Sorting and variants

Pedro Ribeiro

DCC/FCUP

2020/2021

- Sorting is an **initial step** to many other algorithms
 - Ex: finding the median
- When you don't know what to do... sort!
 - Ex: finding repeated elements is much easier after sorting
- **Different sorting types** might be more adequate to different scenarios
 - Ex: to less general cases, there might be $\mathcal{O}(n)$ algorithms
- It is important to know the sorting functions available on your language **libraries**
 - ► Ex: qsort (C), STL sort (C++), Arrays.sort (Java)

About sorting complexity

- What is the least possible complexity for a general sorting algorithm?
 Θ(n log n)... but only on the comparative model.
 - ► Comparative model: to distinguish elements I can only use comparisons (<, >, =, ≥, ≤). How many comparisons are needed?

• A sketch of the **proof** that comparative sorting is Ω(n log n)

- Input of size n has n! possible permutations (only one is the desired ordering)
- A comparison has two possible results (it can distinguish between 2 different permutations)
- Let f(n) be the function that measures the **number of comparisons**
- f(n) comparisons: can **distinguish** between $2^{f(n)}$ permutations
- We need that $2^{f(n)} \ge n!$, that is, $f(n) \ge \log_2(n!)$
- Using **Stirling's approximation**, we know that $f(n) \ge n \log_2 n$

• Comparative algorithms

- BubbleSort (swap elements)
- SelectionSort (selected smallest/largest)
- InsertionSort (insert on correct position)
- MergeSort (divide in two, sort halves, merge sorted parts)
- HeapSort (create heap with all elements, remove one by one)
- QuickSort (divide according to a pivot and sort recursively)

• Non Comparative Algorithms

- CountingSort (count number of elements of each type)
- RadixSort (sort according to "digits")

- To simplify, let's assume that the elements to sort are numbers
- Idea can be generalized to other data types
- Suppose we have n elements to sort, stored on an array v with indexes from 0 to n-1

CountingSort

• Key idea: count the amount of numbers of each type

CountingSort

You can check an animation at VisuAlgo

- Let k be the largest number
- This algorithm will take O(n + k)

• Key idea: sort digit by digit

A possible RadixSort (starting on the least significant digit) $bucket[10] \leftarrow array of lists of numbers (one per digit)$ For pos = 1 to max_number_digits do For i = 0 to n-1 do (for each number) Put v[i]in $bucket[digit_position_pos(v[i])]$ For i = 0 to 9 do (for each possible digit) While size(bucket[i]) > 0 do Take first number of bucket[i] and add it to v[]

You can check an animation at VisuAlgo

- Let k be the largest quantity of digits in a single number
- This algorithm will take $O(k \times n)$

Some sorting algorithms

There are many more!

Exchange sorts	Bubble sort · Cocktail sort · Odd-even sort · Comb sort · Gnome sort · Quicksort · Stooge sort · Bogosort
Selection sorts	Selection sort · Heapsort · Smoothsort · Cartesian tree sort · Tournament sort · Cycle sort
Insertion sorts	Insertion sort · Shellsort · Splaysort · Tree sort · Library sort · Patience sorting
Merge sorts	Merge sort · Cascade merge sort · Oscillating merge sort · Polyphase merge sort · Strand sort
Distribution sorts	American flag sort • Bead sort • Bucket sort • Burstsort • Counting sort • Pigeonhole sort • Proxmap sort • Radix sort • Flashsort
Concurrent sorts	Bitonic sorter · Batcher odd-even mergesort · Pairwise sorting network
Hybrid sorts	Block sort - Timsort - Introsort - Spreadsort - JSort
Other	Topological sorting · Pancake sorting · Spaghetti sort

(source of picture: http://en.wikipedia.org/wiki/Sorting_algorithm)

- There are **many** sorting algorithms
- The "best" algorithm depends on the use case
- It is possible to combine several algorithms (hybrid approaches)
 - Ex: RadixSort might have as internal step another algorithm, as long as it is a stable sort (keep initial order in case of a tie)
- In practice, on real implementations, this is what is done (to combine): (Note: the exact implementation depends on compiler and version)
 - Java: uses Timsort (MergeSort + InsertionSort)
 - C++ STL: uses IntroSort (QuickSort + HeapSort) + InsertionSort

Problem: finding repeated elements

Inp	ut								Input
9	21	27	38	34	53	19	38	43	1 3 5 5 6 9 9 9 10
51	1	9	10	39	50	6	26	44	10 13 14 16 17 19 19 20 20
5	32	16	20	50	22	41	30	39	21 22 22 26 26 27 27 30 30
3	32	30	31	40	50	56	13	19	30 30 31 31 32 32 32 32 32 32
46	32	56	26	20	57	32	27	31	34 34 34 37 38 38 38 39 39
17	32	54	61	34	22	14	54	9	40 41 43 44 44 46 50 50 50
34	30	38	10	30	5	37	61	44	51 53 54 54 56 56 57 61 61

Equal elements are together when sorted!

Problem: find the frequency of elements

(equal elements are in consecutive positions after being sorted)

Problem: find **closest** pair of points (sort and see differences between consecutive numbers)

Problem: find the k-th number

(sort and seek position k)

Problem: sort o **top**-*k* (sort and seek first *k* numbers)

Problem: set union (sort and "merge" - like in mergesort)

Problem: ser intersection

(sort and traverse - similar to mergesort)

Problem: Finding anagrams

(words/sets of words that use the same letters)

Exemples:

- amor, ramo, mora and Roma [amor]
- Ricardo, criador and corrida [acdiorr]
- algorithm and logarithm [aghilmort]
- Tom Marvolo Riddle and I am Lord Voldemort [addeillmmooorrtv]
- Clint Eastwood and Old West action [acdeilnoosttw]

Problem: Searching for elements in sorted arrays

Binary search - $\Theta(\log n)$

Binary search A definition

Binary search on a sorted array (bsearch)

Input:

- an array v[] of n sorted number in increasing order
- a key to look for

Output:

- Position of key in array v[] (if it exists)
- -1 (if it is not found)

Example:

 $v = \begin{array}{|c|c|c|c|c|} \hline 2 & 5 & 6 & 8 & 9 & 12 \\ \hline & & \\ bsearch(v, 2) = 0 \\ bsearch(v, 4) = -1 \\ bsearch(v, 8) = 3 \\ bsearch(v, 14) = -1 \\ \hline \end{array}$

Binary search

$$v = 2 5 6 8 9 12$$
 bsearch(v, 0, 5, 8)

$$low = 0, high = 5, middle = 2$$

Since $8 > v[2]$: $low = 3, high = 5, middle = 4$
Since $8 < v[4]$: $low = 3, high = 3, middle = 3$
Since $8 = v[3]$: return(3)

Pedro Ribeiro (DCC/FCUP)

We can generalize **binary search** to cases where we have something like:

no no no r	o yes yes	yes yes	yes yes
------------	-----------	---------	---------

We want to find the **first yes** (or in some cases the **last no**)

Example:

• Searching for the least number bigger or equal than a certain *key* (lower_bound of C++)

	2	5	6	8	9	12	
	no	no	no	yes	yes	yes	
$\overline{\text{lower}_{bound}(7)} \rightarrow \text{condition: } v[i] \ge 7$							

[the smallest number bigger than 7 in this array is 8]

Binary Search

A generalization

$$\mathsf{v} = \begin{array}{|c|c|c|c|c|c|c|} \hline 2 & 5 & 6 & 8 & 9 & 12 \\ \hline \mathsf{no} & \mathsf{no} & \mathsf{no} & \mathsf{yes} & \mathsf{yes} & \mathsf{yes} \\ \hline \end{array}$$

bsearch(0, 5, \geq 7)

low = 0, high = 5, middle = 2Since $v[2] \ge 7$ is nao: low = 3, high = 5, middle = 4Since $v[4] \ge 7$ is yes: low = 3, high = 4, middle = 3Since $v[3] \ge 7$ is yes: low = 3, high = 3 (exits while) Since $v[3] \ge 7$ is yes: return(3) Pedro Ribeiro (DCC/FCUP) Sorting and variants

Balanced partition problem

Input: a sequence $\langle a_1, \ldots, a_n \rangle$ of *n* positive integers e an integer *k* **Output:** a way of partitioning the sequence into *k* contiguous subsequences, minimizing the sum of the biggest partition

```
Example:

7 9 3 8 2 2 9 4 3 4 7 9 9 k = 4 (4 partitions)

7 9 3 8 2 2 9 4 3 4 7 9 9 \rightarrow 19 + 12 + 16 + 29

7 9 3 8 2 2 9 4 3 4 7 9 9 \rightarrow 27 + 13 + 18 + 18

7 9 3 8 2 2 9 4 3 4 7 9 9 \rightarrow 16 + 15 + 20 + 25

...
```

Which one is the best (with the smallest maximum)?

- Exhaustive search would have to test all possible partitions! (can you estimate how many are they?)
- This problem could also be solved with dynamic programming, but that is for another class
- Here we will discuss how to solve it with... binary search!

Let's think on a "similar" problem: It is possible to create a partition where the sum of the largest partition is $\leq X$?

"Greedy" idea: keep extending the partition while the sum is < X!Examples:

```
Let X = 21 and k = 4
7938229434799
7938229434799
7 9 3 8 2 2 9 4 3 4 7 9 9
7 9 3 8 2 2 9 4 3 4 7 9 9 - OK!
Seja X = 20 and k = 4
7938229434799
7938229434799
7 9 3 8 2 2 9 4 3 4 7 9 9
7 9 3 8 2 2 9 4 3 4 7 9 9 - Wrong! We would need more than 4 partitions
```

It is possible to create a partition where the sum of the largest partition is $\leq X$?

If we think about the X for which the answer is yes, we have a search space where:

 no
 no
 no
 yes
 yes

We can apply binary search on X!

- Let *s* be the sum of all numbers
- X will be at least 1 (or in alternative the largest a_i)
- X will be at most s
- Verify answer for a certain $X: \Theta(n)$
- Binary search on X: $\Theta(\log s)$
- Global time: $\Theta(n \log s)$

Example: 7 9 3 8 2 2 9 4 3 4 7 9 9 k = 4 (4 partitions)

low = 1, high = 76, middle = $38 \rightarrow \text{possible}(38)$? Yes low = 1, high = 38, middle = $19 \rightarrow \text{possible}(19)$? No low = 20, high = 38, middle = $29 \rightarrow \text{possible}(29)$? Yes low = 20, high = 29, middle = $24 \rightarrow \text{possible}(24)$? Yes low = 20, high = 24, middle = $22 \rightarrow \text{possible}(22)$? Yes low = 20, high = 22, middle = $21 \rightarrow \text{possible}(21)$? Yes low = 20, high = 21, middle = $20 \rightarrow \text{possible}(20)$? No low = 21, high = 21

Exits the cycle and verifies that **possible(21)** is true, and 21 is the answer!

```
7 9 3|8 2 2 9|4 3 4 7|9 9 \rightarrow 19 + 21 + 18 + 18
```

2nd Example: 7 9 3 8 2 2 9 4 3 4 7 9 9 k = 3 (3 partitions)

low = 1, high = 76, middle = $38 \rightarrow \text{possible}(38)$?Sim low = 1, high = 38, middle = $19 \rightarrow \text{possible}(19)$? Yes low = 20, high = 38, middle = $29 \rightarrow \text{possible}(29)$? Yes low = 20, high = 29, middle = $24 \rightarrow \text{possible}(24)$? No low = 25, high = 29, middle = $27 \rightarrow \text{possible}(27)$? Yes low = 25, high = 27, middle = $26 \rightarrow \text{possible}(26)$? No low = 27, high = 27

Exits the cycle and verifies that **possible(27)** is true, and 27 is the answer!

```
7 9 3 8|2 2 9 4 3 4|7 9 9 \rightarrow 27 + 24 + 25
```

A similar idea do binary search can be used to find the root of a function

- Let f(n) be a **continuous** function defined on an interval [a, b] and where f(a) and f(b) have **opposite signs**
- f(n) must have **at least one root** on the interval [a, b]
- Starting in [*a*, *b*], look at **middle point** *c* and according to *f*(*c*) **reduce the interval** to [*a*, *c*] or [*c*, *b*]

Bisection Method

Pedro Ribeiro (DCC/FCUP)

Sorting and variants

2020/2021 25/29

Bisection Method

Example: $f(x) = x^3 - x - 2$ (1) Find *a* and *b* with opposite signals: $f(1) = 1^3 - 1 - 2 = -2$ $f(2) = 2^3 - 2 - 2 = 4$ (2) Make successive divisions:

#	а	b	с	f(c)
1	1.0	2.0	1.5	-0.125
2	1.5	2.0	1.75	1.6093750
3	1.5	1.75	1.625	0.6660156
4	1.5	1.625	1.5625	0.2521973
5	1.5	1.5625	1.5312500	0.0591125
6	1.5	1.5312500	1.5156250	-0.0340538
7	1.5156250	1.5312500	1.5234375	0.0122504
8	1.5156250	1.5234375	1.5195313	-0.0109712
9	1.5195313	1.5234375	1.5214844	0.0006222
10	1.5195313	1.5214844	1.5205078	-0.0051789
11	1.5205078	1.5214844	1.5209961	-0.0022794
12	1.5209961	1.5214844	1.5212402	-0.0008289
13	1.5212402	1.5214844	1.5213623	-0.0001034

Pedro Ribeiro (DCC/FCUP)

- Stop when you have the **required precision** or
- Stop when you reach your desired number of iterations
- There are other methods that converge more rapidly
 - Newton's method
 - Secant method

Ternary Search

Another similar idea can be used to find the **maximum** (or minimum) of an **unimodal** function (*that is, with a "single peak"*)

- Let f(n) be a **unimodal** function defined on an interval [a, b]
- Take any two points m_1 and m_2 such that $a < m_1 < m_2 < b$. Then:
 - $f(m_1) < f(m_2)$ then max cannot be in $[a, m_1]$. Continue in $[m_1, b]$
 - $f(m_1) > f(m_2)$ then max cannot be in $[m_2, b]$. Continue in $[a, m_2]$
 - $f(m_1) = f(m_2)$ then max should be in $[m_1, m_2]$.

- We can choose m_1 and m_2 to be 1/3 and 2/3 of [a, b]
- With each iteration we will eliminate at least 1/3 of the search space! Runtime: $T(n) = T(2n/3) + \Theta(1) = \Theta(\log n)$

- Binary search is very useful and flexible
- It can be used on a vast number of applications
- There are many other **variations** on it (besides the ones we already described)
 - Interpolated (binary) search (instead of going into the middle, estimate position)
 - Exponential (binary) search
 (Start by fixing interval in low = 2^a and high = 2^{a+1})