
StreamFaSE: an online algorithm for
subgraph counting in dynamic networks

Henrique Branquinho1, Luciano Grácio1,2, and Pedro Ribeiro1,2

1 DCC-FCUP, Universidade do Porto, Portugal
2 CRACS & INESC-TEC, Portugal

hbranquinho@fc.up.pt,lgracio@fc.up.pt,pribeiro@dcc.fc.up.pt

Abstract. Counting subgraph occurrences in complex networks is an
important analytical task with applicability in a multitude of domains
such as sociology, biology and medicine. This task is a fundamental prim-
itive for concepts such as motifs and graphlet degree distributions. How-
ever, there is a lack of online algorithms for computing and updating
subgraph counts in dynamic networks. Some of these networks exist as a
streaming of edge additions and deletions that are registered as they oc-
cur in the real world. In this paper we introduce StreamFaSE, an efficient
online algorithm for keeping track of exact subgraph counts in dynamic
networks, and we explain in detail our approach, showcasing its gen-
eral applicability in different network scenarios. We tested our method
on a set of diverse real directed and undirected network streams, show-
ing that we are always faster than the current existing methods for this
task, achieving several orders of magnitude speedup when compared to
a state-of-art baseline.

Keywords: subgraph census, dynamic networks, temporal networks,
streaming, online algorithm, motifs, graphlets

1 Introduction

Complex networks are the mathematical tools that model interaction-based real-
world systems, allowing the development of abstract tasks to extract useful in-
formation from them. One of these tasks is called Subgraph Census and consists
in counting how many induced subgraphs of each isomorphic class exist in the
network. However this task is known to be hard, demanding the development of
efficient algorithms.

Classical methods for computing Subgraph Census on a network require the
whole network to be known beforehand. However, this this often not the case, as
many real-world systems are constantly undergoing change (e.g. friendships in
social networks, financial transactions networks and routes in packet switching
networks). Not only that, but analysing dynamic networks has a number of
additional challenges when compared to static ones. For example, the number of
edges may build up over time to unmanageable dimensions [9].

Here, we present StreamFaSE, an online algorithm that keeps track of sub-
graph counts in dynamic networks. The core of the our method lies in identifying

2 Branquinho et al.

the region of the network that is affected by each update and restricting the count
of subgraphs to that same region.

2 Preliminaries

A graph G = (V,E) is a tuple of vertices V = {v1, v2, ...vn} and edges E
represented as a set of pairs of vertices. In a directed graph, an edge (v1, v2) is
considered to have its origin in v1. The size of the graph is determined by the
number of vertices, denoted as |V (G)|. A k-graph is a graph of size k.

A subgraph Gk of a graph G is a k-graph in which V (Gk) ⊆ V (G) and
E(Gk) ⊆ E(G). A subgraph is said to be induced if ∀v, w ∈ V (Gk) : (v, w) ∈
E(G)⇒ (v, w) ∈ E(Gk).

Two graphs G and H are isomorphic, denoted as G ∼ H if there is a
bijection between V (G) and V (H) such that two vertices in G are adjacent if
and only if their corresponding vertices are connected in H.

The neighbourhood of a vertex v ∈ V (G) is the set of all vertices that share
an edge with v and is defined as N(v) ≡ {w : (v, w) ∈ E}. We say these vertices
are adjacent to v. The neighbourhood of a set of vertices is the union of the
neighbourhood of each of them and is denoted as N({v1, v2, ..., vn}) ≡ {N(v1)∪
N(v2)∪ ...∪N(vn)}. The k-neighborhood of a vertex v is the subgraph induced
by all vertices whose distance to v is less or equal than k. The k-neighbourhood
of a set of vertices is the union of the k-neighbourhoods of each vertex in the
set.

The exclusive neighbourhood of a vertex v with respect to a subgraph S
is defined as Nexc(v, S) = {u : u ∈ N(v) ∩ u 6∈ N(S) ∩ u 6∈ S}. In simpler terms,
it consists of the neighbours of v that are not neither in S nor are adjacent to
any vertex in S.

A graph stream consists of an initial graph G0 and a list of updates. These
updates can be of four types: vertex addition, vertex removal, edge addition
and edge removal. We focus on edge operations, and denote edge additions and
removals as +(v1, v2) and −(v1, v2) respectively.

2.1 Problem Definition

Problem 1 (Subgraph Census). Given a network N and an integer k, determine
the frequencies of all its connected induced k-subgraphs. Two occurrences are
considered different if they do not share at least one node.

Problem 2 (Streaming Subgraph Census). Given a network N , an integer k, a so-
lution to Subgraph Census(N, k) and a stream of edge updates S = (e1, e2, ..., en),
compute the Subgraph Census of all networks SN = (e1(N), e2(e1(N)), ...) re-
sulting from successively performing each operation in S to N .

In this paper we propose a solution to Problem 2.

StreamFaSE 3

2.2 Related work

2.2.1 Taxonomy

The concept of subgraphs in static networks can be mapped, at least in
two different meaningful ways, to dynamic networks: (1) Dynamic subgraphs
consist in incorporating the dynamic property of the network in the subgraphs.
Although the addition of temporal information can bring additional challenges,
like unmanageable numbers of temporal edges and the need to account for pat-
terns that occur at different time scales, the study of dynamic subgraphs can
bring further insights into temporal phenomena [9]. (2) The second mapping
path consists in unfolding the dynamic network into a series of static snapshots.
In this model, static subgraphs keep their traditional meaning. In this paper,
we address the problem of counting static subgraphs in dynamic networks.

Extensive work has been done to solve the static subgraph census problem.
We refer to a survey by Ribeiro et. al [11] for a better insight. The authors
propose a taxonomy that accounts for the existing variations of the problem:

Regarding the cardinality of subgraphs counted, algorithms exist to solve
three variations of the subgraph census. (1) Subgraph centric algorithms count
the number of occurrences of a single subgraph. (2) Set centric approaches
count the occurrences of a given set of subgraphs, and (3) Network centric al-
gorithms count the occurrences of all existing subgraphs. Note that any subgraph
centric approach can be computed for every subgraph, resulting in a network cen-
tric algorithm. Similarly, set centric approaches are trivially reduced to network
centric ones by considering the set of all possible subgraphs.

Precision wise, algorithms follow one of two approaches. (1) Exact count-
ing algorithms compute the exact frequencies of the subgraphs, while (2) ap-
proximation based algorithms use sampling and analytical estimators to com-
pute approximated solutions. Note that approximation based solutions deal with
a simpler version of the subgraph census problem since they scale differently with
the size of the network.

We propose that the same taxonomy be used when considering the stream-
ing subgraph census problem. Taking this into account, in this paper we present
StreamFaSE, a network centric, exact counting algorithm for the streaming sub-
graph census problem.

2.2.2 Relevant static algorithms

Wernicke developed a network-centric, exact-counting and enumeration-based
algorithm, called ESU [14], that enumerates subgraphs in a network through
a backtracking approach, by performing a depth-first search on each network
node. ESU uses two vertex sets: Vsubgraph or Vsub, where each vertex is added
up to a size of k, upon which the set contains k vertices that form a connected
induced subgraph; Vextension or Vext which contains vertices that can be added
to Vsub. Whenever ESU finishes enumerating a subgraph, a tool called nauty [7]
is used to compute the isomorphic class of the enumerated subgraph. When a

4 Branquinho et al.

vertex is added to Vsub, all of its neighbours are added to Vext, guaranteed they
are not already in Vext . Vertices are labeled with integers, so that no vertex
can be added to Vsub if its label is less than Vsub[0]. These two conditions avoid
duplicates and repeated computation. ESU implicitly creates a recursion tree.

FaSE [10], developed by our group, is another network-centric, exact-counting
and enumeration-based algorithm that takes advantage of the recursion tree im-
plicitly created by ESU. FaSE combines this enumeration with a data structure
called G-Trie [12], a structure that can store and compress multiple graphs in a
prefix tree manner, by taking advantage of common substructures. Each level i
of the tree represents i-graphs, and descendants of a g-trie node all share a com-
mon substructure. Throughout the enumeration process of ESU, FaSE creates
paths in a g-trie, up to a depth k. A leaf node in a g-trie represents a k-subgraph.
At the end of the enumeration process, isomorphism tests are performed on the
leaf nodes of the g-trie using nauty [7]. By using a g-trie to encapsulate iso-
morphism information, isomorphism tests only need to take place at the end of
the enumeration, which results in large speedups. However, this approach allows
for redundant information to be created in the g-trie (many leaf nodes represent
the same isomorphic class), and due to the combinatorial explosion of subgraph
types as subgrpah sizes grow, FaSE is currently limited to subgraphs with size
up to 19. For a better understanding of g-tries, we refer to [12]. FaSE is ex-
tendible to many kinds of graphs, like directed and colored, and also provides a
sampling option. Our approach is an adaptation of FaSE to streaming networks
that accounts for undirected and directed graphs.

2.2.3 Relevant dynamic algorithms

Regarding the streaming subgraph census, Xiaowei Chen and John C. S. Lui
propose an approximation based algorithm which consists in generating samples
by leveraging consecutive steps of random walks and the observation of the
neighbours of visited nodes [2]. This algorithm falls out of the scope of this
document, since it is an approximate solution. Another approximate solution
has been proposed by Al-Thaedan and Carvalho [1], which consists in infering
subgraph frequencies through exact frequencies of smaller subgraphs by using
the Pascal triangle. An exact subgraph-centric approach has been developed by
Mukherjee et. al [8], based on keeping in memory an association between edges
and every occurrence of the target subgraph, trading memory for efficiency.

To the best of our knowledge, only one network-centric, exact-counting solu-
tion exists. Schiller [13] presented StreaM-k, an algorithm that updates subgraph
frequencies for every update by retrieving the k−2-neighbourhood of an updated
edge and using a small adjacency matrix-like representation of each affected
subgraph in the k − 2-neighbourhood to identify the isomorphic classes of the
subgraph before and after the update. This correspondence between adjacency
codes and isomorphic classes is previously computed and stored. The implemen-
tation made available only accounts for subgraphs up to size 7. Moreover, the
implementation does not account for directed graphs, unlike our approach.

StreamFaSE 5

3 Method

The core of our approach consists in only exploring the area of the network
affected by an update. Recomputing subgraph frequencies for the whole net-
work, for every update, is computationally expensive and unnecessary. There-
fore, we devised a depth-first search algorithm that only reaches the (k − 2)-
neighbourhood of the vertices of the updated edge. We can guarantee that no
additional vertices are needed, since we are counting k-subgraphs, and thus any
k-subgraph that includes an edge (v1, v2) must be composed of vertices that are
at a maximum distance of k − 2 from either v1 or v2. Figure 1 illustrates this
idea.

Fig. 1. An example of the core idea of StreamFaSE for k = 3. When adding/deleting
the green edge (1, 2), the subgraph induced on the blue vertices is sufficient to compute
the topology changes. This corresponds to the 1-neighbourhood of {1, 2}.

Furthermore, even though we are restricting the search space to the affected
area, we still need a way to efficiently figure out which isomorphic classes cor-
respond to the subgraphs that existed before and after the update, to correctly
update its frequencies. FaSE does this by maintaining a path in the g-trie until a
leaf node is reached. However, in a streaming environment, we need an efficient
way to determine the isomorphic classes of the affected subgraphs before and af-
ter the update. StreamFaSE does both these tasks during the same subnetwork
traversal. This translates into verifying if each k-subgraph is connected
with and without the (added/deleted) edge.

If a subgraph is connected in both its updated and non-updated versions,
then we known that the update (either an edge addition or deletion) changed
the topology of the subgraph. As a consequence, we decrease the count of the
old subgraph and increase the count of the new one.

If the edge addition (deletion) connects (disconnects) a previously discon-
nected (connected) subgraph, then we only increment (decrement) the count of
the new (old) subgraph.

6 Branquinho et al.

Our approach lies in verifying if the subgraph is connected with and without
the updated edge while enumerating vertices in the (k−2)-neighbourhood of the
updated edge. This is done through a process we called origin propagation.

Considering the update of an edge (v1, v2), we define the origin of a vertex
u in the depth-first search as: O(u) = N(u)∩{v1, v2}∪O(parent(u)). In simpler
terms, the origin of a vertex u is the subset of {v1, v2} that is reachable from
u within the subgraph induced on the current enumeration, taking in account
that the updated edge may not be used. This is depicted in Figure 2.

Initially, we define the origin of a vertex v as the set of initial vertices (v1
or v2) from which it was obtained during the search-tree growth. When other
vertices are expanded from v, its origin is propagated (i.e. inherited), so these
newly expanded vertices will (at least) also have v’ origin.

In summary, we enumerate all k-subgraphs that belong to the (k − 2)-
neighbourhood of the vertices in the updated edge and, by propagating origins,
we verify if each subgraph is connected without the updated edge in order to
update subgraph frequencies. We keep two paths in a g-trie to deal with the iden-
tification of isomorphic classes: one considering the updated edge, and another
one not considering it. This is a modification of the original g-trie structure,
as disconnected subgraphs will be present in the tree, and more nodes will be
created. However, leaf nodes still only represent connected k-subgraphs. Because
the g-trie is kept and updated at all times, all possible paths are built early in
the computation. Since isomorphism testing is only done once for each leaf node
of the tree, as soon as the tree is fully built, no more isomorphic tests need to
take place. Empirically, we verified that the total time spent in isomorphism
testing is negligible when compared to the total run time.

Fig. 2. An example of how origin propagation is used to determine the connectedness
of subgraphs with k = 3. S1, S2 and S3 are obtained during the search. Disregarding
the updated edge (1, 2), only S2 is connected. We conclude that (1) if the update is an
addition S1 and S3 are new occurrences. (2) If the update is a deletion S1 and S3 are
no longer connected. (3) Subgraph S2 was connected before and after the update.

StreamFaSE 7

3.1 Detailed Description

Algorithm StreamFaSE

Input A network N , an integer k, a stream of updates S = and a g-trie
Output k-subgraphs’ counts after each update

1: procedure StreamFaSE(N , k, S)
2: for all (op, v1, v2) ∈ S do
3: if op is addition then
4: N ← N + (v1, v2)

5: VSub ← {v1, v2}
6: VExt ← (neighbors(v1) ∪ neighbors(v2)) \{v1, v2}
7: is connected ← false
8: if N is directed and (v2, v1) ∈ E(N) then
9: is connceted← true

10: Initialize g-trie paths
11: for all u ∈ VExt do
12: Origin(u)← {v1, v2} ∩ neighbors(u)

13: DFS UPDATE(VSub,VExt,op,k,is connected,O,g-trie paths)
14: if op is deletion then
15: N ← N − (v1, v2)

16: procedure DFS UPDATE(VSub,VExt,op,k,is connected,O,g-trie paths)
17: if |VSub| = k then
18: Retrieve isomorphic class S1 of VSub from the g-trie path
19: if is connected then
20: Retrieve isomorphic class S2 of VSub − (v1, v2) from the g-trie path

21: if op is addition then
22: Increment frequency of S1

23: Decrement frequency of S2

24: else
25: Decrement frequency of S1

26: Increment frequency of S2

27: else
28: while VExt 6= ∅ do
29: Remove an arbitrarily chosen vertex w from VExt

30: V ′
Sub ← VSub ∪ w

31: if O(w) = {v1, v2} then
32: is connected ← true
33: for all u ∈ exclusive neighbors(w, VSub) do
34: VExt ← VExt ∪ u
35: O(u)← O(u)∪ O(w)

36: Update g-trie paths
37: DFS UPDATE(V ′

Sub,V
′
Ext,op,k + 1,is connected,O, g-trie paths)

38: Reset changes made to VExt and O

8 Branquinho et al.

For every update to an edge (v1, v2), the first thing we do is include v1 and
v2 in Vsub (the vertex set of the current subgraph being enumerated). v1 and
v2’s neighbours are added to Vext (a set of vertices that can still be added to
the subgraph). While we are adding these neighbours to Vext, we also define
each vertex’s origin as v1,v2 or v1 + v2, according to which endpoints they are
connected. Furthermore, we initialize two paths in the g-trie like we explained
above. A boolean flag is connected is used to declare if the current subgraph
being enumerated is connected without the updated edge. Initially, this flag
is set to false. However, a special verification is needed for directed graphs:
if an edge (v2, v1) exists, we can be sure that every subgraph enumerated is
also a connected subgraph without the edge (v1, v2). StreamFaSE enumerates
subgraphs on the target graph considering the existence of the updated edge at
all times. This means that if the update is an edge addition, we first add the edge
and then we run StreamFaSE to enumerate subgraphs. Subgraphs that exist with
the edge (and are detected by the normal FaSE procedure) have their frequency
incremented; if the subgraphs are connected without the edge, their frequency is
decremented (they are detected through origin propagation). If the update is an
edge deletion, we first run StreamFaSE and we delete the edge afterwards. The
frequencies are updated in an inverse manner regarding edge additions. After this
initialization procedure, a recursive function (DFS UPDATE) that enumerates
subgraphs in a depth-first manner is used to explore the k− 2-neighbourhood of
the updated edge. The recursive function’s base case is when Vsub has a size of
k, meaning we finished enumerating a k-subgraph.

In every recursion of DFS UPDATE, we iteratively remove every vertex v3
from Vext and add it to the subgraph (to Vsub). When adding the vertex to the
subgraph, we verify if it can be reached by both v1 and v2, by checking if its
origin is v1 + v2. In that case, the flag that indicates the subgraph is connected
without the updated edge is set to true. Then, we iterate over v3’s neighbours,
in order to propagate origins and verify if they can be added to Vext (if they
are already in Vext they are not added again). For every neighbour v4 of v3, we
set their origin as origin(v4)← origin(v4)∪ origin(v3), as we know that v4 can
be reached by v3 and therefore by v3’s origin vertex. v4 is added to Vext if it
does not belong to the extension set. Finally, the g-trie path’s are updated, and
a new recursive call is made. Changes made to the origins set in each recursion
must be undone upon the recursion terminating, as v4 only shares v3’s origin if
they are both in the same subgraph. Therefore, when v3 is removed from the
subgraph (upon the recursion terminating), v4’s origin must be reset.

When the recursive function reaches its base case (Vsub has size k), we only
need to retrieve the corresponding isomorphic subgraph class from the g-trie
path and update its frequency accordingly, depending on the type of edge up-
date being made. Furthermore, if is connected is set to true, we know that the
subgraph is connected without considering the updated edge, and we also re-
trieve the isomorphic class of the subgraph not considering (v1, v2) and update
its frequency.

StreamFaSE 9

4 Experimental results

All tests were executed on machine using a 16-core AMD Opteron processor with
a 2.3GHz base clock speed, and a total of 252GB of memory installed.

We used six real-world networks to test the performance of the proposed algo-
rithm, StreamFaSE. Due to the novelty of our work, no data sets were available
for testing the performance of StreamFaSE. With that in mind, we adapted net-
works with timestamped edges by transforming them into a chronological stream
of edge additions and deletions. We opted to use a sliding window model, in
which an edge is deleted after some predefined amount of time passes since its
addition. Table 1 contains a detailed description of the used networks as well as
how they were adapted to a stream-friendly format.

Name Digraph #V Updates Avg.#E Description

email No 142 6.023 259 12-hour sliding window of email ex-
changes between members of a re-
search institution over a period of
803 days. Adapted from [9].

mooc No 4.008 39.298 19.231 Active student’s interactions with
course activities on a popular
MOOC platform. Adapted from [6].

9/11 No 13.314 414.872 6.273 Co-appearance of words in stories
released by the news agency Reuter
over a period of 66 days after the
9/11 atack on the US. Edges were
updated daily. Adapted from [3].

violence Yes 29 359 82 12-month sliding window of violent
activities between political actors in
Italy between the years of 1919 and
1922. Adapted from [5].

mathoverflow Yes 21.594 88.711 44.356 2350 day-long network of questions
and answers between users of Math-
Overflow [9].

retweets Yes 321.307 443.548 221.775 Retweet network during the first
observation of gravitational waves,
in 2016. The data was gathered over
6 days. Adapted from [4].

Table 1. Real-world networks used in our experiments.

We tested our algorithm by running a thorough experiment in which we
iteratively increased the order, k, of the counted subgraphs. Each experiment
was ran twice to assure consistency. The following statistics were gathered:

10 Branquinho et al.

– Types: number of occurring non-isomorphic subgraphs with order k found
in the network throughout all updates;

– Time: execution time, measured as elapsed time between launching the
program up to computing the frequencies of all possible subgraphs after
each update;

– Speedup: Time of other algorithms divided by the time of our own.

We compared the performance of StreamFaSE versus FaSE and StreaM-
k. FaSE was chosen, not only because it is the basis for our algorithm, but
also because it is a state-of-the-art algorithm for computing the static Subgraph
Census; showcasing the importance of taking different approaches to solve the
dynamic version of the problem. Table 2 contains the results.

Network Size Time (s) Speedup vs.

StreamFaSE FaSE StreaM-k FaSE StreaM-k

email

3 0.03 1.41 0.71 46.1x 23.4x

4 0.14 8.48 1.23 62.6x 9.1x

5 1.19 52.95 6.59 44.5x 5.5x

6 9.99 337.45 43.24 33.8x 4.3x

7 64.30 1747.70 275.99 27.2x 4.3x

8 325.43 >4h * >44.3x *

9 1720.09 >4h * >8.4x *

mooc
3 0.70 1976.95 2.00 2843.1x 2.9x

4 173.98 >4h 2714.29 >82.8x 15.6x

9/11
3 5.36 11338.62 19.66 2115.4x 3.7x

4 196.08 >4h 726.85 >73.5x 3.7x

violence

3 0.00 0.07

**

23.9x

**

4 0.03 0.79 23.1x

5 0.51 5.87 11.6x

6 4.57 30.07 6.6x

7 25.13 112.98 4.5x

8 101.45 341.79 3.4x

mathoverflow
3 5.57 >4h

**
>2585.3x

**
4 1043.37 >4h >13.8x

retweets 3 125.88 >4h ** >114.4x **
* Algorithm does not compute for k > 7
* Algorithm does not compute on directed networks.

Table 2. Experimental results.

StreamFaSE 11

Results are very promising, showing that StreamFaSE outperforms the other
algorithms. It is worth noting that FaSE, being the non-native approach to the
Streaming Subgraph Census Problem, has a major drop in performance when
handling large networks (i.e. mooc, 9/11, mathoverflow, retweets). This is be-
cause, unlike StreamFaSE and StreaM-k, FaSE recomputes all subgraph counts
after each update.

5 Conclusions and Future Work

In this paper we presented an efficient algorithm for the Streaming Subgraph Cen-
sus Problem. Our method consists of StreamFaSE, a network-centric approach
to perform the exact enumeration of all static subgraphs occurring in a dynamic
network. The main novelty of the presented algorithm is that it explores only the
regions of the network that have undergone a topology change after each stream
update. Also, the main algorithm is the same for edge additions and deletions,
varying only in the timing that the update is actually committed to the network.

In the future, we plan to boost the performance of our method when handling
real-world stream networks, by developing an online algorithm that can process
multiple edge additions and deletions at the same time. This has applications in
high-throughput network monitoring systems that demand fast response times,
such as detecting anomalies in financial transactions prior to their approval.

Acknowledgements

This work is financed by National Funds through the Portuguese funding agency,
FCT - Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020

References

1. Al-Thaedan, A., Carvalho, M.: Online estimation of motif distribution in dynamic
networks. In: 2019 IEEE 9th Annual Computing and Communication Workshop
and Conference, CCWC 2019. pp. 758–764. Institute of Electrical and Electronics
Engineers Inc. (mar 2019)

2. Chen, X., Lui, J.C.S.: Mining graphlet counts in online social networks. ACM
Trans. Knowl. Discov. Data 12(4) (Apr 2018)

3. Corman, S.R., Kuhn, T., Mcphee, R.D., Dooley, K.J.: Studying complex discursive
systems. Human Communication Research 28(2), 157–206 (2002)

4. De Domenico, M., Altmann, E.G.: Unraveling the origin of social bursts in collec-
tive attention. Scientific Reports 10(1), 4629 (Mar 2020)

5. Franzosi, R.: Narrative as data: Linguistic and statistical tools for the quantitative
study of historical events. International Review of Social History 43, 81–104 (1998)

6. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in
temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. pp. 1269–1278. ACM
(2019)

12 Branquinho et al.

7. McKay, B.D., Piperno, A.: Practical graph isomorphism, {II}. Journal of Symbolic
Computation 60(0), 94 – 112 (2014)

8. Mukherjee, K., Hasan, M.M., Boucher, C., Kahveci, T.: Counting motifs in dynamic
networks. BMC Systems Biology 12(S1), 6 (apr 2018)

9. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Pro-
ceedings of the Tenth ACM International Conference on Web Search and Data
Mining. p. 601–610. WSDM ’17, Association for Computing Machinery, New York,
NY, USA (2017)

10. Paredes, P., Ribeiro, P.: Rand-FaSE: fast approximate subgraph census. Social
Network Analysis and Mining 5 (2013)

11. Ribeiro, P., Paredes, P., Silva, M.E., Aparicio, D., Silva, F.: A survey on subgraph
counting: concepts, algorithms and applications to network motifs and graphlets.
arXiv preprint arXiv:1910.13011 (2019)

12. Ribeiro, P., Silva, F.: G-Tries: A data structure for storing and finding subgraphs.
Data Mining and Knowledge Discovery 28(2), 337–377 (mar 2014)

13. Schiller, B.: Graph-based Analysis of Dynamic Systems. Ph.D. thesis, Faculty of
Computer Science, Technische Universität Dresden (2016)

14. Wernicke, S.: A faster algorithm for detecting network motifs. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). vol. 3692 LNBI, pp. 165–177. Springer, Berlin,
Heidelberg (2005)

	StreamFaSE: an online algorithm forsubgraph counting in dynamic networks

