
Sorting and variants

Pedro Ribeiro

DCC/FCUP

2020/2021

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 1 / 29

Sorting

Sorting is an initial step to many other algorithms
I Ex: finding the median

When you don’t know what to do... sort!
I Ex: finding repeated elements is much easier after sorting

Different sorting types might be more adequate to different
scenarios

I Ex: to less general cases, there might be O(n) algorithms

It is important to know the sorting functions available on your
language libraries

I Ex: qsort (C), STL sort (C++), Arrays.sort (Java)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 2 / 29

About sorting complexity

What is the least possible complexity for a general sorting algorithm?
Θ(n log n)... but only on the comparative model.

I Comparative model: to distinguish elements I can only use
comparisons (<,>,=,≥,≤). How many comparisons are needed?

A sketch of the proof that comparative sorting is Ω(n log n)
I Input of size n has n! possible permutations

(only one is the desired ordering)

I A comparison has two possible results
(it can distinguish between 2 different permutations)

I Let f (n) be the function that measures the number of comparisons

I f (n) comparisons: can distinguish between 2f (n) permutations

I We need that 2f (n) ≥ n!, that is, f(n) ≥ log2(n!)

I Using Stirling’s approximation, we know that f(n) ≥ n log2 n

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 3 / 29

Some sorting algorithms

Comparative algorithms
I BubbleSort (swap elements)
I SelectionSort (selected smallest/largest)
I InsertionSort (insert on correct position)
I MergeSort (divide in two, sort halves, merge sorted parts)
I HeapSort (create heap with all elements, remove one by one)
I QuickSort (divide according to a pivot and sort recursively)

Non Comparative Algorithms
I CountingSort (count number of elements of each type)
I RadixSort (sort according to ”digits”)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 4 / 29

Non Comparative Algorithms

To simplify, let’s assume that the elements to sort are numbers

Idea can be generalized to other data types

Suppose we have n elements to sort, stored on an array v with
indexes from 0 to n − 1

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 5 / 29

CountingSort

Key idea: count the amount of numbers of each type

CountingSort

count[max size] ← frequencies array

For i = 0 to n − 1 do
count[v [i]] + + (one more v[i] element)

i = 0
For j = min size to max size do

While count[j] > 0 do
v [i] = j (put element on array)

count[j]−− (one less element of that size)

i + + (increments first free position on the array)

You can check an animation at VisuAlgo

Let k be the largest number

This algorithm will take O(n + k)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 6 / 29

https://visualgo.net/en/sorting

RadixSort

Key idea: sort digit by digit

A possible RadixSort (starting on the least significant digit)

bucket[10] ← array of lists of numbers (one per digit)

For pos = 1 to max number digits do
For i = 0 to n − 1 do (for each number)

Put v [i]in bucket[digit position pos(v [i])]
For i = 0 to 9 do (for each possible digit)

While size(bucket[i]) > 0 do
Take first number of bucket[i] and add it to v []

You can check an animation at VisuAlgo

Let k be the largest quantity of digits in a single number

This algorithm will take O(k× n)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 7 / 29

https://visualgo.net/en/sorting

Some sorting algorithms
There are many more!

(source of picture: http://en.wikipedia.org/wiki/Sorting algorithm)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 8 / 29

http://en.wikipedia.org/wiki/Sorting_algorithm

Overview

There are many sorting algorithms

The ”best” algorithm depends on the use case

It is possible to combine several algorithms (hybrid approaches)
I Ex: RadixSort might have as internal step another algorithm, as long

as it is a stable sort (keep initial order in case of a tie)

In practice, on real implementations, this is what is done (to
combine):
(Note: the exact implementation depends on compiler and version)

I Java: uses Timsort (MergeSort + InsertionSort)
I C++ STL: uses IntroSort (QuickSort + HeapSort) + InsertionSort

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 9 / 29

Example use cases of sorting
Repetitions

Problem: finding repeated elements

Input

9 21 27 38 34 53 19 38 43

51 1 9 10 39 50 6 26 44

5 32 16 20 50 22 41 30 39

3 32 30 31 40 50 56 13 19

46 32 56 26 20 57 32 27 31

17 32 54 61 34 22 14 54 9

34 30 38 10 30 5 37 61 44

Input

1| 3| 5 5| 6| 9 9 9|10

10|13|14|16|17|19 19|20 20|

21|22 22|26 26|27 27|30 30

30 30|31 31|32 32 32 32 32|

34 34 34|37|38 38 38|39 39|

40|41|43|44 44|46|50 50 50|

51|53|54 54|56 56|57|61 61

Equal elements are together when sorted!

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 10 / 29

Example use cases of sorting
Others

Problem: find the frequency of elements
(equal elements are in consecutive positions after being sorted)

Problem: find closest pair of points
(sort and see differences between consecutive numbers)

Problem: find the k-th number
(sort and seek position k)

Problem: sort o top-k
(sort and seek first k numbers)

Problem: set union
(sort and ”merge” - like in mergesort)

Problem: ser intersection
(sort and traverse - similar to mergesort)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 11 / 29

Example use cases of sorting
Anagrams

Problem: Finding anagrams
(words/sets of words that use the same letters)

Exemples:

amor, ramo, mora and Roma [amor]

Ricardo, criador and corrida [acdiorr]

algorithm and logarithm [aghilmort]

Tom Marvolo Riddle and I am Lord Voldemort [addeillmmooorrtv]

Clint Eastwood and Old West action [acdeilnoosttw]

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 12 / 29

Example use cases of sorting
Search

Problem: Searching for elements in sorted arrays

Binary search - Θ(log n)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 13 / 29

Binary search
A definition

Binary search on a sorted array (bsearch)

Input:

an array v[] of n sorted number in increasing order

a key to look for

Output:

Position of key in array v [] (if it exists)

-1 (if it is not found)

Example:
v = 2 5 6 8 9 12

bsearch(v, 2) = 0
bsearch(v, 4) = -1
bsearch(v, 8) = 3
bsearch(v, 14) = -1

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 14 / 29

Binary search
Algorithm

Binary search on a sorted array

bsearch(v, low, high, key)

While (low ≤ high) do
middle = low + (high − low)/2
If (key == v [middle]) return(middle)
Else If (key < v [middle]) high = middle − 1
Else low = middle + 1

return(-1)

v = 2 5 6 8 9 12 bsearch(v, 0, 5, 8)

low = 0, high = 5,middle = 2
Since 8 > v [2]: low = 3, high = 5,middle = 4
Since 8 < v [4]: low = 3, high = 3,middle = 3
Since 8 = v [3]: return(3)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 15 / 29

Binary Search
A generalization

We can generalize binary search to cases where we have something like:

no no no no no yes yes yes yes yes yes

We want to find the first yes (or in some cases the last no)

Example:

Searching for the least number bigger or equal than a certain key
(lower bound of C++)

2 5 6 8 9 12

no no no yes yes yes

lower bound(7) → condition: v [i] >= 7
[the smallest number bigger than 7 in this array is 8]

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 16 / 29

Binary Search
A generalization

Binary for smallest k such that condition(k) is ”yes”

bsearch(low, high, condition)

While (low < high) do
middle = low + (high − low)/2
If (condition(middle) == yes)) high = middle
Else low = middle + 1

If (condition(low) == no) return(-1)
return(low)

v =
2 5 6 8 9 12

no no no yes yes yes
bsearch(0, 5, ≥ 7)

low = 0, high = 5,middle = 2
Since v [2] ≥ 7 is não: low = 3, high = 5,middle = 4
Since v [4] ≥ 7 is yes: low = 3, high = 4,middle = 3
Since v [3] ≥ 7 is yes: low = 3, high = 3 (exits while)
Since v [3] ≥ 7 is yes: return(3)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 17 / 29

Binary Search
A different example - Balanced Partition

Balanced partition problem

Input: a sequence 〈a1, . . . , an〉 of n positive integers e an integer k
Output: a way of partitioning the sequence into k contiguous
subsequences, minimizing the sum of the biggest partition

Example:
7 9 3 8 2 2 9 4 3 4 7 9 9 k = 4 (4 partitions)

7 9 3|8 2 2|9 4 3|4 7 9 9 → 19 + 12 + 16 + 29
7 9 3 8|2 2 9|4 3 4 7|9 9 → 27 + 13 + 18 + 18
7 9|3 8 2 2|9 4 3 4|7 9 9 → 16 + 15 + 20 + 25
...

Which one is the best (with the smallest maximum)?

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 18 / 29

Binary Search
A different example - Balanced Partition

Exhaustive search would have to test all possible partitions! (can you
estimate how many are they?)

This problem could also be solved with dynamic programming, but
that is for another class

Here we will discuss how to solve it with... binary search!

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 19 / 29

Binary Search
A different example - Balanced Partition

Let’s think on a ”similar” problem: It is possible to create a partition
where the sum of the largest partition is ≤ X?

”Greedy” idea: keep extending the partition while the sum is < X !

Examples:

Let X = 21 and k = 4
7 9 3|8 2 2 9 4 3 4 7 9 9
7 9 3|8 2 2 9|4 3 4 7 9 9
7 9 3|8 2 2 9|4 3 4 7|9 9
7 9 3|8 2 2 9|4 3 4 7|9 9 - OK!

Seja X = 20 and k = 4
7 9 3|8 2 2 9 4 3 4 7 9 9
7 9 3|8 2 2|9 4 3 4 7 9 9
7 9 3|8 2 2|9 4 3 4|7 9 9
7 9 3|8 2 2|9 4 3 4|7 9|9 - Wrong! We would need more than 4 partitions

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 20 / 29

Binary Search
A different example - Balanced Partition

It is possible to create a partition where the sum of the largest
partition is ≤ X?

If we think about the X for which the answer is yes, we have a search
space where:

no no no... no no yes yes yes ... yes yes

We can apply binary search on X!

Let s be the sum of all numbers

X will be at least 1 (or in alternative the largest ai)

X will be at most s

Verify answer for a certain X : Θ(n)

Binary search on X : Θ(log s)

Global time: Θ(n log s)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 21 / 29

Binary Search
A different example - Balanced Partition

Example: 7 9 3 8 2 2 9 4 3 4 7 9 9 k = 4 (4 partitions)

low = 1, high = 76, middle = 38 → possible(38)? Yes
low = 1, high = 38, middle = 19 → possible(19)? No
low = 20, high = 38, middle = 29 → possible(29)? Yes
low = 20, high = 29, middle = 24 → possible(24)? Yes
low = 20, high = 24, middle = 22 → possible(22)? Yes
low = 20, high = 22, middle = 21 → possible(21)? Yes
low = 20, high = 21, middle = 20 → possible(20)? No
low = 21, high = 21

Exits the cycle and verifies that possible(21) is true, and 21 is the answer!

7 9 3|8 2 2 9|4 3 4 7|9 9 → 19 + 21 + 18 + 18

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 22 / 29

Binary Search
A different example - Balanced Partition

2nd Example: 7 9 3 8 2 2 9 4 3 4 7 9 9 k = 3 (3 partitions)

low = 1, high = 76, middle = 38 → possible(38)?Sim
low = 1, high = 38, middle = 19 → possible(19)? Yes
low = 20, high = 38, middle = 29 → possible(29)? Yes
low = 20, high = 29, middle = 24 → possible(24)? No
low = 25, high = 29, middle = 27 → possible(27)? Yes
low = 25, high = 27, middle = 26 → possible(26)? No
low = 27, high = 27

Exits the cycle and verifies that possible(27) is true, and 27 is the answer!

7 9 3 8|2 2 9 4 3 4|7 9 9 → 27 + 24 + 25

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 23 / 29

Bisection Method

A similar idea do binary search can be used to find the root of a function

Let f (n) be a continuous function defined on an interval [a, b] and
where f (a) and f (b) have opposite signs

f (n) must have at least one root on the interval [a, b]

Starting in [a, b], look at middle point c and according to f (c)
reduce the interval to [a, c] or [c , b]

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 24 / 29

Bisection Method

(image: Wikipedia)
Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 25 / 29

Bisection Method

Example: f(x) = x3 − x− 2
(1) Find a and b with opposite signals:
f (1) = 13 − 1− 2 = −2 f (2) = 23 − 2− 2 = 4
(2) Make successive divisions:

a b c f(c)
1 1.0 2.0 1.5 -0.125

2 1.5 2.0 1.75 1.6093750

3 1.5 1.75 1.625 0.6660156

4 1.5 1.625 1.5625 0.2521973

5 1.5 1.5625 1.5312500 0.0591125

6 1.5 1.5312500 1.5156250 -0.0340538

7 1.5156250 1.5312500 1.5234375 0.0122504

8 1.5156250 1.5234375 1.5195313 -0.0109712

9 1.5195313 1.5234375 1.5214844 0.0006222

10 1.5195313 1.5214844 1.5205078 -0.0051789

11 1.5205078 1.5214844 1.5209961 -0.0022794

12 1.5209961 1.5214844 1.5212402 -0.0008289

13 1.5212402 1.5214844 1.5213623 -0.0001034

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 26 / 29

Método da Bisseção

Stop when you have the required precision
or

Stop when you reach your desired number of iterations

There are other methods that converge more rapidly
I Newton’s method
I Secant method

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 27 / 29

Ternary Search

Another similar idea can be used to find the maximum (or minimum) of
an unimodal function (that is, with a ”single peak”)

Let f (n) be a unimodal function defined on an interval [a, b]
Take any two points m1 and m2 such that a < m1 < m2 < b. Then:

I f (m1) < f (m2) then max cannot be in [a,m1]. Continue in [m1, b]
I f (m1) > f (m2) then max cannot be in [m2, b]. Continue in [a,m2]
I f (m1) = f (m2) then max should be in [m1,m2].

We can choose m1 and m2 to be 1/3 and 2/3 of [a, b]

With each iteration we will eliminate at least 1/3 of the search space!
Runtime: T (n) = T (2n/3) + Θ(1) = Θ(log n)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 28 / 29

Binary Search

Binary search is very useful and flexible

It can be used on a vast number of applications

There are many other variations on it (besides the ones we already
described)

I Interpolated (binary) search
(instead of going into the middle, estimate position)

I Exponential (binary) search
(Start by fixing interval in low = 2a and high = 2a+1)

I ...

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2020/2021 29 / 29

