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Abstract. Given an heterogeneous social network, can we forecast its future? Can we
predict who will start using a given hashtag on twitter? Can we leverage side infor-
mation, such as who retweets or follows whom, to improve our membership forecasts?
We present TensorCast, a novel method that forecasts time-evolving networks more
accurately than current state of the art methods by incorporating multiple data sources
in coupled tensors. TensorCast is (a) scalable, being linearithmic on the number of
connections; (b) effective, achieving over 20% improved precision on top-1000 forecasts
of community members; (c) general, being applicable to data sources with different
structure. We run our method on multiple real-world networks, including DBLP, epi-
demiology data, power grid data, and a Twitter temporal network with over 310 million
non-zeros, where we predict the evolution of the activity of the use of political hashtags.

Keywords: time-evolving network; coupled tensor; forecasting;

1. Introduction

If a group has been discussing the #elections on Twitter, with interest steadily
increasing as election day comes, can we predict who is going to join the discus-
sion next week? Intuitively, our forecast should take into account other hashtags
(#) that have been used, but also user-user interactions such as followers and
retweets.

Similarly, can we predict who is going to publish on a given conference next
year? We should be able to make use of, not only the data about where each
author previously published, but also co-authorship data and keywords that
might indicate a shift in interests and research focus.
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Fig. 1. TensorCast is effective and scalable.

Today’s data sources are often heterogeneous, characterized by different types
of entities and relations that we should leverage in order to enrich our datasets.
In order to predict the evolution of some of these interactions, we propose to
model these heterogeneous graphs as Coupled Tensors that, jointly, generate
better predictions than when considered independently.

In particular, we will show how the evolution of user to user connections can
be used to forecast user to entity relations, e.g. information about who retweets
whom improves the prediction of who is going to use a given hashtag, and co-
authorship information improves the prediction of who is going to publish at a
given venue.

Informal Problem. Forecasting Interactions
Given historical interaction records between different users and between

users and entities.
Find interactions likely to occur in the future efficiently.

Using a naive approach, one would have to individually forecast every pair
of users and entities - a prohibitively big number that quadratically explodes.
How can one avoid quadratic explosion during forecasting? How can we obtain
the K likely interactions without iterating through them all?

As a summary of our results, Figure 1a shows that TensorCast is able to
achieve 20% more precision than competing methods on the task of predicting
who is going to publish on which venue in 2015 using DBLP data. Figure 1b
shows TensorCast scaling to hundreds of millions of non-zeros on Twitter
data.

We underline our main contributions:

1. Effectiveness: TensorCast achieves over 20% higher precision in top-1000
queries and double the precision when finding new relations than comparable
alternatives.

2. Scalability : TensorCast scales well (E+N logN) with the input size and
is tested in datasets with over 300M interactions.

3. Context-awareness: we show how different data sources can be included in
a principled way.
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Table 1. Symbols and Definitions

Symbols Definitions

‖X‖F Frobenius norm of tensor X

X (k) Mode-k matricization

Mt Matrix transpose

◦ Vector outer product

� Khatri-rao product

⊗ Hadamard (entrywise) product

� Hadamard (entrywise) division

X Tensor of our interest (for forecasting)

Y Coupled tensor

A,B,C,T Factor matrices

λ Parameter for the weight of the coupled fac-
torization

R Set of biggest elements to reconstruct

4. Tensor Top-K: we show how to quickly find the K biggest elements of sums
of three-way vector outer products under realistic assumptions.

Reproducibility: TensorCast can be obtained at www.dcc.fc.up.pt/~pribeiro/
tensorcast/.

2. Background

Notation. As common in the literature, we denote vectors by boldface lowercase
letters (e.g., a), matrices by boldface uppercase letters (e.g., A) and tensors
by boldface caligraphic letters (e.g., X ). For convenience, we refer to the f -th
column of A as af and to the (i, j, k) entry of 3-mode tensor X as X ijk. Please
refer to Table 1 for operators and additional symbols we use throughout the
paper.

2.1. Tensor Factorizations

Tensors are multidimensional arrays that generalize the concept of matrices.
As a consequence, they are a popular choice in various applications including
representing time-evolving relations, such as Facebook interactions (Papalexakis
et al.; 2012), sensor networks (Sun et al.; 2006), EEG data for detecting the
origin of epilepsy seizures (Acar et al.; 2007), fMRI analysis (Walker et al.; 2015),
image classification (Tao et al.; 2005), or heterogeneous graph analysis (Shi et al.;
2017). When properly applied, tensor factorizations identify the underlying low-
dimensional latent structure of the data. The latent factors are then used to
identify anomalies, to estimate missing values or to understand how the data was
generated in the first place. The PARAFAC (Harshman; 1970) (also called CP)
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Fig. 2. A simple Coupled Matrix-Tensor Factorization.

decomposition is one of the most popular among the many tensor factorizations
flavors (Kolda and Bader; 2009), as it factorizes a tensor into a sum of rank-1
tensors. In three modes, the problem is usually framed as finding factor matrices
A , B and C that minimize the squared error between X and the reconstructed

tensor: minA,B,C

∥∥∥X −∑f af ◦ bf ◦ cf
∥∥∥2
F

.

2.2. Coupled Factorizations

We are often interested in analyzing real-world tensors when additional informa-
tion is available from distinct sources. For example, in a simple recommendation
task with user×movie ratings, we might have user demographics data available
which we wish to incorporate when predicting future ratings.

Coupled Matrix-Tensor Factorizations and Coupled Tensor-Tensor Factoriza-
tions are a natural extension to the standard tensor factorization formulation.
For instance, the factorization of a third-order tensor X coupled with a matrix
M on its first mode can be obtained by minimizing

min
A,B,C,D

∥∥∥X − X̂∥∥∥2
F

+ λ
∥∥∥M − M̂

∥∥∥2
F

(1)

where λ is a parameter representing the strength of the coupling for this task,
i.e., how important M is to improve the prediction.

The matrix part of the Coupled Matrix-Tensor Factorization depicted in Fig-
ure 2 is useful to model additional static information about one of the modes
of the tensor of interest. Whenever the side information available is dynamic
(time-evolving), a model where two tensors are coupled along (at least) one of
the dimensions is more appropriate, as the time component can be preserved:

min
A,B,C,T

∥∥∥X − X̂∥∥∥2
F

+ λ
∥∥∥Y − Ŷ∥∥∥2

F
(2)

where:

X̂ =
∑
f

af ◦ bf ◦ tf

Ŷ =
∑
f

af ◦ cf ◦ tf

Many techniques have been proposed to solve this non-negative optimization
problem, such as projected Stochastic Gradient Descent (SGD) (Beutel et al.;
2014) (i.e., additive update rules) and multiplicative update rules. Most of this
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Fig. 3. Scores of the factor vectors are highly skewed. Non-negative factorization of
the DBLP author × venue × year tensor. Note the logarithmic scale in both axis.

work extends Lee and Seung’s multiplicative matrix updates formulae (Lee and
Seung; 2001) for matrices, notably the simple extension for tensors (Welling
and Weber; 2001) and the many coupled extensions, e.g. Generalized Tensor
Factorization (Yılmaz; 2012; Şimşekli et al.; 2013). Update equations can be
found in Appendix 7.

2.3. Skewed building blocks

When factorizing real-life graph data, the scores of the non-negative factors are
not uniformly distributed but decrease sharply. For instance, it has been shown
that the internal degree distribution of big communities can be well approximated
by a power-law across several domains (Araujo et al.; 2014), that eigenvectors
of Kronecker graphs exhibit a multinomial distribution (Leskovec et al.; 2005,
theorem 3) and multiple generative models where power-law communities arise
have been proposed (Pasta et al.; 2013; Zhou et al.; 2008; Xie et al.; 2007).
TensorCast leverages this property in order to speed-up its computation of
Top-K elements without reconstructing the forecasted tensor.

To further strengthen the ubiquity of these structures, Figure 3 shows the
scores of 4 factors of the venue component of a non-negative factorization of
the DBLP author × venue × year tensor we use in the experiments section.
Note the skewness of the these scores and that they can be upper-bounded by a
power-law.

3. Related Work

3.1. Top-K elements in Matrix Products

Given the widespread applications of matrix factorizations, finding the top-K
elements of a matrix product is an important problem with several use cases,
from personalized user recommendations to document retrieval.

The problem can be stated as, given matrices A and B of sizes N × F and
M × F , respectively, find the top K (i, j) pairs of the ABt matrix product.
Note that the naive solution requires O(NMF ) operations, iterating over the
(originally) implicitly defined reconstruction matrix. Some attention has been
given to this problem, since Ram and Gray (Ram and Gray; 2012) proposed the
use of Cone Trees to speed-up this search. Other approaches map this problem
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into smaller sets of cosine-similarity searches (Teflioudi et al.; 2015), a related but
easier problem given the unit-length of the vectors. Approximate methods have
also been tried, such as transforming the problem in a near-neighbor search and
using locality sensitive hashing (LSH) (Shrivastava and Li; 2014; Neyshabur and
Srebro; 2014). However, this is a non-convex optimization problem in general.

3.2. Link Prediction

A large body of literature on link prediction has been created since its intro-
duction (Liben-Nowell and Kleinberg; 2007). In structural link prediction, the
original problem, the goal is to predict which links are more likely to appear in the
future given a current snapshot of the network under analysis. This setting, where
it is typical to assume that links are never or seldom removed, has found mul-
tiple applications in predicting interactions in protein-protein networks, social
networks (e.g., friendship relations) and recommendation problems. The Netflix
challenge sprung the creation of several latent factor models with differing struc-
ture and/or regularization terms for this task (Koren; 2008; Menon and Elkan;
2011), but there were also several approaches which showed that using the age
of the link could lead to improved predictions (Koren; 2010).

On the other hand, given the increased availability of dynamic or time-
evolving graphs (frequently used to model evolving relationships between enti-
ties over time), temporal link prediction methods have been developed to predict
future snapshots. In this setting where links are not guaranteed to persist over
time, we distinguish methods that rely on collapsing (matricizing) the input data
(e.g., exponential decay of edge weights (Sharan and Neville; 2008; Gao et al.;
2011)) from methods that deal directly with the increased dimensionality, such
as tensor-based methods. CP Forecasting (Dunlavy et al.; 2011) finds a low-rank
PARAFAC factorization and forecasts the time-component in order to incorpo-
rate seasonality. TriMine (Matsubara et al.; 2012) similarly factorizes the input
tensor, but then applies probabilistic inference in order to identify hidden topics
that connect users and entities, which it then draws from in order to generate
realistic sequences of future events. These methods are not able to integrate con-
textual information on their predictions. Other approaches integrate structure
and content in the same prediction task, e.g. Gao et al (Gao et al.; 2011) suggest
a coupled matrix factorizations and graph regularization technique to obtain the
latent factors after an exponential decay of the temporal network.

However, none of these methods fulfills all the requirements for forecast-
ing when contextual information is considered. Table 2 contrasts TensorCast
against the state of the art competitors on key specs: (a) linear scalability with
sparse data; (b) interpretability of the underlying model; (c) time-awareness
for forecasting periodic, growing and/or decaying relations; (d) ability to deal
with additional contextual information; (e) the ability to forecast the dis-
appearance of existing relations; and (f) the ability of providing an ordered
ranking of future events by likelihood of occurrence.

4. Proposed: TensorCast

We assume a coupled-tensors setting where multiple tensors, possibly with dif-
ferent dimensions, are related by common modes. We will assume that at least
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Table 2. TensorCast integrates context and time-awareness.
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X X

Truncated Katz
X X

Coupled Matrices
(e.g., (Gao et al.; 2011)) X X X X

VAR (Zellner; 1962),
ARIMA (Box and Pierce; 1970), etc. X X X

CP Forecasting
(Dunlavy et al.; 2011) X X X X X

TriMine
(Matsubara et al.; 2012) X X X X

TensorCast X X X X X X X

one of these tensors is our tensor of interest: it is a 3-dimensional binary tensor
and one of the modes corresponds to a time component which we would like to
forecast.

There are many scenarios that can be instantiated under this setting: imag-
ine the existence of membership records of the form (user, topic, time), with N
unique users and M unique topics (or communities) over T unique time intervals
encoded in a 3rd-order tensor X ∈ {0, 1}N×M×T . Maybe we also have available
an additional collection of user interaction records of the form (user, user, time),
similarly encoded in a 3rd-order tensor Y ∈ {0, 1}N×N×T . One possible forecast-
ing problem could be framed as predicting which users will interact with which
topics in the future, taking advantage of the information from both sources1.

We are interested in the following general problem:

Problem 1. Forecasting Tensor Evolution
Given two coupled tensors (X and Y), a number of K relations and S time-
steps.
Forecast, for the next S time-steps, the ranked list of K likely non-zero elements
of X .

While Problem 1 is interesting by itself, accurate top-K predictions can of-
ten be made by identifying which non-zeros constantly appear in the tensor of
interest. In the previous example, these would correspond to users that have con-
stantly discussed the same topics over time. Therefore, we define the following
related problem:

1 One of the experiments in Section 5 deals with this scenario.
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Fig. 4. Overview of TensorCast.

Subproblem 1. Forecasting Novel Relations
Given two coupled tensors (X and Y), a number of K relations and S time-
steps.
Forecast, for the next S time-steps, the ranked list of K likely new relations of
X .

We define a new or novel relation as a non-zero that does not exist in the
tensor of interest when the time component is collapsed. We argue that subprob-
lem 1 is more useful in many realistic scenarios where predicting who is joining
or leaving a community is more relevant than predicting who is staying. For
instance, in the elections example, members who recently joined the discussion
are probably easier to influence, while forecasting clients likely to stop doing
business with a company is one of the key problems in customer relations.

Overview. TensorCast is comprised of three successive steps, described
in more detail in the following subsections:

1. Non-negative Coupled Factorization: the factorization will tie together
the various input tensors and identify their rank-1 components.

2. Forecasting: given the low dimensional space identified, we use standard
techniques to forecast the time component.

3. Top-K elements: we exploit the factorization structure and identify the top
elements without having to reconstruct the prohibitively big future tensor.

Figure 4 illustrates the intuition of our method.

4.1. Non-negative Coupled Factorization

Consider that the tensor of interest, X , is a 3-dimensional N ×M × T dataset
and that the time component corresponds to the last index of the tensor. Then,
naively, the number of elements to be forecasted (S × N ×M) is a prohibitive
number when we consider X to be big and sparse.

Therefore, factorizing the input data achieves a two-fold objective: not only
does it reduce the number of elements to be forecasted, but perhaps more impor-
tantly, it co-clusters similar elements together enabling generalization. A careful
factorization will allow the forecast of previously unseen relations. We opted for
a non-negative coupled factorization in order to improve the interpretability of
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the model; the importance of this feature will be clear when analyzing empirical
evidence in Section 5.

We explore how user interactions can be leveraged to improve forecasts of
future user-entity relations. Under this assumption, the problem is better mod-
eled as two coupled tensors where tensor Y is a N ×N ×T symmetric tensor. In
order to guarantee convergence, we modify the update of the symmetric factor
matrix to

A← A⊗ 3

√
X (1)(B � T ) + λY(1)(A� T )

A(B � T )t(B � T ) + λA(A� T )t(A� T )

We employ automatic selection of λ, where both tensors are weighted equally

by selecting λ =
||X ||2F
||Y||2F

. The sensitivity analysis on λ is shown later in section 5.

See Appendix 7 for further details.

4.2. Forecasting

Let T be the T × F factor matrix obtained from the previous step that cor-
responds to the time component. It consists of a small set of F dense factor
vectors, hence easy to forecast, that will provide an approximation X̂ of the
next time-step.

The most appropriate forecasting mechanism is data-dependent. We fore-
cast using basic exponential smoothing (Holt’s method), but other methods can
be applied, e.g. Holt-Winters double exponential smoothing when seasonality is
present.

4.3. Tensor Top-K elements

The forecast of the next time-step is a N ×M ×S tensor represented as
∑
f

af ◦

bf ◦ sf where A is N × F , B is M × F and S is S × F .
We extend the literature on the retrieval of maximum entries in a matrix

product to the tensor case, leveraging the fact that the factorization was not
performed on random data but on a graph that follows typical properties. The
goal is to identify the K (i, j, k) positions with highest value∑

f

AifBjfSkf

We’ll start by showing how this could be achieved if the X̂ tensor was rank-1
and how multiple factors can be combined while preserving performance guaran-
tees. We assume that the number of forecasted time-steps is significantly smaller
than the number of users or topics (i.e., S � N,M) and that the number of
topics is of the same order of magnitude but smaller than the number of users
(i.e., M < N).

Top-K of single factor. We start by creating a data structure that lets
us obtain the next biggest element in O(log(SM)) time, with only O(S logS +
M logM +N logN + SM) preprocessing.

Firstly, we sort the three vectors (s, a and b) in decreasing order. Note that,
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now, not only do we know that the biggest element is given by a1b1s1, but also
that an element aibjsk only needs to be considered after ai−1bjsk, aibj−1sk
and aibjsk−1 have all been identified as one of the biggest K 2. Hence, we can
create a priority queue which only holds, at most, O(SM) elements at a time.

Combining multiple factors. The major hurdle is handling the interaction
between multiple factors. We propose a greedy Top-K selection algorithm that,
under realistic scenarios, efficiently achieves this goal. Algorithm 1 illustrates the
pseudo code of this procedure.

We keep a list (R) of the K biggest positions evaluated so far and Fi.next
represents the next element not yet considered in factor’s i priority queue, as
described in the previous section. In each iteration, we consider the element
with the highest score in one of the factors and add it to the list after evaluating
it across all the factors. We terminate when the sum of the next best scores on
each factor becomes smaller than the Kth biggest element in R.

input : F - priority queues of factors
input : K - number of elements
output: R - set of biggest elements

1 while
∑
i Fi.next.factorScore > R.last.Score do

2 f ← arg maxi(Fi.next.factorScore)
3 element ← Ff .next
4 Ff .pop
5 R← R ∪ element.fullScore
6 if R.size > K then
7 R← R− arg min(R)
8 end
9 end

10 return R

Algorithm 1: TensorCast Top-K Elements

In the following, we prove the correctness and upper bounds on the overall
number of elements that need to be evaluated.

Theorem 1. Algorithm 1 always returns the correct set of Top-k elements.

Proof. Consider an element x that should be included in R but was never con-
sidered. As the algorithm has terminated, it follows that x’s score is lower than
the sum of all the individual factor scores of elements at the top of each priority
queue. However, we know that the smallest element in R is bigger than this, so
this is a contradiction and x cannot exist.

Theorem 1 proves that Algorithm 1 always finds the correct set of elements.
We now show that the set of elements that need to be considered is small when
factors follow common power-law distributions. We assume a and b follow power-
laws of the form (α− 1)x−α for x ≥ 1 and α > 1.

Lemma 1. If factor vectors a and b follow power-laws with exponents αa and

2 For instance, we know that the second biggest element is one of a2b1s1, a1b2s1 or a1b1s2.
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αb, then a randomly drawn element from any rank-1 frontal slice created as
Ckf = a ◦ b asymptotically follows a power-law

pC(z) = (α− 1)z−α

where α = min(αa, αb).

Proof. Let X and Y follow power-law distributions of the form

pX(x) = (αa − 1)x−αa

pY (y) = (αb − 1)y−αb

Then Z = XY has probability distribution (Grimmett and Stirzaker; 2001,
p. 109):

pZ(z) =

∫ z

1

pX(w)pY

( z
w

) 1

w
dw =

=
(αa − 1)(αb − 1)

αa − αb
(z−αa − z−αb)

which tends to a power-law with exponent −min(αa, αb).

Lemma 1 shows that elements randomly drawn from any rank-1 frontal slice
follow a power-law distribution. However, please note that Algorithm 1 iterates
over these elements in decreasing order, i.e., deterministically. Therefore, any
uncertainty is not related to sampling from the distribution, but rather to the
skewness of the factor vectors - how well the power-law assumption holds. Refer
back to 2.3 for further details and both theoretical and empirical evidence.

Theorem 2. Algorithm 1 needs to check at most KSF 1+ 1
α elements if every

frontal slice af ◦ bf follows a power-law.

Proof. We’ll consider the frontal slices one at a time and show that one only
needs to check KF 1+ 1

α elements to find the K biggest values of each slice. Let
α1..F be the exponents of the power-law of each of the F factor matrices af ◦bf

of a given frontal slice and let αm = minα.
The K-th biggest element of

∑
f af ◦ bf is at least K−αm , as that is the Kth

biggest value of the slowest decreasing power-law3. Given the iterative nature of
Algorithm 1, we will prove an upper-bound for the maximum position (i.e., how
deep in one of the factors) an element can be, while still having a reconstruction
value greater than K−αm . Let x be the position of such element4, then

K−αm ≤
∑
f

x−αf ≤ Fx−αm =⇒ x ≤ KF
1
αm

This means that any top-k element needs to be in a position smaller than

KF
1
αm in at least one of the factors, which implies that, in the worst case,

Algorithm 1 only needs to check KF
1
αm F = KF 1+ 1

αm elements to find the K

3 Remember that A and B are non-negative matrices. In the worst-case, the score of the Kth

biggest element is taken from a single power-law and the contribution of the rest of the factors
is 0, hence K−αm is a lower-bound for the Kth biggest value.
4 In the worst case scenario, this element is at position x in every of the factors.
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biggest elements on each frontal slice. Therefore, we can upper-bound the total
number of elements checked by KSF 1+ 1

α .

Note that TensorCast is linear on the number of elements we want to
obtain times the number of time-steps forecasted. Furthermore, note that this
result agrees with intuition: sharper (i.e., quickly decreasing, higher exponent)
power-laws require less elements to be checked, while near-clique factors imply
lower exponents and more elements to be analyzed.

Figure 5 provides further empirical evidence of the linear growth on the num-
ber of values we need to check. We plot the number of positions evaluated as
K is increased, on a synthetic network, when forecasting one time-step (S = 1),
using 8 factors and varying the power-law exponents from 1.5 to 2.2.

4.4. Complexity Analysis.

Observation 1. TensorCast requires time linear on the number of non-zeros
of its input tensors.

Rationale. TensorCast’s time complexity is a sum of its three stages:

1. The coupled-factorization requires linear time on the number of non-zeros.

2. Forecasting is typically linear on the number of timesteps, although it depends
on the algorithm selected.

3. As shown in the previous section, identifying the top-K elements is linear on
K and sub-quadratic on the number of factors.

5. Experiments

We report experiments to answer the following questions:

Q1. Scalability: How fast is TensorCast?

Q2. Effectiveness and Context-awareness: How does TensorCast’s preci-
sion compare with its alternatives? How much improvement does contextual
data bring?

Q3. Trend Following: How capable is TensorCast of detecting and following
trends?
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Table 3. Summary of real-world networks used.

Users Groups Timesteps Memberships Interactions Description

1,734,902 5,476 79 8,049,559 21,423,244 DBLP - venues
published
and
co-authorships.

12,426,133 2,326,843 31 30,281,817 282,280,158 Twitter -
hashtags used
and retweets.

Q4. Precision over Time: How does TensorCast’s precision behave as we
forecast farther to the future?

Q5. Sensitivity analysis on λ: How sensitive is TensorCast’s performance
on the parameter λ?

TensorCast is tested on two big datasets detailed in Table 3. In the DBLP
dataset, the tensor to be forecasted consists of authors and venues in which they
published from 1970 to 2014, while the co-authorship tensor is used as contextual
information. Evaluation is performed on the 2015 author × venue data. In the
Twitter dataset, the tensor of interest relates users and hashtags (#) they
used from June to December 2009, while the auxiliary tensor represents user
interactions through re-tweets. Tweets are grouped by week and evaluation is
performed on week 51.

Unless otherwise specified, every factorization approach uses 10 factors. On
the Twitter dataset, we weighted the reconstruction of the tensor of interest
as 20 times more relevant that the context tensor. On DBLP, we weighted non-
zeros of the tensor of interest 2.66 times higher than in the tensor of context (so
that both tensors have the same reconstruction error when considering empty
factors).

Q1 - Scalability

We start by evaluating our method’s scalability when changing the number of
non-zeros in the Twitter dataset5. By changing the number of weeks under
consideration, we create a sequence of pairs of tensors that increase in size. For
each pair, we measure wall-clock time when performing a rank-4 coupled tensor
factorization, forecasting and identification of the top-1000 forecasted non-zeros.
Figure 1b shows TensorCast’s linear scalability.

Q2 - Effectiveness and Context-awareness

Figures 1a and 6 showcase TensorCast’s accuracy on the task of predicting
relations on future time steps. While Figure 1a shows TensorCast’s superior
precision as we increase K on the DBLP dataset, Figure 6 focus particularly on
forecasting novel relations on Twitter. We would like to highlight the difficulty

5 We consider the sum of the non-zeros of both tensors.
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Fig. 6. Double precision when forecasting novel (user, hashtag) relations in the Twitter
tensor.

of this task, as we are predicting whether a given user is going to start using a
new hashtag on the next week. Nevertheless, TensorCast achieves double the
precision of competing methods6.

Furthermore, note the importance of TensorCast’s ability of being simulta-
neously contextual and time-aware, as the precision of the current state-of-the-art
is limited due to ignoring either one of these aspects.

The competing CP Forecasting (Dunlavy et al.; 2011) method was run using
Holt forecasting, given the lack of seasonality of the data. The results of the other
competitor, Coupled Matrices, were obtained by finding non-negative factors that
minimize the reconstruction error of the collapsed tensors, weighted for the same
importance. For fairness, all appropriate methods use 10 as the number of factors.

Q3 - Trend Following

We evaluate TensorCast’s ability of predicting an increase or decrease in the
activity around a given topic or between a group of users over time. We cre-
ated a synthetic dataset with 5 hyperbolic communities (i.e., with power-law
internal degree distribution) of 100 users over 11 days (10 days are used for the
factorization and 1 for evaluation). The average density over the first 10 days
equals 15% for all communities, but their density changes differently over time:
two communities have their densities increasing at 1% and 2% per day, one has
constant density and the other have their density decreasing by 1% and 2% per
day.

Figure 7 shows the scores of the 5 columns of the T matrix after factorization,
one per line. We can see that linear changes in density correspond to linear
changes of the scores and that TensorCast correctly forecasts a similar change
in the future.

6 Note that the quality of absolute precision numbers is affected by 1) how imbalanced the
two classes are and 2) the cost of false positives. An improvement from 2% to 5% precision
might imply that 1 out of 20 phone-calls we make target a potential customer versus every 1
in 50.
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Q4 - Precision over Time

We evaluate TensorCast’s precision as the forecasting horizon is increased.
We use the DBLP dataset, doing five runs with each method when considering
different “training” periods (i.e., the first run considered every publication before
2010, while the last run considered every publication before 2015). For each
run, we obtained the 1000 most likely non-zeros for each of the next 5 years
and calculated TensorCast’s precision. Figure 8 shows, for each method, the
average precision for each forecasting horizon.

Q5 - Sensitivity analysis on λ

We analyze TensorCast’s sensitivity to the λ parameter, which determines the
influence of each tensor. Figure 9 illustrates our methods forecasting performance
as λ is changed. The red cross marks the automatic selection defined earlier in
section 4. We see that the optimal λ that minimizes the forecasting error is
around 0.75, but the automatic choice of λ = 1.12 is near the optimal point.

6. Discoveries - TensorCast at work

We show that TensorCast is practical and useful on real world dataset by
presenting our discoveries:
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Fig. 9. TensorCast finds near-optimal λ. λ by TensorCast (in red) is near optimal

Table 4. Summary of real world datasets with various structures
Name Description Structure Mode Size Type

Power
grid
dataset

Real and imagi-
nary part of the
current Ir, Ii (a
tensor) and real
part of the voltage
Vr (a matrix) on
CMU campus

A tensor
and a ma-
trix

hours of
a day;
variables
(Ir, Ii);
days;

24 x 2 x 185
(tensor)
24 x 185
(matrix)

real-
valued,
full
tensor/matrix

Tycho
dataset

Epidemics counts
of 5 diseases in
New York, New
Jersey, and Penn-
sylvania state

three
tensors,
one for
each state

diseases;
weeks of
a year;
years

three tensors
of size
52 x 5 x 13

real-
valued,
full tensor

D1. Generality : TensorCast is general and is applicable to various types of
real world datasets in different tensor structures.

D2. Anomaly detection: the forecast by TensorCast cab be used for anomaly
detection.

D3. Interpretability : TensorCast provides interpretable results with non-negative
factors.

D1 - Generality

In section 5, we have demonstrated TensorCast’s behavior on two of the big,
sparse, and binary tensors. Can TensorCast be used for different types of real
world data that are full, and real-valued coupled tensor-matrix, or three tensors?
In this section, we further show the generality of our proposed TensorCast
over different types of real world data and varied tensor structures (coupled
factorization between a tensor and a matrix, and coupled factorization of three
tensors), that is full tensor/matrix. A summary of the additional real world
dataset is in Table 4.

1) Power grid dataset : Figure 10 illustrates the power grid dataset we use.
These are measurements of the real and imaginary part of the current (Ir and
Ii) and the real part of the voltage Vr on the CMU campus from April 29
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Fig. 10. Power grid dataset

(a) (b) (c)

Fig. 11. Tensor/matrix construction. (a) Constructing a tensor/matrix from time-series
data. Tensor/matrix structure of (b) power grid dataset, and three tensor structure of (c)
Tycho dataset.

2017 to November 2 2017 in hourly interval. Since the voltage is predictable
(around ∼ 4.2kV ), we are interested in forecasting the current consumption on
campus so that appropriate resources can be provided. Previous work has shown
that current consumption is closely related to voltage consumption (in linear
relationship) (Song et al.; 2017), so we expect to be able to leverage the voltage
consumption pattern over time in order to forecast the current consumption in
future.

We can construct a tensor of three modes where each mode corresponds to
the days; hours of the day; and Ir and Ii. The coupled matrix is Vr measurements
for the days by the hours of the day. How we construct a tensor and a matrix
from the time sequences of three variables Ir, Ii, Vr is illustrated in Figure 11
(a) and (b). For each variable Ir, Ii, Vr, we can cut the time sequences into daily
units and stack each daily unit one after another to form a slice of a tensor (or
a matrix) as shown in (a). Update rules similar to those shown in Appendix 7
can then be formulated.

In Figure 12, we show the forecasting result of (a) the competitor algorithm,
CP-forecast and of (b) our proposed method TensorCast. We see that while
CP-forecasting fails to make accurate forecasts for the next day, making large
mistakes, TensorCast forecasts almost realistically.

In Figure 12 (c), we quantitatively evaluate the forecasting accuracy by com-
paring the mean squared error (MSE) of the forecasting by the competitor al-
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(a) CP-forecast (b) TensorCast (c) MSE comparison

Fig. 12. TensorCast forecasts accurately. (a) CP-forecast result. (b) TensorCast forecast
result. (c) Quantitative comparison on forecasts.

(a) New York (NY) (b) New Jersey (NJ) (c) Pennsylvania (PA)

Fig. 13. Tycho dataset, 5 diseases (mumps, rubella, hepatitis A, pertussis, and measles) for
3 states: (a) NY, (b) NJ, and (c) PA

gorithm and that of TensorCast. Results are averaged over 10 trials. We see
that, for 1-7 days forecasting, TensorCast is able to achieve lower MSE.

2) Tycho dataset : We also applied our TensorCast to an epidemics dataset 7.
The Tycho project by the University of Pittsburgh gathers the epidemics count
(the number of patients) spanning more than 100 years in all states in the USA.
In the level 1 type, there are 7 types of disease in total (hepatitis A, measles,
mumps, pertussis, polio, rubella, and smallpox) over 51 states. We only use 5
disease types (mumps, rubella, hepatitis A, pertussis, and measles) since they
have less missing values. We pick one of the biggest states, New York (NY), and
two of the biggest surrounding states, New Jersey (NJ), and Pennsylvania (PA),
and forecast the number of occurrences in NY using the contextual information
from the nearby states, NJ and PA. We can construct three tensors, one for each
state, NY, NJ, and PA, where each mode corresponds to the diseases, weeks
of the year, and the years. How we construct three tensors for each state is
illustrated in Figure 11 (a) and (c). For Tycho data, variable refers to a disease.
As before, update rules can be obtained by simple extensions to the equations
in Appendix 7.

Figure 13 illustrates the Tycho dataset of the 5 selected diseases types (mumps,
rubella, hepatitis A, pertussis, and measles) in three states, NY, NJ, and PA. We
see that some are periodic over the years, while others have a more bursty nature.

7 https://www.tycho.pitt.edu/
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(a) CP-forecast (b) TensorCast (c) MSE comparison

Fig. 14. TensorCast forecasts accurately. (a) CP-forecast result. (b) Quantitative com-
parison on forecasts. (c) TensorCast forecast result.

We expect that diseases counts of these three states will be somewhat related to
each other since they are neighboring states, hence contextual information will
enable better forecasts in NYs patients count.

Figure 14 shows the forecasting result from 1975 to 1980 of mumps of (a) the
competitor algorithm, CP-forecast, and of (b) our proposed method, Tensor-
Cast. We see that, while the competitor algorithm fails to forecast the periodic
ups and downs for the next 5 years, TensorCast successfully forecasts this
periodicity.

In Figure 14 (c), we quantitatively compare the forecasting result between
the competitor algorithm, CP-forecast and TensorCast, for 1-7 years by com-
puting the mean squared error (MSE). As before, we observe that our method
consistently achieves lower MSE than the competitor algorithm.

D2 - Anomaly detection

In this section, we show how our method can be extended for anomaly detection
tasks. We apply TensorCast on the Tycho and Power grid datasets explained
in the previous section and demonstrate its anomaly detection results.

The implicit definition of anomaly is a data point that is unexpected (=
surprising = low probability = outlier = rare event). For a cloud of points, an
anomaly is a point that is ‘too far away’ from the rest (Chandola et al.; 2009)
- this is exactly what outlier detection methods do (like the time-tested LOF
(Breunig et al.; 2000), LOCI (Papadimitriou et al.; 2003), and many more, up
to the very recent Random-Cut-Forest-based anomaly detection (Guha et al.;
2016)). Our view point is the same: an entry in the tensor of the form (source,
destination, t+1), is treated as an anomaly, if it is unexpected (=much different
from our forecast), given the past behavior of ‘source’ and ‘destination’. The
details of how one can define anomalies are orthogonal to this work - TensorCast
just gives expected values for the future, and it is up to the end-user to choose
one of the numerous anomaly detection algorithms and thresholds. For ease of
presentation, we chose a threshold of 5%, as we explain below.

1) Tycho dataset : In Figure 15, the anomalous time points detected by Ten-
sorCast are shown in the red shaded region. These anomalous points are de-
fined as the time points where the difference between the forecasted value and
the actually observed value are within top 5% of the deviations observed from
the past data. We chose 5% as the threshold for anomaly. Any reasonable value
of threshold would be fine (1%, 10%), but we chose 5% because this is the typ-
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Fig. 15. Anomaly detection in Tycho dataset TensorCast successfully detects sudden
increase in measles cases.

ical threshold for determining p-values for statistical-significance analysis. As
we can see from the plot, in 1976, there was a sudden increase in the measles
count compared to the decreasing trend in the previous years, and TensorCast
successfully detected this time point.

What may have caused sudden increase in the measles counts? From the epi-
demics references, we could find supporting documents that there was a sudden
increase in the year 1976 compared to the decreasing trend in the previous years:

“Measles incidence and deaths began to decline in 1965 and continued a 33-
year downward trend. This trend was interrupted by epidemics in 1970-1972,
1976-1978, and 1989-1991.”8

2) Power grid dataset : In Figure 16, anomaly detection on the 2 day fore-
casting results are shown. Detected anomalous points are indicated in the red
shaded region. We observe that there was sudden decrease in Ir (top) and Ii
(bottom) compared to the previous steady trend and TensorCast successfully
raised a flag for this time period.

Then what happened on 28th and 29th of September that resulted in sudden
drop in Ir and Ii in actual observation compared to our forecast? From (Song
et al.; 2017), it is observed that Ir and Ii is highly influenced by temperature;
higher the temperature, higher the power consumption in Ir and Ii. In the bottom
row in Figure 16, temperature of Pittsburgh area is plotted. There was sudden
drop in temperature on the 28th of September: the maximum daily temperature
dropped from 89◦F to 70◦F from 27th to 28th of September. Sudden drop in the
temperature resulted in lower power consumption than the forecast/expectation.

A fascinating problem, that TensorCast could help with, is early warnings:
This is the ‘holy grail’ for epilepsy detection (Iasemidis and Sackellares; 1996),
with equally high-impact applications in the environment (chaotic analysis for
climate change, animal habitats, meteorology (Scheffer et al.; 2009)) and nu-
merous other applications (say, cascade-size forecasting (Cheng et al.; 2014)).
Early-warning detection is a huge topic, outside the scope of this paper; we leave
it as future research on how to use TensorCast for early warnings.

D3 - Interpretation

In addition to the forecast of new relations, groups found by TensorCast are in-
terpretable due to the non-negativeness of the factors. We highlight two groups
we identified on the Twitter dataset with their most used hashtags (#) on

8 https://www.cdc.gov/mmwr/preview/mmwrhtml/00056803.htm
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Fig. 16. Anomaly detection in power grid dataset TensorCast successfully detects sud-
den drop in (top) Ir and (middle) Ii corresponding to sudden temperature drop (bottom).
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Fig. 17. Increased precision is achieved by grouping interactions. [A-Start of 2009 election
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Figure 18 (word size corresponds to importance on factor). The first group cor-
responds to a group of users who typically use hashtags that show a conservative
political orientation: references to the tea party and critics of the healthcare re-
form. Users in the second group use hashtags related to the Iranian election and
human-rights protests, such as #iranelection or #neda, the name of a student
who was killed during the protests.

Figure 17 shows TensorCast’s ability to predict user interactions based on
current interest on a topic. Note that, on the Iranian group, the factorization
highlights the week of the elections and the protests (in June), but interest clearly
fades in the second-half of the year. On the other hand, we can see that political
tags are still used by the same group of users for several months.

Implementation details and Reproducibility. Similarly to its logical
steps, TensorCast was implemented as three different modules run in succes-
sion:

1. The non-negative coupled factorization was implemented on Matlab using its
Tensor Toolbox (Bader et al.; 2015).
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(a) Political group. Hashtags related to
“top conservatives on Twitter” (#tcot)
and, respectively, “liberals” (#tlot), #obama,
#healthcare (#hcr), “smart girl politics”
(#sgp), etc..

(b) Iranian elections group. Hashtags re-
lated to the Iranian elections and human rights
protests.

Fig. 18. TensorCast finds and forecasts groups with similar interests on Twitter.

2. Forecasts were done using Gnu’s Regression, Econometrics and Time-series
Library (GNU gretl) (Baiocchi and Distaso; 2003).

3. Tensor top-K elements’ algorithm was implemented in Scala as a stand-alone
tool.

TensorCast can be obtained at www.dcc.fc.up.pt/~pribeiro/tensorcast/.

7. Conclusions

We presented TensorCast, a method which addresses the forecasting problem on
big time-evolving datasets when contextual information is available. We leverage
typical graph properties in order to create a linearithmic algorithm that can find
novel relations in very big datasets efficiently.

The main advantages of our method are:

1. Effectiveness: TensorCast achieves over 20% higher precision in top-1000
queries and double the precision when finding new releations than comparable
alternatives.

2. Scalability : TensorCast scales linearithmically with the input size and is
tested in datasets with over three hundred million non-zeros.

3. Context-awareness: we show how different data sources can be included in
a principled way.

4. Tensor Top-K: we show how to quickly find the K biggest elements of sums
of three-way vector outer products under realistic assumptions.

Reproducibility: TensorCast can be obtained at www.dcc.fc.up.pt/~pribeiro/
tensorcast/.
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Appendix: Multiplicative Updates of Coupled Tensors
Factorization

The non-negative coupled tensor factorization problem

min
A,B,C,T

∥∥∥∥∥∥X −
∑
f

af ◦ bf ◦ tf

∥∥∥∥∥∥
2

F

+ λ

∥∥∥∥∥∥Y −
∑
f

af ◦ cf ◦ tf

∥∥∥∥∥∥
2

F

is well studied and its multiplicative update equations have been previously
described in the literature (e.g., considering the dispersion parameter λ (Şimşekli
et al.; 2013)). The solution can be found by iteratively updating

A← A⊗
X (1)(B � T ) + λY(1)(C � T )

A(B � T )t(B � T ) + λA(C � T )t(C � T )

B ← B ⊗
X (2)(A� T )

B(A� T )t(A� T )

C ← C ⊗
Y(2)(A� T )

C(A� T )t(A� T )

T ← T ⊗
X (3)(A�B) + λY(3)(A�C)

T (A�B)t(A�B) + λT (A�C)t(A�C)

The problem is not as well understood when one of the factorizations is

symmetric, e.g., Ŷ =
∑
f

af ◦ af ◦ tf , as this is no longer a linear problem.

Welling and Weber (Welling and Weber; 2001) note the need for a scaling
exponent (for the simple, non-coupled case):

A← A⊗
( X (1)(A� T )

A(A� T )t(A� T )

)1/d

which should be at least 1/2 for the matrix case, although no proof is provided.
To the best of our knowledge, the best theoretical bound is 1/3 when the matrix
is semi-definite positive (He et al.; 2011). Empirical results (for the coupled case)
indicate that removing the exponent (d = 1) might eliminate the convergence
guarantees, but even small perturbations converge (e.g., 0.98 in (Ermiş et al.;
2013)).

We recommend an exponent of 1/3, as convergence is exponentially fast in
any case.
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