## Sorting and variants

Pedro Ribeiro

DCC/FCUP

2020/2021


## Sorting

- Sorting is an initial step to many other algorithms
- Ex: finding the median
- When you don't know what to do... sort!
- Ex: finding repeated elements is much easier after sorting
- Different sorting types might be more adequate to different scenarios
- Ex: to less general cases, there might be $\mathcal{O}(n)$ algorithms
- It is important to know the sorting functions available on your language libraries
- Ex: qsort (C), STL sort (C++), Arrays.sort (Java)


## About sorting complexity

- What is the least possible complexity for a general sorting algorithm? $\Theta(\mathrm{n} \log \mathrm{n}) \ldots$ but only on the comparative model.
- Comparative model: to distinguish elements I can only use comparisons ( $<,>,=, \geq, \leq$ ). How many comparisons are needed?
- A sketch of the proof that comparative sorting is $\Omega(n \log n)$
- Input of size $n$ has $n$ ! possible permutations (only one is the desired ordering)
- A comparison has two possible results (it can distinguish between 2 different permutations)
- Let $f(n)$ be the function that measures the number of comparisons
- $f(n)$ comparisons: can distinguish between $2^{f(n)}$ permutations
- We need that $2^{f(n)} \geq n!$, that is, $f(n) \geq \log _{2}(n!)$
- Using Stirling's approximation, we know that $f(n) \geq n \log _{2} n$


## Some sorting algorithms

- Comparative algorithms
- BubbleSort (swap elements)
- SelectionSort (selected smallest/largest)
- InsertionSort (insert on correct position)
- MergeSort (divide in two, sort halves, merge sorted parts)
- HeapSort (create heap with all elements, remove one by one)
- QuickSort (divide according to a pivot and sort recursively)
- Non Comparative Algorithms
- CountingSort (count number of elements of each type)
- RadixSort (sort according to "digits")


## Non Comparative Algorithms

- To simplify, let's assume that the elements to sort are numbers
- Idea can be generalized to other data types
- Suppose we have $n$ elements to sort, stored on an array $v$ with indexes from 0 to $n-1$


## CountingSort

- Key idea: count the amount of numbers of each type


## CountingSort

```
count[max_size] \leftarrow frequencies array
For i = 0 to n-1 do
    count [v[i]]++ (one more v[i] element)
i = 0
```

For $j=$ min_size to max_size do
While count $[j]>0$ do
$v[i]=j$ (put element on array)
count $[j]$ - - (one less element of that size)
$i++$ (increments first free position on the array)

You can check an animation at VisuAlgo

- Let $k$ be the largest number
- This algorithm will take $\mathrm{O}(\mathrm{n}+\mathrm{k})$


## RadixSort

- Key idea: sort digit by digit

A possible RadixSort (starting on the least significant digit) bucket[10] $\leftarrow$ array of lists of numbers (one per digit)
For pos $=1$ to max_number_digits do
For $i=0$ to $n-1$ do (for each number)
Put v[i]in bucket[digit_position_pos(v[i])]
For $i=0$ to 9 do (for each possible digit)
While size $($ bucket $[i])>0$ do
Take first number of bucket[i] and add it to $v[]$
You can check an animation at VisuAlgo

- Let $k$ be the largest quantity of digits in a single number
- This algorithm will take $O(k \times n)$


## Some sorting algorithms

## There are many more!

| Exchange sorts | Bubble sort - Cocktail sort - Odd-even sort - Comb sort - Gnome sort - Quicksort - Stooge sort - Bogosort |
| :---: | :---: |
| Selection sorts | Selection sort - Heapsort - Smoothsort - Cartesian tree sort - Tournament sort - Cycle sort |
| Insertion sorts | Insertion sort - Shellsort - Splaysort - Tree sort - Library sort - Patience sorting |
| Merge sorts | Merge sort - Cascade merge sort - Oscillating merge sort - Polyphase merge sort - Strand sort |
| Distribution sorts | American flag sort - Bead sort - Bucket sort - Burstsort - Counting sort - Pigeonhole sort - Proxmap sort - Radix sort - Flashsort |
| Concurrent sorts | Bitonic sorter - Batcher odd-even mergesort - Pairwise sorting network |
| Hybrid sorts | Block sort - Timsort - Introsort - Spreadsort - JSort |
| Other | Topological sorting - Pancake sorting - Spaghetti sort |

(source of picture: http://en.wikipedia.org/wiki/Sorting_algorithm)

## Overview

- There are many sorting algorithms
- The "best" algorithm depends on the use case
- It is possible to combine several algorithms (hybrid approaches)
- Ex: RadixSort might have as internal step another algorithm, as long as it is a stable sort (keep initial order in case of a tie)
- In practice, on real implementations, this is what is done (to combine):
(Note: the exact implementation depends on compiler and version)
- Java: uses Timsort (MergeSort + InsertionSort)
- C++ STL: uses IntroSort (QuickSort + HeapSort) + InsertionSort


## Example use cases of sorting

## Repetitions

Problem: finding repeated elements

## Input

| 9 | 21 | 27 | 38 | 34 | 53 | 19 | 38 | 43 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 51 | 1 | 9 | 10 | 39 | 50 | 6 | 26 | 44 |
| 5 | 32 | 16 | 20 | 50 | 22 | 41 | 30 | 39 |
| 3 | 32 | 30 | 31 | 40 | 50 | 56 | 13 | 19 |
| 46 | 32 | 56 | 26 | 20 | 57 | 32 | 27 | 31 |
| 17 | 32 | 54 | 61 | 34 | 22 | 14 | 54 | 9 |
| 34 | 30 | 38 | 10 | 30 | 5 | 37 | 61 | 44 |

## Input

| $1 \mid$ | $3 \mid$ | 5 | $5 \mid$ | $6 \mid$ | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | 9 | $9 \mid 10$ |
| :--- |
| $10\|13\| 14\|16\| 17 \mid 19$ | $19|20 \quad 20|$

10|13|14|16|17|19 19|20 $20 \mid$
21|22 22|26 26|27 27|30 30
30 30|31 31|32 323232 32|
3434 34|37|38 38 38|39 39|
$40|41| 43|4444| 46|505050|$
51|53|54 54|56 56|57|61 61

Equal elements are together when sorted!

## Example use cases of sorting

## Others

Problem: find the frequency of elements
(equal elements are in consecutive positions after being sorted)
Problem: find closest pair of points (sort and see differences between consecutive numbers )

Problem: find the $k$-th number (sort and seek position $k$ )

Problem: sort o top- $k$ (sort and seek first $k$ numbers)

Problem: set union
(sort and "merge" - like in mergesort)
Problem: ser intersection
(sort and traverse - similar to mergesort)

## Example use cases of sorting

## Anagrams

Problem: Finding anagrams
(words/sets of words that use the same letters)

Exemples:

- amor, ramo, mora and Roma [amor]
- Ricardo, criador and corrida [acdiorr]
- algorithm and logarithm [aghilmort]
- Tom Marvolo Riddle and I am Lord Voldemort [addeillmmooorrtv]
- Clint Eastwood and Old West action [acdeilnoosttw]


## Example use cases of sorting

## Search

Problem: Searching for elements in sorted arrays

## Binary search $-\Theta(\log n)$

## Binary search

## A definition

## Binary search on a sorted array (bsearch)

## Input:

- an array v[] of n sorted number in increasing order
- a key to look for


## Output:

- Position of key in array $v$ [] (if it exists)
-     - $\mathbf{1}$ (if it is not found)

Example:

$v=$| 2 | 5 | 6 | 8 | 9 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\operatorname{bsearch}(\mathrm{v}, 2)=0$
$\operatorname{bsearch}(\mathrm{v}, 4)=-1$
bsearch $(\mathrm{v}, 8)=3$
bsearch $(\mathrm{v}, 14)=-1$
Pedro Ribeiro (DCC/FCUP)

## Binary search

## Algorithm

## Binary search on a sorted array

 bsearch(v, low, high, key)While (low $\leq$ high ) do

$$
\text { middle }=\text { low }+(\text { high }- \text { low }) / 2
$$

If (key $==v[$ middle]) return(middle)
Else If (key $<v$ [middle]) high $=$ middle -1
Else
low $=$ middle +1
return(-1)

$\mathbf{v}=$| 2 | 5 | 6 | 8 | 9 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad$ bsearch $(\mathbf{v}, \mathbf{0}, \mathbf{5}, \mathbf{8})$

low $=0$, high $=5$, middle $=2$
Since $8>v[2]$ : low $=3$, high $=5$, middle $=4$
Since $8<v[4]$ : low $=3$, high $=3$, middle $=3$
Since $8=v[3]:$ return(3)

## Binary Search

## A generalization

We can generalize binary search to cases where we have something like:

| no | no | no | no | no | yes | yes | yes | yes | yes | yes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

We want to find the first yes (or in some cases the last no)

Example:

- Searching for the least number bigger or equal than a certain key (lower_bound of $\mathrm{C}++$ )

| 2 | 5 | 6 | 8 | 9 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| no | no | no | yes | yes | yes |

lower_bound $(7) \rightarrow$ condition: $v[i]>=7$ [the smallest number bigger than 7 in this array is 8 ]

## Binary Search

## A generalization

Binary for smallest $k$ such that condition(k) is "yes" bsearch(low, high, condition)
While (low < high ) do

$$
\text { middle }=\text { low }+(\text { high }- \text { low }) / 2
$$

If (condition(middle) $==$ yes)) high $=$ middle Else low $=$ middle +1
If (condition(low) $==$ no) return(-1) return(low)

$v=$| 2 | 5 | 6 | 8 | 9 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| no | no | no | yes | yes | yes |

low $=0$, high $=5$, middle $=2$
Since $v[2] \geq 7$ is não: low $=3$, high $=5$, middle $=4$
Since $v[4] \geq 7$ is yes: low $=3$, high $=4$, middle $=3$
Since $v[3] \geq 7$ is yes: low $=3$, high $=3$ (exits while)
Since $v[3] \geq 7$ is yes: return(3)

## Binary Search

## A different example - Balanced Partition

## Balanced partition problem

Input: a sequence $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ of $n$ positive integers e an integer $k$ Output: a way of partitioning the sequence into $k$ contiguous subsequences, minimizing the sum of the biggest partition

Example:
$7938229434799 \quad k=4$ (4 partitions)
$793|822| 943 \mid 4799 \rightarrow 19+12+16+29$
$7938|229| 4347 \mid 99 \rightarrow 27+13+18+18$
$79|3822| 9434 \mid 799 \rightarrow 16+15+20+25$

Which one is the best (with the smallest maximum)?

## Binary Search

## A different example - Balanced Partition

- Exhaustive search would have to test all possible partitions! (can you estimate how many are they?)
- This problem could also be solved with dynamic programming, but that is for another class
- Here we will discuss how to solve it with... binary search!


## Binary Search

## A different example - Balanced Partition

Let's think on a "similar" problem: It is possible to create a partition where the sum of the largest partition is $\leq X$ ?
"Greedy" idea: keep extending the partition while the sum is $<X$ !
Examples:
Let $X=21$ and $k=4$
$793 \mid 8229434799$
$793|8229| 434799$
$793|8229| 4347 \mid 99$
$793|8229| 4347 \mid 99$ - OK!
Seja $X=20$ and $k=4$
$793 \mid 8229434799$
$793|822| 9434799$
79 3|8 $22|9434| 799$
$793|822| 9434|79| 9$ - Wrong! We would need more than 4 partitions

## Binary Search

## A different example - Balanced Partition

It is possible to create a partition where the sum of the largest partition is $\leq X$ ?

If we think about the $X$ for which the answer is yes, we have a search space where:

| no | no | no... | no | no | yes | yes | yes | $\ldots$ | yes | yes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

We can apply binary search on $\mathbf{X}$ !

- Let $s$ be the sum of all numbers
- $X$ will be at least 1 (or in alternative the largest $a_{i}$ )
- $X$ will be at most $s$
- Verify answer for a certain $X: \Theta(n)$
- Binary search on $X: \Theta(\log s)$
- Global time: $\Theta(n \log s)$


## Binary Search

## A different example - Balanced Partition

Example: $7938229434799 \quad k=4$ (4 partitions)
low $=1$, high $=76$, middle $=38 \rightarrow$ possible(38)? Yes
low $=1$, high $=38$, middle $=19 \rightarrow$ possible(19)? No
low $=20$, high $=38$, middle $=29 \rightarrow$ possible(29)? Yes
low $=20$, high $=29$, middle $=24 \rightarrow$ possible(24)? Yes
low $=20$, high $=24$, middle $=22 \rightarrow$ possible(22)? Yes
low $=20$, high $=22$, middle $=21 \rightarrow$ possible(21)? Yes
low $=20$, high $=21$, middle $=20 \rightarrow$ possible(20)? No
low $=21$, high $=21$
Exits the cycle and verifies that possible(21) is true, and 21 is the answer!
$793|8229| 4347 \mid 99 \rightarrow 19+21+18+18$

## Binary Search

## A different example - Balanced Partition

2nd Example: $7938229434799 \quad k=3$ (3 partitions)
low $=1$, high $=76$, middle $=38 \rightarrow$ possible(38)?Sim
low $=1$, high $=38$, middle $=19 \rightarrow$ possible(19)? Yes
low $=20$, high $=38$, middle $=29 \rightarrow$ possible(29)? Yes
low $=20$, high $=29$, middle $=24 \rightarrow$ possible(24)? No
low $=25$, high $=29$, middle $=27 \rightarrow$ possible(27)? Yes
low $=25$, high $=27$, middle $=26 \rightarrow$ possible(26)? No
low $=27$, high $=27$
Exits the cycle and verifies that possible(27) is true, and 27 is the answer!
$7938|229434| 799 \rightarrow 27+24+25$

## Bisection Method

A similar idea do binary search can be used to find the root of a function

- Let $f(n)$ be a continuous function defined on an interval $[\mathrm{a}, \mathrm{b}]$ and where $f(a)$ and $f(b)$ have opposite signs
- $f(n)$ must have at least one root on the interval $[a, b]$
- Starting in $[a, b]$, look at middle point $c$ and according to $f(c)$ reduce the interval to $[a, c]$ or $[c, b]$


## Bisection Method


(image: Wikipedia)

## Bisection Method

Example: $f(x)=x^{3}-x-2$
(1) Find $a$ and $b$ with opposite signals:
$f(1)=1^{3}-1-2=-2 \quad f(2)=2^{3}-2-2=4$
(2) Make successive divisions:

| $\#$ | $\mathbf{a}$ | b | $\mathbf{c}$ | $f(\mathrm{c})$ |
| ---: | :--- | :--- | :--- | ---: |
| 1 | 1.0 | 2.0 | 1.5 | -0.125 |
| 2 | 1.5 | 2.0 | 1.75 | 1.6093750 |
| 3 | 1.5 | 1.75 | 1.625 | 0.6660156 |
| 4 | 1.5 | 1.625 | 1.5625 | 0.2521973 |
| 5 | 1.5 | 1.5625 | 1.5312500 | 0.0591125 |
| 6 | 1.5 | 1.5312500 | 1.5156250 | -0.0340538 |
| 7 | 1.5156250 | 1.5312500 | 1.5234375 | 0.0122504 |
| 8 | 1.5156250 | 1.5234375 | 1.5195313 | -0.0109712 |
| 9 | 1.5195313 | 1.5234375 | 1.5214844 | 0.0006222 |
| 10 | 1.5195313 | 1.5214844 | 1.5205078 | -0.0051789 |
| 11 | 1.5205078 | 1.5214844 | 1.5209961 | -0.0022794 |
| 12 | 1.5209961 | 1.5214844 | 1.5212402 | -0.0008289 |
| 13 | 1.5212402 | 1.5214844 | 1.5213623 | -0.0001034 |

## Método da Bisseção

- Stop when you have the required precision or
- Stop when you reach your desired number of iterations
- There are other methods that converge more rapidly
- Newton's method
- Secant method


## Ternary Search

Another similar idea can be used to find the maximum (or minimum) of an unimodal function (that is, with a "single peak")

- Let $f(n)$ be a unimodal function defined on an interval [a, b]
- Take any two points $m_{1}$ and $m_{2}$ such that $a<m_{1}<m_{2}<b$. Then:
- $f\left(m_{1}\right)<f\left(m_{2}\right)$ then max cannot be in $\left[a, m_{1}\right]$. Continue in $\left[m_{1}, b\right]$
- $f\left(m_{1}\right)>f\left(m_{2}\right)$ then max cannot be in $\left[m_{2}, b\right]$. Continue in [a, $\left.m_{2}\right]$
- $f\left(m_{1}\right)=f\left(m_{2}\right)$ then max should be in $\left[m_{1}, m_{2}\right]$.


- We can choose $m_{1}$ and $m 2$ to be $1 / 3$ and $2 / 3$ of $[a, b]$
- With each iteration we will eliminate at least $1 / 3$ of the search space!

Runtime: $T(n)=T(2 n / 3)+\Theta(1)=\Theta(\log n)$

## Binary Search

- Binary search is very useful and flexible
- It can be used on a vast number of applications
- There are many other variations on it (besides the ones we already described)
- Interpolated (binary) search (instead of going into the middle, estimate position)
- Exponential (binary) search (Start by fixing interval in low $=2^{a}$ and high $=2^{a+1}$ )

