 20 + 10 + 5 + 2 + 1 [5 coins]

K = 144
I 100 + 20 + 20 + 2 + 2 [5 coins]

K = 211
I 200 + 10 + 1 [3 coins]
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Coin Change Problem

Does this algorithm always give the minimum amount of coins?

For the common money systems (ex: euro, dollar)... yes!

For a general coin set... no!

Examples:

S = {1, 2, 5, 10, 20, 25}, K = 40
I Greedy gives 3 coins (25 + 10 + 5), but it is possible to use 2 (20 + 20)

S = {1, 5, 8, 10}, K = 13
I Greedy gives 4 coins (10 + 1 + 1 + 1), but it is possible to use 2 (5 + 8)

(Will it be enough that a single coin is larger than the double of the
previous coin?)
S = {1, 10, 25}, K = 40

I Greedy gives 7 coins (25 + 10 + 1 + 1 + 1 + 1 + 1),
but is is possible to only use 4 coins (10 + 10 + 10 + 10)
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Greedy Algorithms

”Simple” idea, but it does not always work
I Depending on the problem, it may or may note give an optimal answer

Normally, the running time is very low (ex: linear or linearithmic)

The hard part is to prove optimality

Typically is it applied in optimization problems
I Find the ”best” solution among all possible solutions, according to a

given criteria (goal function)
I Generally it involves finding a minimum or a maximum

A very common pre-processing step is... sorting!
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Properties needed for a greedy approach to work

Optimal Substructure

When the optimal solution of a problem contains in itself solutions for
subproblems of the same type

Example

Let min(K ) be the minimum amount of coins to make quantity K . If that
solution uses a coin of value v , then the remaining coins to use are given
precisely by min(K − v).

If a problem presents this characteristic, we say it respects the
optimality principle.
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Properties needed for a greedy approach to work

Greedy Choice Property

An optimal solution is consistent with the greedy choice of the algorithm.

Example

In the case of euro coins, there is an optimal solution using the largest coin
which is still smaller or equal than the quantity we need to make.

Proving this property is normally the ”hardest” part
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Cashier’s Problem: Proof

Let H = {h1, h2, h5, h20, h50, h100, h200} be an optimal solution with
hv coins of each value v

If h100 > 1, H would not be optimal (we could just substitute two 100
coins by one of 200). Therefore, h100 ≤ 1

Using the same reasoning, h50 ≤ 1, h10 ≤ 1, h5 ≤ 1 and h1 ≤ 1

If h20 > 2, H would not be optimal (we could just substitute three 20
coins by one of 50 and one of 10). Therefore, h20 ≤ 2 (and h2 ≤ 2)

h2 = 2 and h1 = 1 can’t happen at the same time (we could just use
a 5 coin instead). Therefore, 2h2 + h1 ≤ 4 (and 20h20 + 10h10 ≤ 40)
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Cashier’s Problem: Proof

We have:
I h1 ≤ 1
I h2 ≤ 2 (and 2h2 + h1 ≤ 4)
I h5 ≤ 1
I h10 ≤ 1
I h20 ≤ 2 (and 20h20 + 10h10 ≤ 40)
I h50 ≤ 1
I h100 ≤ 1

Combining what was said before:
I 5h5 + 2h2 + h1 ≤ 9
I 10h10 + 5h5 + 2h2 + h1 ≤ 19
I 20h20 + 10h10 + 5h5 + 2h2 + h1 ≤ 49
I 50h50 + 20h20 + 10h10 + 5h5 + 2h2 + h1 ≤ 99
I 100h100 + 50h50 + 20h20 + 10h10 + 5h5 + 2h2 + h1 ≤ 199

Let V = {1, 2, 5, 10, 20, 50, 100}.
We have that

∑k
i=1 vihi < vk+1. Therefore, H has the same number

of coins as our greedy solution!
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Fractional Knapsack

Fractional Knapsack Problem

Input: A backpack of capacity C
A set of n materials, each one with weight wi and value vi

Output: The allocation of materials to the backpack that maximizes the
transported value.

The materials can be ”broken” in smaller pieces, that is, we can decide to
take only quantity xi of object i , with 0 ≤ xi ≤ 1.

What we want is therefore to obey the following constraints

The materials fit in the backpack (
∑
i
xiwi ≤ C )

The value transported is the maximum possible (maximize
∑
i
xivi )
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Fractional Knapsack

Input Example

Input: 5 objects and C = 100
i 1 2 3 4 5

wi 10 20 30 40 50
vi 20 30 66 40 60

What is the optimal answer in this case?

Always choose the material with the largest value:

i 1 2 3 4 5

xi 0 0 1 0.5 1

This would give a total weight of 100 and a total value of 146.
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Fractional Knapsack

Input Example

Input: 5 objects e C = 100
i 1 2 3 4 5

wi 10 20 30 40 50
vi 20 30 66 40 60

What is the optimal answer in this case?

Always choose the material with the smallest weight:

i 1 2 3 4 5

xi 1 1 1 1 0

This would give a total weight of 100 and a total value of 156.
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Fractional Knapsack

nput Example

Input: 5 objects e C = 100
i 1 2 3 4 5

wi 10 20 30 40 50
vi 20 30 66 40 60

What is the optimal answer in this case?

Always choose the material with the largest value/weigth ratio:

i 1 2 3 4 5

vi/wi 2 1.5 2.2 1.0 1.2
xi 1 1 1 0 0.8

This would give a total weight of 100 and a total value of 164.
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Fractional Knapsack

Theorem

Always choosing the largest possible quantity of the material with the
largest value/weigth ratio is a strategy leading to an optimal total value.

1) Optimal Substructure

Consider an optimal solution and its material m with the best ratio.

If we remove it from the backpack, then the remaining objects must
contain the optimal solution for the materials othen than m and for a
backpack with capacity C − xmwm

If that is not the case, then the initial solution was also not optimal!
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Fractional Knapsack

Theorem

Always choosing the largest possible quantity of the material with best
value/weigth ratio is a strategy that gives an optimal value

2) Greedy Choice Property

We want to prove that the largest possible quantity of the material m with
the best ratio (vm/wm) should be included in the backpack.

The value of the backpack: value =
∑
i
xivi .

Let qi = xiwi be the quantity of material i : value =
∑
i
qivi/wi

If we still have some material m available, then swapping any other
material i with m will give origin to a better total value:

qmvm/wm ≥ qivi/wi (by definition of m)
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Fractional Knapsack

Greedy Algorithm for Fractional Knapsack

Sort the materials by decreasing order of value/weigth ratio

Process the next material in the sorted list:
I If it fits entirely on the backpack, include it all and continue to the

next material
I If it does not fit entirely, include the largest possible quantity and

terminate

Temporal Complexity:

Sorting: O(n log n)

Processing: O(n)

Total: O(n log n)
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Interval Scheduling

Interval Scheduling Problem

Input: A set of n activities, each one starting on time si and finishing on
time fi .

Output: Largest possible quantity of activities without overlapping

Two intervals i and j overlap if there is a time k where both are active.
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Interval Scheduling

Input Example

Input: 5 activities:
i 1 2 3 4 5

si 1 2 4 4 5
fi 7 5 6 9 10
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Interval Scheduling

Greedy ”pattern”: Establish an order according to a certain criteria and
then choose activities that do not overlap with activities already chosen

Some possible ideas:

[Earliest start] Allocate by increasing order of si

[Earliest finish] Allocate by increasing order of fi

[Smallest interval] Allocate by increasing order of fi − si

[Smallest number of conflicts] Allocate by increasing order of the
number of activities that overlap with it
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Interval Scheduling

[Earliest start] Allocate by increasing order of si

Counter-Example:
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Interval Scheduling

[Smallest interval] Allocate by increasing order of fi − si

Counter-Example:
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Interval Scheduling

[Smallest number of conflicts] Allocate by increasing order of the number
of activities that overlap with it

Counter-Example:
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Interval Scheduling

[Earliest finish] Allocate by increasing order of fi

Counter-Example: Does not exist!
In fact, this greedy strategy produces an optimal solution!

Theorem

Always choose the non-overlapping activity with the smallest possible
finish time will produce an optimal solution

1) Optimal substructure

Consider an optimal solution and the activity m with the smallest fm.

If we remove that activity, then the remaining activities must contain an
optimal solution for all activities starting after fm.

If that is not the case, then the initial solution would not be optimal!
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Interval Scheduling

Theorem

Always choose the non-overlapping activity with the smallest possible
finish time will produce an optimal solution

2) Greedy Choice Property

Let’s assume that the activities are sorted by increasing order of finish
times.

Let G = {g1, g2, . . . , gn} be the solution created by the greedy algorithm.

Let’s show by induction that given any other optimal solution H, we can
modify the first k activities of H so that they match the first k activities
of G , without introducing any overlap.

When k = n, the solution H corresponds to G and therefore |G | = |H|.
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Interval Scheduling

Base Case: k = 1

Let the other optimal solution be H = {h1, h2, . . . , hn}

We need to show that g1 could substitute h1

By definition, we have that fg1 ≤ fh1

Therefore, g1 could stay in h1 place without creating any overlap

This proves that g1 can be the beginning of any optimal solution!
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Interval Scheduling

Inductive Step (assuming it’s true until k)

We assume another optimal solution is H = {g1, . . . , gk , hk+1, . . . hm}

We have to show that gk+1 could substitute hk+1

sgk+1
≥ fgk (there is no overlap)

Therefore, fgk+1
≤ fhk+1

(that is the way the greedy algorithm
chooses)

Given that, gk+1 could stay in hk+1’s place without creating overlaps

This proves that gk+1 could be chosen to extend our optimal (greedy)
solution!
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Interval Scheduling

Greedy Algorithm for Interval Scheduling

Sort the activities by increasing order of finish time

Start by initializing G = ∅
Keep adding to G the next activity (that is, with the smaller fi ) that
does not overlap with any activity of G

Temporal Complexity:

Sort: O(n log n)

Process: O(n)

Total: O(n log n)
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Spannning Tree

A spanning tree is a subset of edges of a non directed graph that
forms a tree connecting all nodes

The following figure shows a graph and three possible spanning trees:

Multiple spanning trees for the same graph may exist

A spanning tree for a graph G = (V ,E ) has |V | − 1 edges
I If it has less edges, it does not connect the graph
I If it has more edges, it forms a cycle
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Minimum Spanning Trees

If the graph is weighted (weights associated with each edge, we can
have the notion of a minimum spanning tree - MST), which is the
spanning tree that minimizes the sum of its edges.

The following figure shows a non directed weighted graph. What is its
minimum spanning tree?
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Minimum Spanning Trees

Total cost: 46 = 4+8+7+9+8+7+1+2

Total cost: 41 = 4+8+7+9+8+2+1+2

Total cost: 37 = 4+8+7+9+1+2+4+2

In fact this last tree is a minimum spanning tree!

Pedro Ribeiro (DCC/FCUP) Greedy Algorithms 2018/2019 31 / 47



Minimum Spanning Trees

There might be more than one MST.
I For example, if the weights are all equal, all spanning trees are MSTs!

In terms of applications, an MST is really useful. For instance:

I When we want to connect computers in a networks using the minimum
amount of cable

I When we want to connect houses to the electrical network using the
minimal amount of wire

How to find an MST for a given graph?
I There is an exponential number of spanning trees
I Finding all possible spanning trees and choosing the best is not

efficient!
I How to do better?
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Algorithms for computing a MST

We will discuss a classical algorithm: Prim

This and other MST algorithms (ex: Kruskal) are greedy: in each
step we add a new edge, guaranteeing that the newly added edges are
part of an MST

Generic Algorithm for MST

T ← ∅
While T is not an MST do

Find an edge (u, v) that is ”safe” to add
T ← T ∪ (u, v)

return(T )
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Prim Algorithm

Start in any node

At each step add to the tree the node whose cost is smaller, that
is, the one with the minimum weight that connects to any node
already in the tree. In case of a tie, any choice works.

Let’s see step by step for the example graph.
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Prim Algorithm

(image from Introduction to Algorithms, 3rd Edition)
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Prim Algorithm

(image from Introduction to Algorithms, 3rd Edition)
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Prim Algorithm - Proof of correctness

Let’s prove that Prim produces an MST for a non-weighted
undirected connected graph G with n nodes:

I Let T = {T1, . . . ,Tn−1} be the spanning tree produced by Prim
I Let H = {H1, . . . ,Hn−1} be any minimum spanning tree

If T = H then we are done, obviously. If not, we will show that we
could transform H into T without changing the cost.

Suppose edge e is the first edge added in the construction of T that
is not in H:

I Let V be the nodes connected the moment before e is added
I Suppose that e connects nodes ue and we where ue is the parent of we

(ue ∈ V and we /∈ V )
I Because H is a spanning tree, there is a path P between ue and we

I There must be an edge f in this path P with one node in V and
another not in V

I When we were constructing T , we could have added f , but we didn’t.
Therefore, weight(f ) ≥ weight(e)
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Prim Algorithm - Proof of correctness

Let’s build a new MST H2 from H, replacing edge f with edge e:
I H2 is still connected because all paths that required f can now use e
I H2 is acyclic as H2 still has n − 1 edges
I The cost of H2 is smaller or equal than H since weight(e) ≤ weight(f )

If H2 6= T we continue as above, substituting edge by edge until we
transform H into T

Therefore, T is a minimum spanning tree!
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Prim Agorithm

Let’s put the idea of Prim into ”code”:

Prim algorithm for computing the MST of G (starting in node r)

Prim(G , r):
For all nodes v of G do:
v .dist ←∞
v .parent ← NULL

r .dist ← 0
Q ← G .V /* All vertices of G */
While Q 6= ∅ do

u ← GET-MIN(Q) /* Node with smaller dist */
For all nodes v adjacent to u do

If v ∈ Q and weight(u, v) < v .dist then /* Update distances */
v .parent ← u
v .dist ← weight(u, v)
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Prim’s Complexity

Consider we are computing the MST of a graph G = {V ,E}

The complexity of Prim depends on GET-MIN:

I GET-MIN will be called |V | times
I Each edge will be considered two times (one for each if its endpoints)

in the cycle that updates dist
I Therefore the complexity is O(|E |+ |V | × cost(GET-MIN))

A ”naive” implementation where the next node is discovered using
linear search with a cycle would be O(|E |+ |V |2)

We can reduce this to linearithmic running time if we use a data
structure that supports GET-MIN in logarithmic time

A data structure for this (returning the minimum or maximum
element) is known as a priority queue
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Heap: an implementation of a priority queue

An heap is a data structure organized as a balanced binary tree,
implementing a priority queue

There are two basic heap types:
I max-heaps: the priority element is the maximum
I min-heaps: the priority element is the minimum

For a binary tree to be considered a heap, it has to respect the
following condition: the parent of a node has always an higher
priority when compared to that node (ex: in a max-heap, the
children of a node must have smaller values that the node).

An heap must be a a complete binary tree until the second to
last level and the last level must be completely filled up from
left to right.

I This guarantees that the maximum height of the tree with n nodes is
proportional to log2 n
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Heap: an implementation of a priority queue

An heap is usually implemented as an array, where:
I The children of a node (i) are the nodes in positions (i ∗ 2) and

(i ∗ 2 + 1)
I The parent of a node (i) is the node in position (i/2).

The following figure illustrates a min-heap and the corresponding
array:
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Heap: an implementation of a priority queue

There are two important heap operations: removing and inserting

Removing an element is to remove the root
I In a min-heap the root is the globally smallest element
I In a max-heap the root is the globally largest element

After removing the root, we need to reestablish the heap conditions.
We can do the following:

I We take the last element and we put it at the root position
I That element ”goes down” (down-heap), swapping with the hight

priority child, until the heap condition is again valid
I At most we do O(log n) swaps, because the tree is balanced!
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Heap: an implementation of a priority queue

For Inserting an element, we could:
I Start by putting it on the last position
I The element ”goes up” (up-heap), swapping with the parent, until the

heap condition is reestablished
I At most we do O(log n) swaps, because the tree is balanced, because

the tree is balanced!

Example for inserting 2

Pedro Ribeiro (DCC/FCUP) Greedy Algorithms 2018/2019 44 / 47



HeapSort

An example application of heaps is... sorting! Assume we have n
elements. Then, HeapSort is essentially the following:

I Insert each element in the heap in n ×O(log n)
I Call the remove operation n times. The element will be removed in

sorted order! This step will also take n ×O(log n)
I The entire process will therefore take O(n log n)

Although it does not change the complexity of the whole sorting
procedure, the O(n log n) bound for the initial part of building the
heap (inserting all elements into the heap) is not tight:

I Assume we just put all elements an the array in the beginning
I We could then just call down-heap on all elements from positions n/2

down to 1
I We can show that this would have a total cost of O(n): we can build

a max or min-heap from an unordered array in linear time
(we will not have time to show a proof here - have a look at the CLRS
book for a formal proof - see section ”5.3 - Building a heap”)
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Prim algorithm and priority queues

Recall that Prim’s complexity is O(|E |+ |V | × cost(GET-MIN))

Supposing we use a specialized data structure for GET-MIN, we need
to take into account the time to update (lower) the values of node
distances: O(|E | × cost(UPDATE) + |V | × cost(GET-MIN))

With a min-heap:
I Each GET-MIN will cost O(log |V |) (just call the remove operation of

the heap)
I Each update will also cost O(log |V |) (because an update can only

decrease the value, we can call up-heap on that node)

The final complexity of Prim with heaps is O(|E | log |V |+ |V | log |V |,
which is the same as O(|E | log |V |), assuming |E | ≥ |V | − 1 (or else,
no spanning tree would even be possible).
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Greedy Algorithms

A powerful and flexible idea

The hard part is usually to prove that it gives an optimal result
I Optimality is not guaranteed because we are not exploring completely

all our search space
I Generally it is easier to prove non-optimality (counter-example)
I A simple way of analysing is to think about a case where there is a tie

in the greedy condition: what would the algorithm choose in that case?
Does it matter?

I We have shown examples of some possible proof techniques for greedy
algorithms:

F ”Exchange argument”: show that you can iteratively transform any
optimal solution into the solution produced by the algorithm without
changing the cost

F ”Stay-Ahead”: find a measure by which your greedy algorithm stays
ahead of the other (optimal) solution you choose to compare to

When greedy works, usually it is efficient (low complexity)

There is no ”magic recipe” for all greedy algorithms: you need
experience!
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