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Abstract. Association Football is probably the world’s most popular
sport. Being able to characterise and compare football players is there-
fore a very important and impactful task. In this work we introduce
spatial flow motifs as an extension of previous work on this problem, by
incorporating both temporal and spatial information into the network
analysis of football data. Our approach considers passing sequences and
the role of the player in those sequences, complemented with the physical
position of the field where the passes occurred. We provide experimen-
tal results of our proposed methodology on real-life event data from the
Italian League, showing we can more accurately identify players when
compared to using purely topological data.
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1 Introduction

Association football, also known as soccer or simply football, is probably the
world’s most popular sport. It is therefore of no surprise that there has been
an ever growing interest on collecting and analysing football data in order to
inform players, coaches and management staff, trying to gain a competitive edge.
Examples of related computer science research include a vast array of topics, such
as team behaviour visualisation [16], talent discovery [3], injury forecasting [12],
result prediction [11] or transfer market analysis [6].

In this work our focus is on providing a similarity metric for comparing
football players in what concerns their role in the dynamics and passing behavior
of the team. This is already useful as a rich characterization tool and could be
further applied for instance to come up with suggestions of similar players in
other teams that could potentially be good transfer targets.

Our main contribution is the concept of spatial flow motifs and a novel hy-
brid similarity metric, that incorporates both when and where passes occur in
the game. We partition the football field into regions and we use temporal data
to construct passing sequences that can be seen as small subgraphs where nodes
are classified according to the region of the corresponding passing event. We
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also present experimental results on real life event data from the Italian League,
showcasing how these spatial features can enrich and complement purely topo-
logical information, achieving a higher accuracy on the player comparison task.

2 Related Work

The amount of research work related to football analytics is too vast to be
included in this paper [13,14]. Here, we will mainly focus on research that delved
into studying motif based patterns in passing networks.

A passing network can be seen as a graph where the nodes represent players
and directed edges represent successful passes between two players. Milo et al.
defined network motifs as “patterns of interconnections occurring in complex
networks at numbers that are significantly higher than those in randomised
networks” [7]. Later, Gyarmati et al [4] defined flow motifs. Considering a passing
sequence, a flow motif is a subsequence of the passes where labels represent
distinct players without identity. In the context of this paper, all motifs are flow
motifs and we will use both terms interchangeably. We will next make a short
description of previous research on this topic.

The application of network motif methodology to football data has been a
recent research topic among the fields of network science and sports analytics.

Using network motif methodology, Bekkers and Dabadghao [2] identified
unique play styles for teams and players. Peña et al. [10] also applied network
motif and clustering techniques to football data from the Premier League, La
Liga and Champions League, concluding that Xavi Hernandez was the outlier
in their analysis. Wiig et al. [15] use centrality measurements and PageRank to
identify key passers and/or recipients in football teams.

H̊aland et al. [5] modelled sequences of passes as flow motifs and concluded
that no connection between the ranking of a team and its distribution of flow
motifs was clear.

Regarding team behaviour, Gyarmati et al. [4] present a quantitative method
to characterise the passing behaviours of football teams, concluding that some
unique styles of play do not consist of uncountable random passes but instead
are finely structured.

In a previous work [1], we studied player similarity based on the topology of
the passing networks. Flow motifs were extracted from sequences of passes that
involved each player and the conclusion was that taking into account the specific
position of the player in a motif, i.e. the orbit that represents a given player in a
motif, was better in comparing players than just comparing the number and type
of motifs they were a part of. Also, we provided a way to objectively measure the
performance of the models generated, which is a great complement to the almost
uniquely visual analysis that is made to evaluate player similarity algorithms.

Even though some work has been done in exploring the spatial dimension
of football games [8], to the best of our knowledge there is no framework that
entails the characterisation of the passing behaviour of a player through the
study of spatial flow motifs.
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3 Data Description

The data used in this work was retrieved from a public data set containing
spatio-temporal events in association football [9]. We will be using event data
from the 2017/2018 season of the top tier Italian league.

Events in the data were transformed into sequences of passes between differ-
ent players. Players that did not participate in, at least, 80% of the games in the
2017/2018 season were not considered in our analysis. We excluded these play-
ers to guarantee that we had the most consistent and complete data as possible
regarding the players we analysed.

4 Methodology

After pre-processing the data, the first step of our method was to extract spa-
tial flow motifs from the generated passing sequences, as it is explained in this
section. Our code is available at https://github.com/BertoBoss/SpAn.

In the context of this work, we will compute and count “flow motifs”, as
defined in [4], even when referring to them simply as motifs. We note however
that flow motifs are not “network motifs” as classically defined in [7] since they
do not take into account the statistical significance of each of the sequences
extracted. This is mainly due to the lack of an appropriate null model for football
spatial motifs, which could be an interesting future line of work.

We start by overlapping a grid over the space in which the events occurred.
This grid will divide the space in m equal parts lengthwise and in n equal parts
heightwise. So there will be m × n different rectangles in which an event can
occur. In this work, we will only consider the case when m = n = 3, so there
will always be n2 = 9 different rectangles. All different cells originated by the
divisions of the grid will be numbered in ascending order bottom-up from left to
right, the smallest number being in the bottom cell of the leftmost column and
the highest number in the top cell of the rightmost column.

The insertion of each sequence of passes in the grid is done by inserting
each pass according to the coordinates in which it started, i.e., the coordinates
of the origin of the pass. The only exception is the last point in the sequence
that represents where the last pass ended. This will yield a grid where each cell
contains a non-negative number of points and each point represents where a
given pass was made, except for the last one that represents where the final pass
ended. The points are inserted by order of occurrence in the game they happened
and preserving that order is important, since we are studying the evolution of a
passing sequence between members of the same team. We do so by storing such
information in an auxiliary list for each grid we generate. An example of a grid
filled with a size 3 passing sequence is presented in Figure 1.

Each of these generated grids now represents a spatial flow motif. For sim-
plicity purposes, we decided to generate a string that represents each of these
motifs in an unique way, so that each of these grids can be easily and uniquely
identified by it. Such string needed to embody three crucial characteristics of

https://github.com/BertoBoss/SpAn
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Fig. 1: Grid representing a passing sequence involving three players. First pass
goes from player A to player B from cell 3 to cell 1. The second pass goes from
player B to player C from cell 1 to cell 7. This sequence represents a 3A.1B.7C
spatial flow motif.

these motifs: the topology, the relative order of occurrence of each pass and the
space on the pitch where it occurred. So we transform a sequence into a string of
the kind K1C1.K2C2. · · ·KN .CN , where each Ki is an integer representing the
cell of the grid in which the pass it represents occurred, Ci is a character repre-
senting the player that made that pass, consistent with the definition of a flow
motif, and the order in which the passes occurred is preserved by the order of
appearance on the string from left to right. For the passing sequence in Figure 1,
the corresponding string would be 3A.1B.7C. For simplicity sake, whenever we
want to make a reference to a single flow motif, we will use the string method
and only present the visual aid if absolutely necessary.

For each player in our data set, we transformed every passing sequence he
participated in into a spatial flow motif, using the methodology described above.

According to [1], the orbit a player occupies in each flow motif is very im-
portant in characterising the passing style of a player. In order to encapsulate
that concept, we also consider the specific position a given player occupied in the
passing sequence. Using the example in Figure 1 and extending the concept of
spatial flow motifs to include orbits, we would say that player A participated in
a ABC A motif topologically and in a 3A.1B.7C.A spatial flow motif. A similar
extension can be made with respect to nodes B and C.

The spatial flow motif concept as we present it here can be seen as a good
complementary analysis to the purely topological flow motif analysis. Now, we
will not only be able to see which types of passing plays a player is involved in
more often, but also the areas on the pitch in which those plays tend to occur.

We will now exemplify how the inclusion of spatial data in motif extraction
can give us better insight regarding the passing behaviour of each player. Unfor-
tunately, due to the quantity of players analysed, it is not possible to perform
this analysis for each player in our data set. Nonetheless, we will briefly analyse
the passing behaviour of Jorginho, not only topologically, but also spatially.

Regarding topology, we present in Figure 2 a plot representing the relative
frequency of the participations of Jorginho in different types of passing sequences.
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Fig. 2: Fingerprint of Jorginho passing behaviour with topological flow motifs

We can see that the player tends to be more involved in ABC types of plays
(involving three different players) rather than in ABA (involving only two dif-
ferent players). Moreover, we can see that Jorginho seems to have a somewhat
balanced participation among ABC plays, participating in similar quantities in
all three possible roles of the play. This seems to go along with the intuition that
a midfielder like Jorginho, being a playmaker, is involved in all stages of the
offensive game of his team. Also, we can see that Jorginho, when participating
in ABA motifs, tends to occupy the B position more often, which means that he
tends to be the one that receives the pass from some player A and then passes
the ball to that same player A.

Although the study of purely topological flow motifs proved to be a good way
to characterise the passing behaviour of a player [1], more information can still
be extracted from the same data if we look not only at the passing sequences’
topology, but also at the spatial information encapsulated in that data, specially
in football, where space is a very important aspect of the game.

To do that, we decided to study the distribution of spatial flow motifs grouped
by their topology. We will consider a 3× 3 division of the pitch, as presented in
Figure 1. From Table 1, we can actually perform a more detailed analysis of the
passing behaviours of Jorginho, when compared to the analysis of the frequency
of each topological flow motif.

First, one can see that the majority of the highlighted values are on cells that
represent the midfield area (cells 4, 5 and 6). Given that Jorginho is a midfielder,
it is not surprising to see that a big part of the events he will be involved in will
take place on central areas of the pitch. This is however an intuition that we can
only confirm when incorporating the space dimension of the data, since it is not
possible to do so by only analysing the topological motifs as in Figure 2.

Another important thing to notice is that the relative frequency of C in
cells 7, 8 and 9 is lower in ABC C flow motifs. This can be, at least partially,
explained because he is a player that does not step into advanced areas of the
pitch that much, given that he is not a forward, so when he is the last player
on the passing sequence, that sequence tends to end in not so advanced areas
of the pitch, like on cells 4, 5 or 6. This seems to be opposite to the behaviour
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when Jorginho occupies the A or B positions in ABC motifs, where position C
tends to have higher frequency of appearance in cells 7, 8 or 9.

A noticeable aspect of the data in Table 1 is the fact that Jorginho apparently
tends to impose some progression on the pitch with his passing. This becomes
apparent by the fact that, when he makes a pass, the next player on the sequence
tends to have a higher frequency of appearance in more advanced areas than
Jorginho himself. For example, in ABC B motifs, player A tends to be in cell
7 in higher frequencies than Jorginho (player B), which then passes the ball to
a player C that, again, has higher frequency in cell 7. This seems to indicate a
forward passing bias by Jorginho, meaning that the players that receive the ball
from him are often in more advanced positions of the pitch than himself.

On the most defensive areas of the pitch, we can see that the only significant
change between the three types of spatial flow motifs is related to the position
Jorginho occupies on the passing sequence: when he occupies a given position p,
the frequencies of that position on more retreated areas of the pitch are lower for
p and higher for the other positions. For example, when Jorginho is on position
B on ABC B motifs, the frequencies of a player being on cells 1, 2 or 3 and on
the B position are lower than when he occupies either position A or position C.

It also stands out that there seems to be a slight bias for these plays to
winding themselves more on the right side of the pitch than on the left. That
becomes more evident when comparing the values of the frequencies on cell 7
(right attacking side) to the values in cell 9 (left attacking side) for ABC A,
ABC B and ABC C flow motifs. This can either represent a team behaviour
that somehow favours attacking plays to happen on the right side of the pitch
when Jorginho is involved in them or this can represent a bias imposed by
Jorginho to force the team to play through the right, probably also influenced
by the position he occupies on the pitch and the fact that it is more likely that
he will pass the ball to players near him. It can also be both, since often players
positions and characteristics are highly correlated to the team macro behaviour.

All this domain specific knowledge regarding a single player can be acquired
only when we combine the topological information with the spatial information
contained in the raw event data.

5 Results

With the analysis of the spatial flow motifs Jorginho is involved in, we intend to
show that incorporating an extra layer of spatial information in flow motif count-
ing can result in better and more accurate knowledge extraction from event data.
However, when we want to objectively measure if new useful information can be
extracted from the processing of spatial data, we need to setup an experimental
environment that allows us to take valid conclusions about our methodology.

In an ideal world, we would be able to not only check if the addition of spatial
information results in a good complement to the purely topological information
that flow motifs naturally provide and have a way to measure how good such
potential complement is.
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ABC A ABC B ABC C

Cell A B C A B C A B C

1 0.051 0.061 0.054 0.089 0.045 0.051 0.086 0.082 0.047

2 0.055 0.048 0.048 0.077 0.055 0.038 0.073 0.072 0.043

3 0.033 0.042 0.037 0.058 0.027 0.028 0.064 0.061 0.030

4 0.299 0.251 0.238 0.245 0.307 0.220 0.244 0.264 0.297

5 0.287 0.189 0.141 0.142 0.279 0.197 0.128 0.131 0.279

6 0.158 0.133 0.129 0.160 0.159 0.112 0.148 0.157 0.150

7 0.053 0.155 0.176 0.126 0.058 0.197 0.147 0.123 0.065

8 0.040 0.057 0.079 0.035 0.042 0.085 0.023 0.032 0.048

9 0.024 0.066 0.098 0.069 0.028 0.072 0.088 0.077 0.041

Table 1: Frequency of each player (A, B or C) on each cell on a 3 × 3 grid
according to the different topological motif they participate in. Values are nor-
malised by sub-column, meaning that, for example, in ABC A motifs, player A
(Jorginho) occupies a position in cell 1 0.051% of the times he participates in
an ABC motif occupying position A. Highest values are on bold. Sub-columns
representing Jorginho have a highlighted background.

We decided to build a similar experimental environment as the one on [1],
but we have adapted it to also account for spatial flow motifs.

We first separate the matches in two different sets: one corresponding to the
first half of the season and the other corresponding to the second half of the
season (we also experimented a division into odd and even match weeks, but no
relevant differences were found).

The idea behind this division is to be able to see how similar a player is to
himself in different parts of the same season. Given that there is no ground truth
in this domain, we believe that a good way to validate our approach is to exploit
the idea that a player, of course with some exceptions, must have similar passing
behaviour during the course of the same season. To achieve that, we designed a
distance metric to measure the distance between two players, incorporating not
only the topological difference between the different motifs that a player was
involved in, but also the spatial dimension of the data.

After computing all the spatial flow motifs for every player on the dataset,
we calculate the distance between each pair of players. The distance metric has
two components: one incorporates the topological component of the flow motifs
and the other incorporates the spatial dimension of the flow motifs.

The purely topological distance between two players is defined in Equation 1,
where Dtop(A,B) represents the distance between players A and B according
to the purely topological flow motifs that A and B participate in. M is the set
of all flow motifs of size 3 and Am and Bm represent the normalised frequency
(between 0 and 1) of player A and B on motif m, respectively.

Dtop(A,B) =

√ ∑
m∈M

(Am −Bm)2 (1)
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A big part of adding the spatial dimension is the ability to measure how
distant two different sequences are in the pitch. We use cell centroids in order to
compute the distance between two different spatial flow motifs. The centroid of a
cell k in a grid is a point whose coordinates are (minx+maxx/2,miny+maxy/2),
where minx (miny) is the minimum value of x (y) that a point in a cell k can
have and maxx (maxy) is the maximum value of x (y) that a point in a cell k can
have. Then we calculate the distance between two motifs m and n by calculating
the Euclidean distance between the centroid of the cell in which the first pass
occurred in motif m and the centroid of the cell in which the first pass occurred
in motif n. We then add it to the distance between the centroid of the cell in
which the second pass occurred in motif m and the centroid of the cell in which
the second pass occurred in motif n, and so on, until the motif is fully processed.
In the context of this paper, we will call this distance Dcentroids(m,n).

The component of our metric that encapsulates the spatial information of
the flow motifs is given in Equation 2. M represents the set of all flow motifs of
size 3, Mk is a set of motifs that are topologically equivalent between themselves,
m and n are two topologically equivalent spatial flow motifs, Dcentroids(m,n)
calculates the Euclidean distance of the centroids of the cells in which the passing
sequences occurred, fA(m) represents the frequency of player A in motif m and
fB(n) represents the frequency of player B in motif n.

Dspace(A,B) =
∑

Mk∈M

∑
m,n∈Mk

Dcentroids(m,n) ∗ fA(m) ∗ fB(n) (2)

It is important to notice that Equation 2 is a distance metric thought to
complement a merely topological setting, by trying to encapsulate some spatial
information that would otherwise be discarded by a purely topological approach.
Since both 0 ≤ fA(m) ≤ 1 and 0 ≤ fB(n) ≤ 1, this allows for the weight of the
value of Dcentroids(m,n) to be, in some sense, proportional to the frequency of
occurrence of motifs m and n in players A and B, respectively.

One could argue that a different approach, like using fA(m)− fB(n), would
encapsulate better the idea that “the higher the difference between the frequen-
cies, the higher the weight the distance would have”. Even though the intuition
is correct, using the difference between the frequencies of each motif when com-
plementing purely topological motif analysis would not take into account the
individual frequencies of fA(m) and fB(n) for players A and B, respectively. For
example, whether fA(m) = fB(n) = 0.1 or fA(m) = fB(n) = 0.9 the value of
fA(m)−fB(n) would be 0. However, using fA(m)∗fB(n), the second assignment
would result in a higher value, that better mirrors the fact that m and n are
highly frequent motifs for players A and B, respectively.

The final distance metric is a weighted mean of the two components we
approached, as in Equation 3, where α is a constant between 0 and 1, influencing
the weight of each component in the final distance metric.

Dist(A,B) = α×Dspace(A,B) + (1− α)×Dtop(A,B) (3)
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Now that we have a distance metric that incorporates both topological and
spatial information regarding flow motifs, we can use it to calculate the distance
between players.

Let H1 be the set of games that took place in the first half of the season and
H2 the set of games that occurred in the second half of the season. Also, let AHi

be the set of spatial flow motifs that represent player A and were extracted from
the set of games in Hi.

Our task will then be to calculate the distance Dist(A,B) between every
AH1

and every BH2
, i.e., we want to calculate the distance between each pair of

players A and B such that the spatial flow motifs regarding player A occurred in
games in the first half of the season and the spatial flow motifs regarding player
B occurred in games belonging to the second half of the season.

Let LA be a list of players such that the position j each player B occupies
in the LA represents that B is the j-th least distant player to A, according to
the distance metric in Equation 3.

So, for each player P1 in AH1 , our job is to compute LP1 such that each
player P2 in LP1

belongs to AH2
. When all LPi

are calculated for every player
Pi in AH1

, we can see how well our method characterises a player, in the sense
that we just need to measure, for every player Pi, the position Pi occupies in
LPi

. The lower the position, the better, since we want Pi to have similar passing
behaviour to himself.

In [1], an arbitrary threshold was defined, stating that cases where Pi occu-
pied a position j ≤ 10 it would be considered a positive case, and a negative
otherwise. All positive and negative cases were counted and the evaluation model
was simply given by the percentage of positive cases that the model got right.

In this work we decided to extend that idea to a more continuous analysis
of the distribution of the positions that each Pi occupies in LPi . A boxplot of
those distributions is presented in Figure 3. Note that in that plot, the values of
the constant α range from 0 to 1 in increments of 0.1, with the plot referring to
α = 0 is the one on the left and each successive plot represents a +0.1 increment.

Analysing the boxplot in Figure 3, it is noticeable that, for some values of α,
the distribution is more skewed toward smaller position values than on others.
Those values are 0.1 ≤ α ≤ 0.6. The mean values for each of the distributions
presented in Table 2 confirm that on those values, the mean and standard devi-
ation of the distributions are smaller when compared to α = 0, that represents
a distribution based on a merely topological distance metric.

The mean value in the distributions presented in 3 represents the average
position a player Pi is in LPi

. This means that, for example, with α = 0.2, any
player Pi is on average the 7th most similar player to himself, which is a really
good improvement when compared to the 11th position, on average, that yields
from α = 0. It is also worth noting that, for α ≥ 0.7, the distributions seem to ex-
hibit a worst behaviour than considering only the topological nature of the data.
That seems to indicate that, on its own, the metric we designed to complement
a merely topological study, is not better at characterising the passing behaviour
of football players than a classical topologically reliant distance metric.
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Fig. 3: Boxplot of different distributions generated by the variations in the con-
stant α in Dist(A,B). α varies from 0 to 1 in increments of 0.1

α Mean Standard Deviation

0 10.98 14.46

0.1 7.78 11.47

0.2 7.15 10.46

0.3 7.26 10.88

0.4 7.84 11.29

0.5 8.80 12.17

0.6 9.88 12.90

0.7 11.13 14.13

0.8 12.4 14.95

0.9 13.71 15.91

1 15.32 17.31

Table 2: Mean and Standard Deviation values for each distribution in Figure 3,
according to the values of α

In Figure 4, we can see in more detail the curves representing the distributions
for four different values of α. We can clearly see curves representing α = 0.2 and
α = 0.3 have a much more compact look in the smaller position values, specially
when compared to the distribution when α = 1. Another thing we notice is that
with α = 0.2 and α = 0.3 we have smaller ranges of values in positions and their
concentration is higher in smaller position numbers.
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Fig. 4: Four different curve plots showcasing the different distributions caused
by changing the value of α in the Dist(A,B) distance metric.

6 Conclusions and Future Work

In this work we extended the concept of flow motif to incorporate the spatial
dimension of football event data.

We were able to improve the characterisation of the passing behaviour of a
player by encapsulating the spatial nature of the data. The distributions that
represented the similarities between a given player in different halves of the
season were proof of that increase in the capability to characterise a football
player passing behaviour, for some values of α. In the future work, we aim at
improving the way we count spatial flow motifs, since this approach has proven
to be too much time consuming. This can be done either through the conceiving
of a parallel algorithm or through improvements on the way we calculate the
distance metric (through the exclusion of not relevant spatial flow motifs).

It also seems that it is possible to generalise this approach in order for it to be
applied in different domains. In a more formal note, we are building graphs where
the nodes are coloured based on the position they occupy in a two dimensional
grid and the directed edges incorporate a time dimension in the sense that if
node v has an outgoing edge that connects him to node u, then the event that
represents node v happened before node u. This means that in a spatio-temporal
domain, similar methodology may be applied to count k sized subgraphs (flow
motifs) of those spatio-temporal graphs.
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