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Abstract

Given a set of temporal networks, from different domains and with different sizes, how can

we compare them? Can we identify evolutionary patterns that are both (i) characteristic and

(ii) meaningful? We address these challenges by introducing a novel temporal and topologi-

cal network fingerprint named Graphlet-orbit Transitions (GoT). We demonstrate that GoT

provides very rich and interpretable network characterizations. Our work puts forward an

extension of graphlets and uses the notion of orbits to encapsulate the roles of nodes in

each subgraph. We build a transition matrix that keeps track of the temporal trajectory of

nodes in terms of their orbits, therefore describing their evolution. We also introduce a metric

(OTA) to compare two networks when considering these matrices. Our experiments show

that networks representing similar systems have characteristic orbit transitions. GoT cor-

rectly groups synthetic networks pertaining to well-known graph models more accurately

than competing static and dynamic state-of-the-art approaches by over 30%. Furthermore,

our tests on real-world networks show that GoT produces highly interpretable results, which

we use to provide insight into characteristic orbit transitions.

Introduction

Networks are widely used to model real-world systems as a way to uncover their topological

features [1]. Most of these systems are not static; they exhibit a dynamic nature that can only

be captured and truly understood by taking into account the network’s temporal evolution [2].

Consider for instance a co-authorship network, where nodes are authors and edges represent

joint publications. By narrowing our focus to static network snapshots we cannot answer rele-

vant questions such as: how stable are connections over time? How is collaboration emerging

and dissolving? How did we get to the current state of the network? Can we predict how the

network will look like in the future?

One very powerful technique to uncover the underlying structure of a network is to decom-

pose it into smaller components, namely subgraphs. Local network metrics such as network

motifs [3] and graphlets [4] incorporate subgraph information to create rich topological met-

rics that have been successfully applied in many domains. For instance, motif analysis has

identified the feed-forward loop as a recurring and crucial functional subgraph pattern in
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many real biological networks, such as gene regulation and metabolic networks [5, 6], and it

was able to identify and separate different families of networks [7]. Another example is the

graphlet-degree-agreement, which incorporates the notion of orbits (the position of nodes

inside each subgraph) and has been used for both network comparison and model fitting,

showing that protein-protein interaction networks are more akin to geometric graphs than to

traditional scale-free models [4]. These subgraph-based metrics were initially proposed for

static networks, thus disregarding temporal information. A temporal extension for graphlets

was put forward by Faisal et al. [8]; however, their approach summarizes each temporal snap-

shot, without offering a real inter-snapshot relation. Another work by Hulovatyy et al. [9] pro-

vides a clear inter-snapshot evolution, but they only allow for a single event (i.e., temporal

edge) at each snapshot (i.e. just one edge addition between two nodes), therefore limiting the

scope of possible graphlet transitions. Our method differs from these because our transition

matrix establishes direct relations between snapshots, and we allow for any number of edge

additions or removals in each snapshot, aiming for a broader and fully general set of possible

transitions between two consecutive snapshots.

In this work we propose graphlet-orbit transitions (GOT) as a framework for characterizing

and comparing evolving networks. Our method incorporates the rich topological information

provided by subgraphs and extends it to the temporal domain. Orbit-transition matrix encap-

sulate not only how subgraphs are changing but also how the roles of the nodes themselves are

evolving, leading to a more detailed fingerprint of the network. We also introduce the orbit-

transition-agreement metric (OTA) as a suitable way of comparing transition matrices of het-

erogeneous networks.

Next we underline our main contributions:

• Effectiveness: GOT achieves over 30% higher precision (AUPR) on a set of well-known net-

work models than other subgraph-based methods. On real data it produces groupings that

match pre-determined categories better than competing approaches.

• Interpretability: Results produced by GOT are very easy to visualize (i.e. analyze specific

transition frequencies between orbits). Therefore, GOT can be used as an interpretable tem-

poral network fingerprint.

• Generability: Our method is used to compare heterogeneous networks from different

domains and of different sizes. Furthermore, GOT is general and easily extensible to directed

and multilayered networks, but these extensions are demanding in terms of storage and

execution.

The remainder of this paper is organized as follows. First, we present related work on net-

work comparison with a focus on subgraph-based metrics, both for static and temporal net-

works. Next, we introduce necessary graph terminology. Our proposed methodology for

temporal network comparison is then presented. Finally, various metrics are used to compare

and group (i) a set of synthetic data generated using different random-graph models and (ii) a

set of real-world data pertaining to different classes, respectively.

Related work

For a general overview of temporal networks we refer the reader to the survey by Holme and

Saramäki [2], and for an overview of existing temporal network metrics we refer to the survey

by Nicosia et al. [10].

In this work, our focus is on network comparison, which is a crucial and very useful task.

For example, if the properties of a given network are well known, it allows for knowledge
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transfer to similar networks [11]. Global metrics such as the degree distribution, characteristic

path length and clustering coefficient give an idea of the structure of the networks and can be

used to compare them. For instance, social networks tend to have a higher clustering coeffi-

cient and a smaller characteristic path length than spatial networks. However, these simple

metrics are often not expressive enough, and subgraph-based metrics offer a much richer topo-

logical characterization.

While our focus here is temporal network comparison using subgraph-based metrics, we

should note that pattern discovery on temporal networks is a much broader field. Shah et al.

[12] propose an algorithm that concisely summarizes temporal networks by their characteristic

temporal subnetworks. Similarly to their work, we also aim for interpretability, but we do

graph comparison instead of graph summarization and our method does not require a null

model to assess how a certain interesting pattern deviates from randomness. Yu et al. [13] put

forward a matrix factorization method that characterizes the correlations of network’s edges as

a function of time. Their representation builds a dynamic profile of the network that can be

used to predict future states. Here we do not specifically target link prediction; our graphlet-

orbit transitions could possibly be used for the task but that is out of the scope of this work.

Another task related with both network comparison and network visualization is network con-

densation [14]; its aim is to reduce the size of the temporal network significantly without

much loss of information. Here we aim for interpretability but we do not address the problem

of network condensation directly.

On the remainder of this section we give an overview of subgraph-based network metrics,

discuss their usefulness and drawbacks, and pinpoint the advantages of our proposed exten-

sion when compared to them.

Static subgraphs

Network motif fingerprints [3] and graphlet-based metrics [4] have been widely used for net-

work comparison. Motifs are overrepresented subgraphs that appear in larger numbers than

expected, while graphlet degree distributions can be regarded as an extension of the node

degree concept. Both approaches need to compute subgraph frequencies, which is a computa-

tionally very expensive task. Even just knowing if one subgraph appears or not on another net-

work is already an NP-Complete problem [15]. Because of this, typically one uses only small

subgraphs, but their frequencies already provide very rich characterizations. For instance,

Milo et al. [7] compared network motifs with three and four nodes of four superfamilies: sen-

sory networks, hyperlink networks, social networks and linguistic networks. By comparing

motif significances they were able to correctly cluster all four superfamilies. Similar studies

have been carried out to classify metabolic networks [6], co-authorship networks [16] or arti-

cles [17]. Another possibility is to, instead of directly comparing two real networks, compare a

network with graph models. Przulj [4] showed that protein-protein interaction networks were

more accurately described as random geometric graphs rather than as purely random or scale-

free networks. Therefore, motifs and graphlets have been successfully used to compare static

networks. However, metrics such as these disregard temporal information which can be cru-

cial for a better understanding of network topology and function.

Temporal subgraphs

There are several approaches that incorporate the temporal evolution of subgraphs to study

and characterize networks. Given the computationally demanding nature of the involved com-

putations, very small or very specific classes of subgraphs are typically used. One example of

this are triangles (cliques with three nodes, that is, fully connected sets of three nodes), which
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are meaningful for many applications since they are the simplest communities. Buriol et al.

[18] and Pavan et al. [19] put forward a method to extract approximate and exact counts of all

triangles in graph streaming environments. Finocchi et al. [20] proposed an algorithm to

count cliques for sizes slightly larger than 3. Instead of triangles, Aliakbarpour et al. [21]

focused on star shaped graphs. Our approach differs from these because we support any type

of isomorphic subgraphs.

Kovanen et al. [22] presented an extension of network motifs for temporal networks and

studied them on a phone call network. Their proposed temporal motifs have at most three

events and a varying number of nodes. A similar approach for graphlets was put forward by

Hulovatyy et al. [9], without a set limit on either the size of the graphlets nor the total number

of events, but which only allows for one event at a time (i.e. their graphlets do not capture

instances where two edges, or more, are added in the same snapshot). As a consequence, their

method does not directly capture situations where several events occur at the same time, like

when a loosely connected subgraph immediately becomes a clique or near-clique. By contrast,

our approach supports any number of edge removals or additions, allowing for the analysis of

networks that intrinsically have multiple events occurring at the same time.

Martin et al. [23] proposed a metric to evaluate network similarity based on how their trip-

lets are evolving over time. Their metric is based on the loss or gain of edges from one state to

the next. Our method differs from theirs since they do not differentiate by pair-wise graphlet

transitions but only by increase or decrease of total edges between states (i.e. different pair-

wise transitions are not differentiated as long as they affect the same number of edges). The

approach by Doroud et al. [24] is more similar to our own since they enumerate all transitions

between 3-node directed subgraphs in network snapshots. That information is used in order

to estimate the probability of a given transition in a social network and predict network

changes. Kim et al. [25] also count all 3-node directed subgraphs to assess which motifs are

present in different states of developing gene networks in different regions. These approaches

are however limited to 3-node subgraphs and do not consider the roles of the individual

nodes, that is, the orbits.

Faisal and Milenkovic [8] integrate graphlet frequency distributions on the analysis of tem-

poral biological networks, but they only look at the global distribution in each snapshot, with-

out offering the possibility to observe how each individual connected set of nodes is evolving.

By contrast, we provide a direct transition matrix.

Another approach is followed by Jin et al. [26]; they introduce the notion of trend motifs

geared towards weighted networks, trying to capture increasing or decreasing trends in the

weights of specific sets of nodes inducing certain subgraphs. Therefore, their approach is only

applicable to weighted networks, not identifying edge appearance and disappearance as in our

case.

Preliminaries

Graph terminology

A graph (or network) G is comprised of a set V(G) of vertices (or nodes) and a set E(G) of edges.
A k-graph is a graph with k nodes. Nodes represent entities and edges correspond to relation-

ships between them. Edges are represented as pairs of vertices of the form (u, v), where u,

v 2 V(N). In directed graphs, edges (u, v) are ordered pairs (translated to “u goes to v”) whereas

in undirected graphs there is no order since the nodes are always reciprocally connected.

A subgraph occurrence Sk in G is a k-graph where V(Sk)� V(G) and E(Sk)� E(G). A sub-

graph occurrence is induced if 8u, v 2 V(Sk): (u, v) 2 E(Sk) iff (u, v) 2 E(G). Two subgraph

occurrences are said to be isomorphic if it is possible to obtain one from the other just by
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changing the node labels without affecting their topology. The general task of evaluating if two

graphs are isomorphic is called the graph isomorphism problem [27]. If two subgraphs occur-

rences Sk and S0k are isomorphic, they are occurrences of the same subgraph Gk (i.e., canonical

class [28]). The frequency Fr(Gk, G) is the number of occurrences of Gk in G.

Subgraph census

Graphlets and network motifs have at their core the task of computing subgraph frequencies.

This is known as the general subgraph census problem [29]:

Definition 1 (Subgraph census) Given a set Gk of non-isomorphic k-subgraphs and a graph
G, determine the frequency of all induced occurrences of the subgraphs Gk 2 Gk in G. Two
occurrences are considered different if they have at least one node or edge that they do not share.
Other nodes and edges can overlap.

Static network motifs

Network motif analysis has two steps: first, subgraph census is performed on graph G, and sec-

ond, motif significance is assessed on a null model [3]. Numerous null models can be used,

such as the one proposed in [3] which generates a set RðGÞ of randomized networks that keep

G’s degree sequence. A subgraph census is then performed on each R 2 RðGÞ. The average

frequency of a subgraph Gk on the randomized networks is represented by< FrðGk;RðGÞÞ >,

and Gk is considered a network motif if it appears with a significantly higher frequency in G
than in RðGÞ. Motif scores, represented by δk,G, are computed for each subgraph Gk (Eq 1).

As was proposed in [7], motif scores are normalized, represented by Δk,G (Eq 2).

dk;G ¼
FrðGk;GÞ � < FrðGk;RðGÞÞ >
FrðGk;GÞ þ < FrðGk;RðGÞÞ >

ð1Þ

Dk;G ¼
dk;G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðdk;GÞ

2
q ð2Þ

The motif-fingerprint of G is a vector containing all Δk,G.

Static graphlets

Graphlets [4] are small induced non-isomorphic subgraphs that differentiate nodes according

to their subgraph positions—or their orbits. In a graphlet G, the set of isomorphisms of G into

itself comprises its set of automorphisms. Two vertices u and v are said to be equivalent (mean-

ing “in the same orbit”) when there exists some automorphism that maps u into v.

Fig 1 presents all undirected graphlet-orbits with 4 nodes. For instance, the single node at

the center of a star is topologically different from a leaf-node, whereas leaf-nodes are structur-

ally equivalent. Therefore, a 4-star has only two orbits: a center-orbit O1 which a single node

inhabits, and a leaf-orbit O2 where the remaining 3 nodes are at. Graphlets can be either undi-

rected [4] or directed subgraphs [30]. Notation uGk is adopted for the set of all undirected

graphlets with k nodes, and dGk for directed ones. The set of all orbits of uGk is expressed as

uOk, and dOk is used for directed graphlets. Prefixes d and u are suppressed whenever con-

cepts are applicable to both directed and undirected graphlets.

The graphlet-degree distribution is an extension of the node degree-distribution, and both

can be used for network comparison. The degree distribution of a given graph G is obtained

by counting 8u 2 V(G) how many direct connections u has. This task produces a vector of size

n = |V(G)| containing the degrees of each u 2 V(G) which is transformed into a node-degree-
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distribution vector (or NDDG, for short) of size m, where m is the maximum degree, and

NDDG,p is the number of nodes that have degree p. Notice from Fig 2 that the node-degree is

essentially equivalent to orbit a (a two node subgraph): the node-degrees of each node n corre-

spond to the first column of FrG and that NDDG is simply the first line of GDDG.

Graphlet-degree-distributions (GDDG) generalize the concept of NDDG for subgraphs big-

ger than the degree (i.e., subgraphs with more than two nodes). To compute the graphlet

degree distribution it is necessary to count 8u 2 V(G) how many times u appears in some

orbit j 2 O and repeat this process for the total jOj orbits, resulting in a graphlet degree vector

GDV(u). A matrix Fr(G) of n ×m positions is obtained by joining the GDVs of all n nodes

where each row of Fr(G) is GDV(u), u 2 V(G) and each position fru, j is the number of times

that node u appears in orbit j. Matrix GDDG is obtained directly from FrG, where GDDj;p
G is the

number of nodes that appear p times in orbit j. This task is more formally defined in Definition

2 and an example of this process is given in Fig 2. For instance, node v has degree 2 (orbit a),

appears once in a triangle (orbit b), and appears in 2 chains always in its periphery (orbit d).

Definition 2 (Graphlet-orbit frequency computation) Given a set Gs of non-isomorphic
subgraphs of size s and a graph G, determine the number of times fri,j that each node i 2 V(G)

appears in all the orbits j 2 Os. All occurrences are induced. Two occurrences are considered dif-
ferent if they have at least one node or edge that they do not share. Other nodes and edges can
overlap.

As suggested by Pržulj [4], a GDD matrix is normalized with respect to its total area (i.e.,

the sum of all GDDj;p
G ), before being used for comparison. The normalized values are repre-

sented below as nj;pG . Two networks G and H are compared by computing the differences

between their respective normalized GDD matrices. One possibility to compare the two

Fig 2. GDV(v) obtained by enumerating all undirected graphlet-orbits of sizes 2 and 3 (A, B and C) touching v,

and resulting FrG and GDDG matrices for the complete subgraph census (GDV(v) is highlighted in gray in FrG).

https://doi.org/10.1371/journal.pone.0205497.g002

Fig 1. Set of all 11 graphlet-orbits of subgraphs with 4 nodes: uO4. Black nodes belong to the same graphlet-orbit.

https://doi.org/10.1371/journal.pone.0205497.g001
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matrices is to use the arithmetic mean GDD-agreement (GDA) introduced in [4]: m6) the

GDA is obtained individually for each orbit j (Eq 3) and then the mean GDA is computed

(Eq 4), m7) ranging from 0 to 1. High GDA(G, H) means that G and H are topologically simi-

lar. Note in Eq 3 that, in practice, p is never infinite because, in real graphs, the number of

nodes that appear in a given orbit is always finite.

GDAðG;HÞj ¼ 1 �
1
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xþ1

p¼1

½nj;pG � n
j;p
H �

2

 !v
u
u
t ð3Þ

GDAðG;HÞ ¼
1

m

Xm

j¼0

GDAðG;HÞj ð4Þ

Temporal networks

Temporal networks used throughout this paper consist of s consecutive snapshots of a global

network N, where N belongs to a set of temporal networks N . The set of all snapshots of N is

referred to as SN . An edge (u, v) exists in snapshot SN;i 2 SN if nodes u and v are connected in

the interval [IN + ρ × i, IN + ρ × (i + 1)[, where IN is the starting time of the network and ρ is

the time-interval. A temporal edge is also referred to as an event. Parameters ρ and s depend

on the network; for instance, in scientific co-authorship networks one or two years are the

more suitable value for ρ, while in conference interaction networks ρ is a few hours or a couple

of days. The number of snapshots jSN j depends on the amount of available data. Networks can

gain (or lose) new edges (or new nodes) from Si to Si+1.

Computing temporal network similarity using Graphlet-orbit

Transitions

In this section we describe our method and specify how it is used to measure temporal network

similarity. Temporal network similarity assumes that there is a set of temporal patterns used as

features; in our case those features are graphlet-orbit transitions (GOT). A metric is also neces-

sary to compare the networks’ feature space; for this purpose we developed orbit-transition

agreement (OTA).

Definition 3 (Temporal Network Similarity) Given two temporal networks G and H, com-
pute how similar they are. Their similarity is given by how similar their temporal patterns are.

Definition 4 (GOT Similarity) Given two temporal networks G and H and a set of graphlets,
compute their graphlet-orbit transition matrices T x;yðGÞ and T x;yðHÞ, respective to each net-
work. Their similarity is given by the orbit-transition agreement (OTA) of their matrices.

Graphlet-orbit Transitions (GOT)

In essence, our method performs graphlet-orbit frequency computation (as stated in Defini-

tion 2) for each snapshot of a given temporal network. Our aim is to analyze how the roles of

nodes are evolving between snapshots. Only connected graphlets are taken into account

because our focus is to study how groups evolve and, when a group becomes disconnected,

that set of nodes is no longer a group. We should point out that disconnected graphlets would

be very useful to analyze group formation, but computing their frequencies would require con-

sidering all possible n
k

� �
subsets of nodes, effectively making it only feasible for small networks

and very small k-graphlets.
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Possible algorithms for graphlet-orbit frequency enumeration include [31, 32]; here we use

g-tries due to their general applicability and efficiency [33]. G-Tries can be used to store sub-

graphs of any given size, as long as they fit into main memory, with directed or undirected

edges. Their efficiency comes from compressing the search space by taking advantage of com-

mon subtopolgies in the input subgraphs. For more details on how g-tries are created and how

they are used for graphlet-orbit frequency enumeration we refer the reader to [30, 33].

G-Tries allow the user to customize which subgraphs are enumerated (i.e. only stars, only

cliques, etc.). To showcase the general scope of our method we search for all subgraphs of size

k. Consider the two possible 3-node undirected graphlets, uG3, and their respective orbits from

Fig 3. The chain-graph has two possible positions—the node can be either at its center or in

one of its leaves—while all nodes in a triangle-graph are topologically equivalent. Given those

three possible orbits, GoT counts how many times a node x changes from one to the other.

There are 3 × 3 = 9 possible orbit transitions for uO3. A node can remain in its previous orbit,

be it a (a) chain-center, (d) chain-periphery or (i) triangle-node; it can go from the chain-

center to the chain-periphery (b) or to a triangle-node (c), etc. All possibilities are shown in

Fig 3. Fig 4 shows an example of a temporal network and the GoTs of a single node x.

Algorithm 1 gives an overview of the enumeration process that builds the transition matri-

ces. In order to obtain the frequencies of these transitions, for each snapshot t our method

Fig 3. All possible orbit transitions of 3-node undirected graphlets and corresponding orbit-transition matrix.

Node x is the node being currently considered and black nodes are nodes in the same orbit as x.

https://doi.org/10.1371/journal.pone.0205497.g003

Fig 4. Graphlet-orbit transitions of node x. Note that transitions to (and from) disconnected graphlets are not

considered.

https://doi.org/10.1371/journal.pone.0205497.g004
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enumerates all k-node occurrences {Node1, Node2, . . ., Nodek} (lines 3-5) as well as the orbits

of each node on that subgraph {Orbit1, Orbit2, . . ., Orbitk} (line 6). The occurrences discovered

are pushed into a vector of the form {Node1, Node2, . . ., Nodek, t, Orbit1, Orbit2, . . ., Orbitk}
(line 7). When all occurrences have been enumerated one can simply sort the vector (line 9)

and check if two consecutive vector positions contain the same subgraph (but were found in

consecutive snapshots) (lines 10-11). As an example, occurrences {5, 8, 10, 12, t = 1, x, x, y, y}

and {5, 8, 10, 12, t = 2, x, y, x, y} increment graphlet-orbit transitions T x;xðNÞ, T x;yðNÞ, T y;xðNÞ
and T y;yðNÞ all by 1 (regardless of what orbits x and y represent). These transitions are used to

build the network’s transition matrix (lines 12-14); they offer rich topological information that

can be used for network summarization, Data Mining (e.g. they can be used as features for pre-

diction tasks), network comparison and model fitting. In this work we compare different net-

works according to their transition matrices. Next we describe our metric for network

comparison based on orbit-transition matrices.

Algorithm 1 Enumerate graphlet-orbit transitions of orbits Ok on temporal network N.
1: procedure ENUMERATEORBITTRANSITIONS(N, Ok)
2: Fr = ;
3: for all snapshots SN;t 2 SN do
4: while ENUMERATESUBGRAPH(SN,t, Ok) finds an occurrence do (Def 2,
G-Tries)
5: occurrence: {Node1, Node2, . . ., Nodek}
6: {Orbit1, Orbit2, . . ., Orbitk} = getOrbits({Node1, Node2, . . .,

Nodek})
7: Fr.append({Node1, Node2, . . ., Nodek, t, Orbit1, Orbit2, . . .,

Orbitk})
8: T x;yðNÞ : fill with zeros
9: SORT(Fr)
10: for all consecutive Occ1, Occ2 2 Fr do
11: if Nodes(Occ1) == Nodes(Occ2) then
12: for i 2 {1, . . ., k} do
13: (x, y): (Orbits(Occ1)[i], Orbits(Occ2)[i])
14: T x;yðNÞ þ þ
15: return T x;yðNÞ

Orbit temporal agreement (OTA)

After enumerating all graphlet-orbit transitions, and having constructed T x;yðNÞmatrices for

each network N of set N , our method computes their topological similarity. For experimental

purposes, all orbits of size k are enumerated for each network, therefore each T x;yðNÞmatrix

consist of jOj � jOj transitions. Our approach is based on the arithmetic mean of orbit-transi-

tion differences. Matrices T x;yðNÞ are normalized before computing orbit-transitions differ-

ences in order to reduce bias induced by different network sizes. Normalization is performed

by row, as shown in Eq 5. This choice gives the same importance to common and rare orbits.

Instead, one could normalize the matrix both by row and column if the scale of the original

values is important. We feel that choosing the latter option would disregard differences in rare

orbits, which arguably can differentiate networks better than common ones.

ntri;j ¼
tri;j
XjOj

k¼1

tri;k
ð5Þ
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The similarity of two networks N1 and N2 is given by the average similarity of their graph-

let-transition frequency for each graphlet-transition ntri,j. Eq 6 presents this metric, which we

name orbit-transition agreement (OTA).

OTAðN1;N2Þ ¼
1

jOj2
�
XjOj

i¼1

XjOj

j¼1

1 � jntrN1
i;j � ntr

N2
i;j j

� �
ð6Þ

Eq 6 produces an absolute value of agreement, i.e., OTA(N1, N2) is always the same regard-

less of N . However, for our purposes a relative value of agreement is more suitable since we

want to compare networks within a specific set. Consider maxðOTAN Þ and minðOTAN Þ as the

highest and lowest OTA between two networks in set N , we normalize the OTA matrix to val-

ues between 0 and 1 (Eq 7). Using the normalized nOTA, the two most similar networks on

the set N have nOTA = 1, and the two most different have nOTA = 0, while the other pairs

have a normalized nOTA between 0 and 1.

nOTAN1 ;N2
¼

OTAN1 ;N2
� minðOTAN Þ

maxðOTAN Þ � minðOTAN Þ
ð7Þ

Algorithm 2 shows our overall methodology.

Algorithm 2 Compute network similarity of set N using k-node orbit-transitions
1: procedure COMPUTENETWORKSIMILARITY(N, k)
2: Ok : generate all k-node orbits.
3: for all networks N 2 N do
4: T x;yðNÞ = ENUMERATEORBITTRANSITIONS(N, Ok)
5: NORMALIZE(T x;yðNÞ) (Eq 5)
6: for all pairs fðN1;N2Þ j N1;N2 2 Ng do
7: OTA(N1, N2) = GETOTA ðT x;yðN1Þ; T x;yðN2ÞÞ (Eq 6)
8: for all pairs fðN1;N2Þ j N1;N2 2 Ng do
9: NORMALIZE(OTA(N1, N2)) (Eq 7)

Classifying synthetic data

We assess our method’s grouping efficiency on a set of well-known graph models, and com-

pare it against other subgraph-based methods. Our assumption is that an efficient method

should report networks from the same model as more topologically alike than networks from

different models due to their inherent structure (a similar approach was followed in [9]). All

of the following experiments were conducted on an Intel i7-6700 CPU with 4 cores at 3.40

GHz; nevertheless, all programs were executed using a single-thread. Our code was written in

C++11 and compiled with gcc 6.3.1 with O3 optimizations, while dynamic graphlets [9] were

computed using the executable available at http://www3.nd.edu/~cone/DG/. Network motifs,

graphlets and static-temporal graphlet vectors were obtained using our own code, available at

http://www.dcc.fc.up.pt/~daparicio/software. The source code for graphlet-orbit transitions

computation, as well as the data used for experimental purposes, can be found at http://www.

dcc.fc.up.pt/got-wave/ and dx.doi.org/10.17504/protocols.io.tcqeivw.

Synthetic networks

In order to assess our method’s clustering capabilities we tested it on dynamic versions created

by us of three of the most well-known and studied random-graph models: Erdos-Rényi [34],

Baràbasi-Albert [35] and Watts-Strogratz [36]. All synthetic networks have 5 snapshots and

start with 250 nodes; these values were chosen in order to obtain results from every method in

a reasonable time. New nodes and edges arrive in the networks [37], while the network’s
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density remains stable throughout all snapshots (this behavior was observed in online social

networks [38], for instance). New edges are created according to the model’s criteria: either

randomly [34], by preferential attachment [35] or through rewiring of past edges [36]. Noise is

also injected in some of the networks by having edges randomly deleted: if P(e−) = 0.5, half of

the edges from SN,i are removed in SN,i+1, whereas if P(e−) = 0, all edges are permanent. Stro-

gratz models control how much rewiring is performed; we use either no rewiring (β = 0) to

build regular ring-networks or some rewiring (β = 0.2) to create small-world networks. From

these variables we obtain a total of 6 different graph models (see Table 1), and build 25

instances/networks of each.

Methods

In our experiments we assess GOT’s grouping capabilities and compare it to other subgraph-

based methods. All methods rely on subgraph census, as defined in Definition 1, therefore an

appropriate set of k-subgraphs needs to be chosen. Hulovatyy et al. [9] reported that dynamic

graphlets with 4-nodes and 6-events achieved the best results for node classification tasks, and

that increasing their size did not significantly improve results and greatly increased computa-

tional time. Therefore, 4-node and 6-event dynamic graphlets are enumerated and, for results

to be directly comparable, 4-node subgraphs are enumerated for every other method. For gen-

erability, all possible 4-node subgraphs are enumerated instead of a specific set.

• Static motifs (SM) – 4-node subgraphs (network motifs) are enumerated on a single aggre-

gate network, and their motif score is evaluated on a set of 100 similar randomized networks

(see [7]). Output: a vector of motif scores for each network.

• Static graphlets (SG) – 4-node graphlet-orbits are enumerated on a single aggregate net-

work (see [4]). Output: a vector of orbit frequencies for each network.

• Static-temporal graphlets (STG)— 4-node graphlet-orbits are enumerate on each network

snapshot (see [8]). Output: a vector concatenating the orbit frequencies of each network

snapshot.

• Dynamic graphlets (DG) – 4-node graphlets with at most 5 events are enumerated on the

temporal network (see [9]). Output: a vector of dynamic graphlet frequencies.

• Graphlet-orbit transitions (GoT) – 4-node graphlet-orbit transitions are enumerated.

However, for the methods to be more easily comparable, the OTA is not computed. Output:

a matrix of graphlet-orbit transitions.

Accuracy and speed comparison

For each node, we compute its SM, SG, STG, DG and GoT vectors and use them as the node’s

features. For instance, when considering GoT, each node is represented by its graphlet-orbit

Table 1. Set of random network models used for evaluation.

jSNj V(SN,1) V(SN,i+1) E
N2 P(e−) P(e+) P(β)

Erdos 5 250 V(SN,i)

+ 0.1 × V(SN,i)

0.01 0.0

0.5

Random –

Barábasi 5 250 V(SN,i)

+ 0.1 × V(SN,i)

0.01 0.0

0.5

Degree –

Strogratz 5 250 V(SN,i)

+ 0.1 × V(SN,i)

0.01 – Ring creation

and Rewiring

0.0

0.2

https://doi.org/10.1371/journal.pone.0205497.t001
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transitions. The feature vectors over all nodes in a network form a #Nodes × #Features matrix.

For two networks being compared, this results in two corresponding matrices with the same

number of columns, whose rows are then joined together. Due to high dimensionality and

sparsity of the joined matrix, we perform dimensionality reduction on the matrix using princi-

pal component analysis, keeping 99% of its variance. Then, we compute the topological simi-

larity between every two nodes from different networks as the Euclidean similarity between

the nodes’ PCA-reduced feature vectors.

Precision-recall curves (PRCs) were calculated and are presented in Fig 5. In order to com-

pute the PRCs, � is initially set as 0 (meaning that the networks are exactly the same according

to the metric) and is incremented by s = 0.001 at each step until s = 1 (the networks are totally

distinct). Precision is the fraction of correctly grouped pairs while recall is the fraction of the

correctly grouped pairs over all correct ones. The Area Under the Precision-Recall curve

(AUPR) evaluates how well the metric groups the networks, and its value is approximated as

shown in Eq 8. Pr(k) is the precision at step k, ΔRec(k) is the change in recall from steps k − 1

to k and N is the number of steps.

AUPR ¼
XN¼1000

k¼1

PrðkÞDRecðkÞ ð8Þ

Our method (GOT) achieves the highest AUPR and has a gain of� 30% when compared to

the second best (DG). STG obtained a higher AUPR than SG, but only by a small fraction,

while DG performed significantly better than both, corroborating the results from [9]. Table 2

compares the execution times of the two approaches that achieve highest AUPR: GOT and DG

Fig 5. Obtained precision-recall curves on synthetic data (AUPR inside parentheses).

https://doi.org/10.1371/journal.pone.0205497.g005

Table 2. Time comparison of our method (GOT) and dynamic graphlets (DG). We show the speed gain of GoT over DG inside parentheses (e.g., 2x means 2 times

faster).

Erdos: P(e−) Baràbasi: P(e−) Strogratz: P(β)

0.0 0.5 0.0 0.5 0.0 0.2

DG 5.92s 17.84s 5.96s 471.68s 52.44s 33.84s

GOT 0.76s (8x) 0.84s (21x) 4.50s (1.3x) 5.36s (88x) 0.12s (437x) 0.52s (65x)

https://doi.org/10.1371/journal.pone.0205497.t002
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[9]. For Baràbasi networks times are comparable; this is due to the high density of Baràbasi

networks that induce a larger number of GOT transitions. In our experiments it is clear that

our method is both faster and more accurate than competing approaches on a set of simple

and well-known evolving random graph models. For the Strogratz model with no rewiring

(P(β) = 0.0), in particular, our method is over 400 times faster than DG [9]. This high efficiency

comes from the data-structure and algorithm that we use, based on g-tries [33].

Discussion on storage limitations and execution times

Typically subgraph census is only feasible for relatively small networks and small subgraphs.

This is due to the number of occurrences, and therefore the resulting execution time, growing

exponentially (i) on larger (or denser) networks and (ii) with the size of the subgraphs [33].

Consider Table 3, the number of possible orbits grows exponentially with the number of

nodes; this effect is even more pronounced in directed subgraphs. GOT stores all possible

graphlet-orbit transitions (or #Orbits2), further increasing the strain on storage space. Assum-

ing that the frequency of each transition is stored in a 4-byte integer, computing GOT requires

4 × #Orbits2 bytes of memory. Therefore,� 2GB of RAM are needed when enumerating all

5-node directed GOT, which is feasible in modern PCs. However, enumerating all 6-node

directed GOT is impractical. A possible solution to reduce the memory footprint is to remove

orbit redundancies [4]. Another option is to avoid generating all possible orbits before enu-

meration and instead only build their representation during the enumeration phase as they

occur in the network [39] since it is reasonable to expect that only a fraction of all possible

orbits actually appear in a given network.

Another problem comes from the exponential increase in the number of occurrences as k
grows. Table 4 shows the average number of occurrences for all 25 networks of three models

from Table 1: Erdos and Barabasi with P(E−) = 0 and Strogratz with P(β) = 0.2. It can also be

noted that, despite having the same (a) number of nodes, (b) number of edges and (c) density,

the number of occurrences varies greatly. Barabasi networks induce many more subgraph

occurrences since they have a much higher cluestering coefficient than both Erdos and Stro-

gratz networks. This quick growth in the number of occurrences makes subgraph census gen-

erally only feasible for small networks and small subgraphs. Previous work has extended g-

Table 3. Total number of possible orbits and GoTs per subgraph size k.

k uGk dGk

#Orbits #GoT #Orbits #GoT

3 3 32 = 9 302 900

4 11 121 697 >485k

5 58 3364 >44k >2B

6 407 >165k >9M >81T

https://doi.org/10.1371/journal.pone.0205497.t003

Table 4. Average number of k-size subgraph occurrences per network.

k #Occurrences

Erdos Barabasi Strogratz

3 � 40k � 175k � 34k

4 � 350k � 9M � 270k

5 � 3.8M � 450M � 2.6M

6 � 45M � 10B � 28M

https://doi.org/10.1371/journal.pone.0205497.t004
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tries to employ both sampling [40] and parallelism [41] to greatly reduce enumeration time,

making larger subgraph sizes attainable (k> 6). We should note that our method requires a

subgraph enumeration algorithm, since it needs not only the subgraph frequencies but also

their occurrences, thus very efficient subgraph counting methods such as [32, 42] can not be

used. While subgraph enumeration is a very challenging problem, the field is very active and

currently it is possible to scale to networks with millions of edges and subgraphs with more

than 6 nodes by combining efficient algorithms, parallelism and sampling.

Grouping and analyzing real data

In this section we show the effectiveness of our proposed method in (a) grouping a set of real-

world temporal networks by predetermined categories and (b) visualizing their characteristics.

Therefore, our goals are to assess grouping capabilities but also interpretability. The set of real-

world networks N comprises (i) co-authorship, (ii) crime, (iii) e-mail communication, (iv)

physical interaction, (v) bipartite, (vi) soccer transfers and (vii) social media friendship net-

works, as shown on Table 5. Our hypothesis is that networks of the same category have similar

topological structure [7, 9], and this is verified by our method.

We start by analyzing how networks are evolving over time (growing vs.shrinking, becoming

more-connected vs.less-connected) as well as some of their global metrics, namely the average-
degree, the clustering-coefficient and the characteristic path-length. These metrics are easy to

analyze visually and give some temporal information about the networks, but they are not

Table 5. Set of temporal networks N grouped by category.

Name Nodes Edges ρ jSj Source

Authenticus authors

7k

co-author a paper

120k

1 year 16 Our own.

arXiv hep-ph authors

2k

co-author a paper

357k

1 year 7 [43]

Minneapolis streets

454

crime in intersection

12k

3 months 16 [44]

Philadelphia streets

1k

crime in intersection

10k

3 months 16 [45]

Emails workers

167

email between workers

83k

1 month 9 [46]

Enron workers

6k

email between workers

51k

2 months 16 [47]

Gallery visitors

420

physical interaction

43k

4 days 16 [48]

Conference visitors

113

physical interaction

21k

12 hours 6 [48]

School students

327

physical interaction

189k

1 day 5 [49]

Workplace workers

92

physical interaction

10k

10 days 10 [50]

Escorts clients + escorts

10k + 7k

hires

51k

3 months 16 [51]

Twitter users + hashtags

12k + 16k

user tweets hashtag

327k

3 months 16 [52]

Transfers soccer teams

2k

player transfer

20k

1 year 16 Our own.

Facebook friends

47k

posts on the other’s wall

877k

3 months 16 [53]

https://doi.org/10.1371/journal.pone.0205497.t005
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successful when grouping the networks due to their limitations. Static network motif (SM) and

graphlet (SG) analyses are also conducted since they capture richer topological information

than aforementioned global metrics. We compare the networks’motif-fingerprints and graph-
let-degree distributions for 4-node subgraphs and assess how well the networks are being

grouped using these metrics. We assess the clustering capabilities of static graphlet-orbits by

computing the graphlet-degree-agreement (GDA) for each pair of networks and clustering set

N accordingly: networks with high agreement are grouped together. We proceed in a similar

fashion for our own graphlet-orbit transitons by computing the orbit-transition-agreement

(OTA) for each pair of networks. Finally, we show that graphlet-orbit transition matrices offer

highly interpretable information which displays both (a) clear differences between networks of

different categories and (b) characteristic transitions in networks of the same category.

Here we do not show results for static temporal graphlets (STG) [8] because they did not

show significant improvement in our synthetic data (Table 1) and they are harder to visualize

than static graphlets. Dynamic graphlets (DG) [9] with 4 nodes and 5 or 6 events were com-

puted in our set of networks N but, for some networks, the method did not output graphlet

counts in a manageable time, making it impossible to compare with our method. Table 6

shows a comparison of the execution times between our method (GoT) and dynamic graphlets

(DG). All possible 4-node graphlets were enumerated by both methods. Dynamic graphlets

have the number of events as an additional parameter; thus, dynamic graphlets with 5 events

(DG-5) or 6 events (DG-6) were separately computed. For some of the largest networks from

Table 5 neither DG-5 nor DG-6 produced an output in a reasonable time (we allowed it to run

for over a week). For the networks that both GoT and DG finished their computation it is clear

that DG is much more computationally heavy. Furthermore, growing the number of events

from 5 to 6 greatly increased computational time. For these reasons, dynamic graphlets were

not included in our discussion of real-world networks.

Network overview

A set of 14 temporal networks N was collected from various sources in order to evaluate our

method’s efficiency (Table 5). N is comprised of active-edge networks, meaning that edges are

only present in the snapshot SN,i in which they appear at and need to be re-activated in subse-

quent snapshots. The number of snapshots jSN j depends on the amount of available data of N.

Long-term networks, such as co-authorship networks, have a bigger time-interval ρ when

compared with short-term networks, such as physical interactions in social events.

Fig 6 shows how the networks are evolving size-wise. Most of them are growing as time

goes by. The fastest growing networks are arXiv hep-ph, Twitter, Facebook and

Enron, which start at only�10% of their largest state, but Enron begins shrinking at t = 11

Table 6. Execution times of GOT with 4-nodes and DG with 4-nodes and 5 (DG-5) or 6 (DG-6) events. An asterisk

(�) means that the method did not finish in the maximum running time of 1 week.

GOT DG-5 DG-6

Escorts 8 sec 2 hours 4 hours

Philadelphia 0.5 sec 25 hours �

Minneapolis 2 sec 12 hours �

Enron 2 min 1 day 4 days

Gallery 24 sec 16 hours 3 days

Escorts 8 sec 2 hours 4 hours

Transfers 3 sec 40 min 1 hours

https://doi.org/10.1371/journal.pone.0205497.t006

Graphlet-orbit Transitions (GOT): A fingerprint for temporal network comparison

PLOS ONE | https://doi.org/10.1371/journal.pone.0205497 October 18, 2018 15 / 24

https://doi.org/10.1371/journal.pone.0205497.t006
https://doi.org/10.1371/journal.pone.0205497


and almost disappears by t = 16. Authenticus, Escorts and Transfers are also grow-

ing networks but they grow at a slower rate and become almost stagnant at the end, where they

might have reached their full potential in terms of growth. Crime, physical interaction net-

works and Emails stay relatively stable in size. Fig 7 presents the evolution of the networks’

average degree. arXiv hep-ph, Emails and physical interaction networks are the ones

with higher average degree. arXiv hep-ph, Twitter and Facebook are the fastest

growing in terms of their average degree and most networks have a stable average degree. By

observing Fig 8 one can conclude that all networks from N are small-world since their charac-

teristic-path-length at latter stages (t� 16) is between 2 and 7. No clear correlation linking

Fig 6. Network growth according to its number of nodes—Grouped by type.

https://doi.org/10.1371/journal.pone.0205497.g006

Fig 7. Average degree of the networks by time—Grouped by type.

https://doi.org/10.1371/journal.pone.0205497.g007
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category with characteristic-path-length evolution, growth or average degree is observed from

Figs 6, 7 and 8, respectively. Clustering coefficients were also computed for each network snap-

shot and it was found that they do not change with t. Co-authorship networks have the highest

clustering coefficient at 0.5 while crime, bipartite, Facebook and Tranfers networks have

near-zero clustering coefficient. The clustering coefficient is capable of grouping co-author-

ship networks together despite only considering 3-node subgraphs (triangles and 3-node

chains). However, it does not distinguish between crime and bipartite networks, for instance.

In these cases, one option to differentiate between networks with similar 3-node subgraphs is

to analyze their 4-node network motifs and graphlets.

Network motifs

In our experiments we performed subgraph census with k = 4 and k = 5. Results are presented

only for the smaller subgraphs since no significant differences were observed. Subgraph enu-

meration and necessary motif statistical significance tests were performed using GT-Scanner

by [30], available at http://www.dcc.fc.up.pt/~daparicio/software. Network motifs were enu-

merated in the final aggregate state of each network from Table 5 and motif scores Δs,N were

computed for each subgraph Gs (Eq 1) and normalized (Eq 2). Motif fingerprints between two

networks are compared by computing their Euclidean distance.

Fig 9 shows the obtained motif-fingerprints for all 4-node undirected subgraphs (uG4), eval-

uated against 100 randomized networks. Co-authorship networks have a similar motif-profile

where cliques and near-cliques are the most unexpectedly prevalent groups. This comes from

the fact that scientific collaboration communities tend to be tightly connected [16]. The two

crime networks have a similar network profile, with cliques and near-cliques being underrep-

resented while squares (G3) are very overrepresented. This result was expected since our crime

networks are geographical graphs with near-zero clustering coefficient and cities have a grid-

like structure. Motif-profiles of the email networks are also relatively alike. Similar to co-

authorship networks, cliques and near-cliques are the most overrepresented subgraphs. How-

ever, that is much more obvious in Enron than in Emails. This is probably because

Fig 8. Characteristic path length of the networks by time—Grouped by type.

https://doi.org/10.1371/journal.pone.0205497.g008
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Emails is too small for the over-representation to become obvious since the small random

networks are also capable of generating cliques and near-cliques. Physical interaction networks

have a similar motif-fingerprint but it seems indistinguishable from co-authorship networks.

Both types of networks have cliques and near-cliques as the most overrepresented subgraphs

but those groups have different meanings. In co-authorship networks they might indicate

communities but in the short-term networks they seem to simply indicate that everyone com-

municates with everyone by the end of the time-frame. Analyzing just the final aggregate net-

work ignores relevant information, it is often more insightful to study how networks evolve.

Bipartite networks have similar motif-fingerprints but they are also identical to those of crime

networks. It should be pointed out that these networks are not pure bipartite networks but

only nearly bipartite, otherwise subgraphs with cycles would never occur (G3, G4, G5 and G6).

The Transfer network’s motif fingerprint is also similar to the ones of crime and bipartite

networks. Finally, Facebook’s motif-profile is alike co-authorship network except G3 is also

overrepresented. Since Facebook’s density is so low (NE2 �
183000

640002 � 0:004%) randomized net-

works have almost exclusively stars (G1) and chains (G2). Finally, by observing Fig 10(a) it is

clear that motifs can only separate the networks into two big groups.

Static graphlets

Graphlets are subgraphs that take into account the position that nodes occupy in them. Fig 1

shows set uO4, representing all orbits of uG4. As stated in Problem 2, graphlet-agreement com-

putation requires graphlet-orbits to be counted for all nodes in N. After obtaining GDD matri-

ces for all N 2 N we compute the GDA for all network pairs. This results in a GDAi,j matrix

where GDA(Ni, Nj) � 0 means that networks Ni and Nj are completely different and GDA(Ni,

Fig 9. Motif-fingerprints of the networks by time—Grouped by type.

https://doi.org/10.1371/journal.pone.0205497.g009
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Nj) � 1 translates to Ni and Nj being very similar. Fig 10(b) shows the obtained GDAi,j matrix

where each cell is colored according to the GDA value and similar networks have a darker cell.

Graphlets group bipartite networks and most of the physical interactions networks correctly.

By comparison, motif-fingerprints were only capable of finding two large groups, as discussed

in the previous section. Neither motifs nor graphlets were able to cluster the set of networks

correctly, which might indicate that temporal information is relevant to understand these

networks.

Graphlet-orbit transitions

All possible transitions between graphlet-orbits from the set uO4 (Fig 1) were considered in

our experiments. Enumerating larger subgraphs was unnecessary since our method already

achieves an adequate grouping for k = 4. Furthermore, larger subgraphs would be harder to

visualize in paper format. Previous studies analyzed graphlet transitions [24, 25], but graphlet-

orbit transitions give more information since they account for changes of position in the same

graphlet, for instance. A full orbit enumeration was performed for each snapshot Si in order to

build graphlet-orbit transitions matrices uT 4 for each network from Table 5. Fig 11 shows the

transition matrices of Authenticus, a collaboration network, and Conference, a physi-

cal interaction network. To simplify visualization, OTA values were discretized into three

intervals, indicating rare ( 0; 1

3

� �
), common (� 1

3
; 2

3
�) and frequent transitions (� 2

3
; 1�). The main

diagonal of the matrix suggests that all orbits are relatively stable in Authenticus except for

the square-orbit O5. This is expected from collaboration networks since groups forming a

square-graph are only loosely connected, therefore these groups tend to either become tighter

(transition from O5 to orbits 6-11) or nearly break apart (transition from O5 to orbits 1-4). On

Fig 10. Similarity matrices according to (a) motif-fingerprints’ Euclidean distance (ED), (b) graphlet-degree-

agreement (GDA) and (c) orbit-transition-agreement (OTA). Clustering is performed using hierarchical clustering

with complete linkage.

https://doi.org/10.1371/journal.pone.0205497.g010
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the other hand, orbits in Conference are very unstable, i.e. they almost always change to

another orbit. This is explained by the fact that, in short-term physical interaction groups, con-

nections are mostly temporary and not a strong indicator of community. In this example, peo-

ple meet in a conference and they might meet people that their “group” already met, but they

are mostly interested in meeting more people than establishing strong groups. As another

example, O1 shows the effect of hubs in collaboration networks: it is more likely that a hub-like

group will gain a new edge between previously unconnected authors (transition from O1 to

O6) than for to remain unconnected. It is also common that not only one but two new edges

appear (transition from O1 to O9). However, stars (O1/O2) becoming cliques (O11) is rare in

Authenticus. Interestingly, Fig 12 shows that star-to-clique transitions are common in the

other collaboration network, arXiv hep-ph. This might come from the fact that, while

Authenticus data covers multiple areas, arXiv hep-ph only has publications pertaining

to physicists; therefore, the observed differences may hint that physicists form tighter connec-

tions sooner than the average. It also seems that transitions are relatively slow in collaboration

networks since it is rare for a loosely connected subgraph to become a densely connected sub-

graph in just a single jump. The same cannot be said about Conference, where behavior is

almost chaotic. These are only some of the possible observations about transition matrices that

highlight their interpretive power. Fig 10(c) clearly shows that graphlet-orbit transitions are

able to correctly group our set of temporal networks while motifs and static graphlet-orbits

could not (Fig 10(a) and 10(b)).

For completeness, Fig 12 presents orbit transitions for collaboration, physical interaction,

crime and bipartite network. Matrices are discriminated by starting orbit (each matrix) and by

network (each matrix-row) for an easier comparison. For instance, the first matrix from Fig 12

shows, for each network, the transitions of O1 to all Ok 2 uO4, the second one of O2 to all

Ok 2 uO4, and so forth. To help visualization we inserted red lines that separate networks of

different categories. It is clear that, while networks of the same category have some differences

in their orbit-transition profile, they are more alike than networks from different categories.

As an example: the transitions of O1 clearly distinguish co-authorship from physical interac-

tion networks, and also co-authorship from crime and bipartite networks. However, O1 transi-

tions are very similar for crime and bipartite networks. Distinguishing these two types of

networks can be achieved by instead looking at O5, for instance. Orbit-transition fingerprints

are a visual way of interpreting how a network evolves and present very detailed topological

and temporal information.

Fig 11. Orbit-transition matrices of (a) a collaboration network and a (b) physical interaction network for all

4-node orbits.

https://doi.org/10.1371/journal.pone.0205497.g011
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Conclusion

In this paper we put forward a new extension of graphlets for temporal networks (GOT), as

well as a novel metric (OTA) to compare them. The effectiveness of our proposed method was

assessed on (a) synthetic networks pertaining to well-studied graph models and (b) a set of

temporal networks with predetermined categories. Our method was shown to be more accu-

rate than competing approaches on synthetic data. For real networks, we began by analyzing

Fig 12. Orbit-transition fingerprints for collaboration, physical interaction, crime and bipartite networks.

Frequency values are discretized into rare, common and frequent transitions.

https://doi.org/10.1371/journal.pone.0205497.g012
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how global metrics evolved over time, namely the average-degree, clustering-coefficient and

the characteristic path-length. While these metrics give insight into the topological structure of

the networks, we could not visualize that networks of different categories are distinguishable

using them. Static network motif and graphlet analyses were also conducted since they capture

richer topological information than aforementioned global metrics. However, since they do

not take temporal information into account, they are not adequate for temporal network com-

parison. Our method correctly clustered the set of networks by category, showcasing both the

importance of temporal information in these networks and our method’s clustering capabili-

ties. Furthermore, our method produces highly interpretable results, leading to a better under-

standing of network evolution and differences between transitions of distinct networks.
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Journal of Statistical Mechanics: Theory and Experiment. 2011; 2011(11):P11005. https://doi.org/10.

1088/1742-5468/2011/11/P11005

23. Martin AJ, Dominguez C, Contreras-Riquelme S, Holmes DS, Perez-Acle T. Graphlet Based Metrics for

the Comparison of Gene Regulatory Networks. PloS one. 2016; 11(10):e0163497. https://doi.org/10.

1371/journal.pone.0163497 PMID: 27695050

24. Doroud M, Bhattacharyya P, Wu SF, Felmlee D; IEEE. The evolution of ego-centric triads: A micro-

scopic approach toward predicting macroscopic network properties. 2011; p. 172–179.

25. Kim MS, Kim JR, Kim D, Lander AD, Cho KH. Spatiotemporal network motif reveals the biological traits

of developmental gene regulatory networks in Drosophila melanogaster. BMC systems biology. 2012;

6(1):31. https://doi.org/10.1186/1752-0509-6-31 PMID: 22548745

26. Jin R, McCallen S, Almaas E. Trend motif: A graph mining approach for analysis of dynamic complex

networks. In: Seventh IEEE International Conference on Data Mining (ICDM 2007). IEEE; 2007.

p. 541–546.
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