Self Adjusting Data Structures

Pedro Ribeiro

DCC/FCUP

2014/2015
What are self adjusting data structures?

- Data structures that can **rearrange** themselves **after operations** are committed to it.
- This is typically done in order to **improve efficiency** on future operations.
- The rearrangement can be **heuristic** in its nature and typically happens in **every operation** (even if it was only accessing an element).
- Some examples:
 - Self Organizing Lists
 - Self Adjusting Binary Search Trees
Traversing Linked Lists

- Consider a classic linked list with n elements:

 ![Linked List Diagram]

- Consider a **cost model** in which accessing the element in position i costs i (*traversing the list*)

- What is the average cost for accessing an element using a **static list**?

 - Intuitively, if the element to be searched is a "random" element in the list, our average cost is "roughly" $n/2$
Formalizing The Cost

- Let’s formalize a little bit more:
 - Let $p(i)$ be the probability of searching for element in positions i
 - On average, our cost will be:

 $$T_{avg} = 1 \times p(1) + 2 \times p(2) + 3 \times p(3) + \ldots + n \times p(n)$$

- Suppose that the probability is the same for every element: $1/n$.

 $$T(n) = 1/n + 2/n + 3/n + \ldots + n/n = (1 + 2 + 3 + \ldots + n)/n = (n+1)/2$$

- But what if the probability is not the same?
 - What if we typically access nodes at the front of the list?
 - What if we typically access nodes at the back of the list?
Let’s look at an example:

\[P(A) = 0.1 \quad P(B) = 0.1 \quad P(C) = 0.4 \quad P(D) = 0.1 \quad P(E) = 0.3 \]

\[T(n) = 1 \times 0.1 + 2 \times 0.1 + 3 \times 0.4 + 4 \times 0.1 + 5 \times 0.3 = 3.4 \]

If we know in advance this access pattern can we do better?

\[T(n) = 1 \times 0.4 + 2 \times 0.3 + 3 \times 0.1 + 4 \times 0.1 + 5 \times 0.1 = 2.2 \]

And what if we know the exact (non-static) search pattern?
Can you think of any strategies for improving if we do not know in advance what is the access pattern?

Intuition: bring items frequently accessed closer to the front

Three possible strategies (among others) after accessing an element:

- **Move to Front (MTF):** move element to the head of the list
- **Transpose (TR):** swap with previous element
- **Frequency Count (FC):** count and store the number of accesses to each element. Order by this count.
Competitive Analysis

- **Idea:** look at the ratio of our algorithm vs best achievable

r-competitiveness

An algorithm has competitive ratio r (or is r-competitive) if for some constant b, for any sequence of requests s, we have:

$$\text{Cost}_{\text{alg}}(s) \leq r \times \text{Cost}_{\text{OPT}}(s) + b$$

where OPT is the optimal algorithm (in hindsight)

- Consider the following cost model:
 - Accessing item at position i costs i
 - After accessing it, we can bring it forwards as much as we want for free
 - Swapping two successive elements costs 1 (*paid exchange*)
Claim - TR has as a bad competitive ratio: $\Omega(n)$

Consider the following sequence of operations:

- Consider any list with n elements
- Ask n times for the last element in the sequence

Example:
A –> B –> C –> D –> E
find(E), find(D), find(E), find(D), ...

- This strategy will pay n^2
- Optimal in this case would just bring element to front paying $n + n + 1 + 1 + 1 + 1 + 1 + 1 + \ldots = 2n + (n - 2) = 3n - 2$
- The ratio for m operations like these is $n^2/(3n - 2)$ which is $\Theta(n)$
Competitive Analysis of Self Organizing Lists

Claim - FC has as a bad competitive ratio: $\Omega(n)$

Consider the following sequence of operations:

- Consider an initial request sequence that sets up counts:
 $$n - 1, n - 2, \ldots, 2, 1, 0$$

- Repeat indefinitely: ask n times for the element that was last

 Example:
 A \rightarrow B \rightarrow C \rightarrow D \rightarrow E
 find(E), find(E), find(E), find(E), ...

- Each of these iterations will pay
 $$n + (n - 1) + (n - 2) + \ldots + 2 + 1 = n(n + 1)/2 = (n^2 + n)/2$$

- Optimal in this case would bring the element to the front on the first request, paying
 $$n + 1 + 1 + 1 + 1 + \ldots = 2n - 1$$

- The ratio for m operations like these is $\Theta(n)$
What about MF? Can you find any ”bad” sequence of operations?

Claim - MF is 2-competitive

For this we can use amortized analysis
In **amortized analysis** we are concerned about the average over a sequence of operations

- Some operations may be costly, but others may be quicker, and in the end they even out

One possible method is using **potential functions**

- A potential function Φ maps the state of a data structure to non-negative numbers
- You can think of it as "potential energy" that you can use later (like a guarantee of the "money we have in the bank")
- If the potential is non-negative and starts at 0, and at each step the actual cost of our algorithm plus the change in potential is at most c, then after n steps our total cost is at most cn.
Remembering Amortized Analysis

- Relationship between potential and actual cost
 - State of data structure at time x: S_x
 - Sequence of n operations: $O = o_1, o_2, \ldots, o_n$
 - Amortized time per operation o:
 $$T_{am}(o) = T_{real}(o) + (\Phi(S_{after}) - \Phi(S_{before}))$$
 - Total amortized time:
 $$T_{am}(O) = \sum_i T_{am}(o_i)$$
 - Total actual (real) cost:
 $$T_{real}(O) = \sum_i T_{real}(o_i)$$
 - Total amortized time:
 $$T_{am}(O) = \sum_{i=1}^n (\Phi(S_{i+1}) - \Phi(S_i)) = T_{real}(O) + (\Phi(S_{end}) - \Phi(S_{start}))$$
 - Total actual (real) cost:
 $$T_{real}(O) = T_{am}(O) + (\Phi(S_{start}) - \Phi(S_{end}))$$

 If $\Phi(S_{start}) = 0$ and $\Phi(S_{end}) \geq 0$, then $T_{real}(O) \geq T_{am}(O)$ and our amortized time can be used to accurately predict the actual cost!
Competitive Analysis of Self Organizing Lists

Claim - MF is 2-competitive

- The key is defining the right potential function Φ
- Let Φ be the number of *inversions* between MTF and OPT lists, i.e., $\not\exists pairs(x, y)$ such that x is before y in MTF and after y in OPT list.
- Initially our Φ is zero and it will never be negative.
- We are going to show that amortized cost of MTF is smaller or equal than twice the real cost of OPT:

\[Cost_{MTF} + \text{(change in potential)} \leq 2 \times Cost_{OPT} \]

This means that after any sequence of requests:

\[cost_{MTF} + \Phi_{final} \leq 2 \times cost_{OPT} \]

Hence, MTF is 2-competitive.
Claim - MF is 2-competitive

- Φ is the number of inversions between MTF and OPT lists,
- Consider request to x at position p in MTF list.
- Of the $p - 1$ items in front of x, say that k are also in front of x in the OPT list. The remaining $p - 1 - k$ are behind x
- $Cost_{MTF} = p$ and $Cost_{OPT} \geq k + 1$
- What happens to the potential?
 - When MTF moves x forward, x cuts in front of k elements (increase Φ by k)
 - At the same time, the $p - 1 - k$ there were in front of x aren’t any more (decrease Φ by $p - 1 - k$)
 - When OPT moves x forward it can only reduce Φ.
 - In the end, change in potential is $\leq 2k - p + 1$
 - This means that:
 $Cost_{MTF} + \text{(change in potential)} \leq p + 2k - p + 1 \leq 2 \times Cost_{OPT}$
Splay Trees

- A self-adjusting binary search tree
- They were invented by D. Sleator and R. Tarjan in 1985
- The key ideas are similar to self-organizing linked lists:
 - accessed items are moved to the root
 - recently accessed elements are quick to access again
- It provides guarantees of logarithmic access time in amortized sense
Consider the following "rotations" designed to move a node to the root of a (sub)tree:

Zig (or **Zag**) - Simple Rotation
(also used in AVL and red-black trees)
Consider the following "rotations" designed to move a node to the root of a (sub)tree:

Zig-Zig (or Zag-Zag)
Consider the following "rotations" designed to move a node to the root of a (sub)tree:

Zig-Zag (or Zag-Zig)
Splay Operation

- Splaying a node means moving it to the root of a tree using the operations given before:

Original tree
Splay Operation

- Splaying a node means moving it to the root of a tree using the operations given before:

Zig-Zag Left (or Zag-Zig)
Splay Operation

- Splaying a node means moving it to the root of a tree using the operations given before:

Now the tree is like this
Splay Operation

- Splaying a node means moving it to the root of a tree using the operations given before:

Zig-Zig Left (or Zag-Zag)
Operations on a Splay Tree

- **Idea:** do as in a normal BST but in the end splay the node
 - **find**(*x*): do as in BST and then splay *x*
 (if *x* is not present splay the last node accessed)
 - **insert**(*x*): do as in BST and then splay *x*
 - **remove**(*x*): find *x*, splay *x*, delete *x* (leaves its subtress *R* and *L* "detached"), find largest element *y* in *L* and make it the new root:

![Diagram of splay tree](image)

- Running time is **dominated** by the splay operation.
Why do splay trees work in practice?

Efficiency of splay trees

For any sequence of \(m \) operations on a splay tree, the running time is \(O(m \log n) \), where \(n \) is the max number of nodes in the tree at any time.

- **Intuition:** any operation on a deeper side of the tree will ”bring” nodes from that side closer to the root
 - It is possible to make a splay tree have \(O(n) \) height, and hence a splay applied to the lowest leaf will take \(O(n) \) time. However, the resulting splayed tree will have an average node depth roughly decreased by half!

- **Two quantities:** real cost and increase in balance
 - If we spend much, then we will also be balancing a lot
 - If don’t balance a lot, than we also did not spend much
The key is defining the right potential function Φ

Consider the following:

- $\text{size}(x) =$ number of nodes below x (including x)
- $\text{rank}(x) = \log_2(\text{size}(x))$
- $\Phi(S) = \sum_x \text{rank}(x)$

Our potential function is the sum of the ranks of all nodes in the tree

Let the cost be the number of rotations

Lemma

The amortized time of splaying node x in a tree with root r is at most $3(\text{rank}(r) - \text{rank}(x)) + 1$

The rank of a single node is at most $\log n$ and therefore the above means the amortized time per operation is $O(\log n)$
Amortized Analysis of Splay Trees

- If x is at the root, the bound is trivially achieved.
- If not, we will have a sequence of zig-zig and zig-zag rotations, followed by at most one simple rotation at the top.
- Let $r(x)$ be the rank of x before the rotation and $r'(x)$ be its rank afterwards.
- We will show that a simple rotation takes time at most $3(r'(x) - r(x)) + 1$ and that the other operations take $3(r'(x) - r(x))$.
- If you think about the sequence of rotations, than successive $r(x)$ and $r'(x)$ will cancel out and we are left at the end with $3(r(root) - r(x)) + 1$.
- The worst case is $r(x) = 0$ and in that case we have $3 \times \log_2 n + 1$.

Pedro Ribeiro (DCC/FCUP)
Self Adjusting Data Structures
2014/2015 26 / 31
Case 1: Simple Rotation

- Only x and y change rank
 - x increases rank
 - y decreases rank
- Cost is $1 + r'(x) + r'(y) - r(x) - r(y)$
- This is $\leq 1 + r'(x) - r(x)$ since $r(y) \geq r'(y)$
- This is $\leq 1 + 3(r'(x) - r(x))$ since $r'(x) \geq r(x)$
Amortized Analysis of Splay Trees

Case 2: Zig-Zig Operation

- Only x, y and z change rank
- Cost is $2 + r'(x) + r'(y) + r'(z) - r(x) + r(y) - r(z)$
- This is $= 2 + r'(y) + r'(z) - r(x) - r(y)$ since $r'(x) = r(z)$
- This is $\leq 2 + r'(x) + r'(z) - 2r(x)$ since $r'(x) \geq r'(y)$ and $r(y) \geq r(x)$
Case 2: Zig-Zig Operation

- $2 + r'(x) + r'(z) - 2r(x)$ is at most $3(r'(x) - r(x))$
- This is equivalent to say that $2r'(x) - r(x) - r'(z) \geq 2$
- $2r'(x) - r(x) - r'(z) = \log_2(s'(x)/s(x)) + \log_2(s'(x)/s'(z))$
- Notice that $s'(x) \geq s(x) + s'(z)$
- Given that log is convex, the way to make the two logarithms as small as possible is to choose $s(x) = s(z) = s'(x)/2$. In that case $\log_2 2 + \log_2 2 = 1 + 1 = 2$ and we have proved what we wanted!
Amortized Analysis of Splay Trees

Case 3: Zig-Zag Operation

- Only x, y and z change rank
- Cost is $2 + r'(x) + r'(y) + r'(z) - r(x) + r(y) - r(z)$
- This is $= 2 + r'(y) + r'(z) - r(x) - r(y)$ since $r'(x) = r(z)$
- This is $\leq 2 + r'(y) + r'(z) - 2r(x)$ since $r(y) \geq r(x)$
Case 3: Zig-Zag Operation

- $2 + r'(y) + r'(z) - 2r(x)$ is at most $3(r'(x) - r(x))$
- This is equivalent to say that $2r'(x) - r'(y) - r'(z) \geq 2$
- By the same argument as before, $2r'(x) - r'(y) - r'(z)$ is at least 2