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Abstract

Motivation: Network alignment (NA) finds conserved regions between two networks. NA methods

optimize node conservation (NC) and edge conservation. Dynamic graphlet degree vectors are a

state-of-the-art dynamic NC measure, used within the fastest and most accurate NA method for

temporal networks: DynaWAVE. Here, we use graphlet-orbit transitions (GoTs), a different

graphlet-based measure of temporal node similarity, as a new dynamic NC measure within

DynaWAVE, resulting in GoT-WAVE.

Results: On synthetic networks, GoT-WAVE improves DynaWAVE’s accuracy by 30% and speed by

64%. On real networks, when optimizing only dynamic NC, the methods are complementary.

Furthermore, only GoT-WAVE supports directed edges. Hence, GoT-WAVE is a promising new

temporal NA algorithm, which efficiently optimizes dynamic NC. We provide a user-friendly user

interface and source code for GoT-WAVE.

Availability and implementation: http://www.dcc.fc.up.pt/got-wave/

Contact: daparicio@dcc.fc.up.pt

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Network alignment (NA) aims to find conserved regions between

networks. NA can be used to transfer knowledge from well- to

poorly-studied systems between their conserved regions, e.g. iden-

tify topologically similar regions of molecular networks of differ-

ent species. Pioneering NA methods, such as IsoRank (Singh et al.,

2007), align static networks, but temporal NA (TNA) is gaining

importance as temporal PINs emerge, and other temporal network

data becomes prevalent. DynaWAVE is the fastest and most accur-

ate TNA method currently available (Vijayan and Milenkovi�c,

2017); it optimizes both dynamic node conservation (NC) and

edge conservation (EC). As its dynamic NC measure, DynaWAVE

uses dynamic graphlet degree vectors (DGDVs) (Hulovatyy et al.,

2015).

We recently developed graphlet-orbit transitions (GoTs), a dif-

ferent temporal graphlet measure of node similarity (Aparı́cio et al.,

2018). Here, we use GoTs as a new dynamic NC measure within

DynaWAVE, since this could lead to a better TNA method

(Crawford et al., 2015). We refer to our GoT-modified method as

GoT-WAVE. We find that, on synthetic networks, GoT-WAVE is

more accurate than DynaWAVE by 30% and faster by 64%. On

real networks, using only dynamic NC, GoT-WAVE is more accur-

ate than DynaWAVE on the denser networks and less on the sparser

ones. We observe the opposite in terms of their running times. Thus,

the two methods are complementary. When combining dynamic NC

and EC, DynaWAVE’s performance is more enhanced than GoT-

WAVE’s. However, GoT-WAVE is the only TNA method that sup-

ports edge direction.

2 Materials and methods

NA consists of (i) an objective function, typically node conserva-

tion (NC) combined with edge conservation (EC), and (ii) an opti-

mization strategy that aims to maximize the objective function.
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Global NA produces an injection, aiming to maximize NC or EC

between aligned node pairs. TNA, extending static NA, aims to

optimize dynamic NC or EC. WAVE, DynaWAVE and GoT-

WAVE (discussed below) all use the same optimization strategy

and maximize objective function aECþ ð1� aÞNC, where a is a

parameter balancing between the two conservation types. What

the three methods differ is their scope (i.e. static or dynamic) and

their EC and NC measures.

WAVE is a static NA method where EC is the weighted EC

(WEC) (Sun et al., 2015) and NC is static graphlet degree vector

(GDV) (Pr�zulj, 2007). WEC is high if many edges are aligned to

each other and the nodes of the aligned edges are similar with re-

spect to NC. GDVs (Supplementary Figs S1 and S2) have been wide-

ly used as topological properties (features) to measure NC in NA

(Milenkovi�c et al., 2010). WAVE is a seed-and-extend optimization

strategy: it first aligns two highly similar seed nodes (with respect to

WEC and GDVs), then, the seed’s network neighbors that are simi-

lar are aligned, the seed’s neighbor’s neighbors that are similar are

aligned, and so on, until all nodes in the smaller network are

aligned.

DynaWAVE is a TNA method where EC is the dynamic WEC

(DWEC) and NC is dynamic GDV (DGDV) (Hulovatyy et al.,

2015). DynaWAVE is a seed-and-extend method like WAVE.

DWEC is a temporal analog of WEC that generalizes an aligned

edge to an aligned event (temporal edge) (Vijayan and Milenkovi�c,

2017). DGDVs are an extension of GDVs for temporal networks,

which yields a measure of dynamic NC.

GoT-WAVE is our proposed TNA method where EC is DWEC

and NC is GoTs (Aparı́cio et al., 2018). We perform exact subgraph

counting efficiently using g-tries and obtain the GoTs of each node,

and use the node’s GoTs as its features (see Supplementary Section

S1 and Supplementary Fig. S3). The feature vectors over all nodes in

a network form a #nodes� #transitions matrix. When two net-

works are aligned, we join their respective matrices. Due to high

dimensionality and sparsity of the joined matrix we use PCA keep-

ing 99% of its variance. Then, we compute the similarity between

all node pairs from different networks as the cosine similarity be-

tween the nodes’ PCA-reduced features. GoT-WAVE uses these

node similarities as the dynamic NC part of the objective function,

which is then optimized by WAVE.

Parameters. We use all DGDVs with up to four nodes and six

events, as suggested by Hulovatyy et al. (2015), and all undirected

GoTs with up to four nodes, unless explicitly stated otherwise.

Regarding balancing of dynamic NC and EC, we use: a¼0, to direct-

ly compare the two NC measures, or a ¼ 1
2, since this a value seems to

work the best for DynaWAVE (Vijayan and Milenkovi�c, 2017).

3 Results and discussion

We measure the gains in terms of accuracy, running time, node cor-

rectness and objective function, as explained in Supplementary

Section S2.

We compare GoT-WAVE and DynaWAVE on synthetic net-

works from different graph models (Supplementary Section S3).

A good TNA method should identify networks from the same model

as more topologically alike than networks from different models

(i.e. yield higher objective function scores). We align all pairs of syn-

thetic networks using GoT-WAVE and DynaWAVE and compute

their AUROCs (details in Supplementary Section S4). GoT-WAVE’s

AUROC is higher than DynaWAVE’s by �30% for both a ¼ 0 and

a ¼ 1
2 [Supplementary Table S2(a)]. Extracting GoTs is overall 64%

faster than extracting DGDVs [Supplementary Table S2(b)] while

alignment times are similar (Supplementary Table S3).

We analyze eight real networks (Supplementary Table S4). Six

are undirected: three biological (zebra, yeast and aging) and three

social (arxiv, gallery and school). Due to the lack of directed bio-

logical temporal networks, we use two from other fields (emails and

tennis). We evaluate TNA on a real network by inserting artificial

noise, i.e. rewire a percentage of network’s temporal edges (events),

and align the original network to the noisy versions. Then, since the

aligned networks have the same nodes, we measure the percentage

of nodes that are correctly aligned. We use three randomization

schemes: undirected, directed and pure directed (details in

Supplementary Section S5).

In terms of objective score (Fig. 1 and Supplementary Fig. S4), when

a ¼ 0: (i) for gallery and zebra, both methods closely match their ideal

alignments over all noise levels; (ii) for yeast and aging, GoT-WAVE

closely matches its ideal alignment over all noise levels while

DynaWAVE drifts from its ideal alignment for high noise levels; and

(iii) for arxiv and school, GoT-WAVE closely matches its ideal align-

ment for high noise levels while DynaWAVE is far from it. Thus, in

terms of the total gain GO, GoT-WAVE improves upon DynaWAVE

for all six networks. When a ¼ 1
2, GoT-WAVE matches its ideal align-

ments more closely for two of the six networks (gallery and aging). In

terms of node correctness (Supplementary Fig. S5), for a ¼ 0, each

method is the best for three of the six networks. For a ¼ 1
2,

DynaWAVE’s node correctness improves more substantially than GoT-

WAVE’s, and is superior for most (though not all) of the networks. We

show an example of why that might be in Supplementary Figure S6. In

terms of running time [Supplementary Table S6(a)], extracting GoTs is

faster than DGDVs for sparse networks (zebra, aging and school) and

slower for dense networks (aging, arxiv and gallery) since denser net-

works induce more GoTs than DGDVs [Supplementary Table S6(b)].

Alignment times are similar (Supplementary Table S7).

On the directed randomization scheme, we find that 3-node directed

GoTs are the best for both directed networks (Supplementary Table S8).

Thus, we use 3-node directed GoTs (we still use DGDVs with four nodes

Fig. 1. GoT-WAVE against DynaWAVE on undirected networks in terms of

how well their alignments’ objective scores match the objective scores of

ideal alignments. GO is the relative gain of GoT-WAVE over DynaWAVE

(a) (b)

Fig. 2. GoT-WAVE against DynaWAVE on directed networks in terms of (a)

node correctness and (b) how well their alignments’ objective scores match

the scores of ideal alignments
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and six events). In terms of node correctness, for a¼0, we observe that

GoT-WAVE is better than DynaWAVE for tennis over all noise levels,

and comparable for emails [Fig. 2(a)]. For a ¼ 1
2, DynaWAVE’s node

correctness is higher for both networks over most noise levels

[Supplementary Fig. S7(b)]. In terms of objective score, for a ¼ 0, GoT-

WAVE more closely matches its ideal alignments than DynaWAVE for

emails, and the two are comparable for tennis [Fig. 2(b)]. For tennis,

GoT-WAVE matches its ideal alignment at higher noise levels, while

DynaWAVE mismatches its ideal alignment over all noise levels. For a ¼
1
2, DynaWAVE’s performance is again better for both networks

[Supplementary Fig. S7(d)]. In terms of running time, results are qualita-

tively similar to those for undirected networks (Supplementary Table

S9). On the pure directed randomization scheme, DynaWAVE cannot

differentiate between the networks, as expected, while GoT-WAVE can,

since GoTs accounts for edge direction (Supplementary Fig. S8).

4 Conclusion

We propose GoT-WAVE, a new method for TNA. Our results sug-

gest that GoTs are an efficient measure of dynamic NC. While

DynaWAVE benefits more from also optimizing dynamic EC, only

GoT-WAVE supports directed edges. Future work on better incor-

porating dynamic EC into GoT-WAVE may yield further improve-

ments. As more real temporal data becomes available, TNA will

continue to gain importance.
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