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Abstract—This paper describes a methodology for finding and
describing significant events in time evolving complex networks.
We first group the nodes of the network in clusters, according to
their similarity in terms of a set of local properties such as degree
and clustering coefficient. We then monitor the behavior of these
groups over time, looking for significant changes on the size of
the groups. These events are notable since they show that the
position of a number of nodes in the network has changed. We
describe this evolution by extracting the correspondent transition
patterns. We examined our methodology on three different real
network datasets. Our experiments show that the discovered rules
are significant and can describe the occurring events.

Index Terms—Network Characterization, Node labeling, Clus-
tering, Cluster Evolution

I. INTRODUCTION

Advances in information technology led the world activity
to become very much centered on information data. The
explosive growth in data that we are witnessing naturally
opens an enormous opportunity for researchers to develop new
methodologies to dynamically extract useful information and
knowledge from the data. Real life data inherently contains
structural information on objects and their relationships. This
structure can be modeled with networks, or graphs, that are
abstract representations of a set of nodes and the connections
between them.

Most real world networks are complex, in the sense that they
present non trivial topological features. Research on complex
network data analysis has been very prolific and a large variety
of characterization methodologies emerged, such as graph
clustering [1], [2], node classification [3], network motifs
discovery [4] or frequent subgraph mining [5], [6]. These
approaches treat the network as a static object. However, many
networks are intrinsically dynamic and change over time. Only
recently has the research community started to analyze the
temporal evolution of networks [7], [8]. Most of these studies
have characterized network structure by directly examining the
topology of the network. Nevertheless, more indirect methods
that use network measurements such as degree centrality or
clustering coefficient can be a rich source of information [9].
Our aim is precisely to use the evolution of these kind of
metrics to study the dynamics of networks that change over
time.

We propose a novel two-phase general methodology de-
signed to characterize time evolving networks. The first step
of this methodology mainly follows our previous work on node
label acquisition where we group and classify nodes based on

their role in the network [10]. In the second step we propose
a different method to study the evolution of the network by a
supervised approach. A set of events happening in the network
are defined and discovered in the network. We then find the
predefined events happening in the network and the rules that
describe them.

The first phase involves looking at the network from a
static point of view and creating a node classification. We can
either use a predefined label for each node, or an automated
classification of nodes based on their local properties, such as
degree or betweenness centrality, which have been shown to
be very fruitful in node characterization [9]. It is however
not an easy task to choose a set of these kind of metrics
that best generally describes and distinguishes nodes. Costa et
al. [11] presented a node label acquisition methodology based
on these type of metrics, but they only identify outliers, that is,
singular nodes that are most different from the others. Instead,
we apply these measurements to all nodes in the network and
then employ clustering techniques to group nodes and assign
them labels. With this we create distinct groups of nodes that
are representative of the whole network.

The second phase involves finding significant events in
the network. We define five event categories: growth, shrink,
emerge, dissolve and constant. Each event is described by the
time interval of its occurrence and the pattern that shows the
origin or destination of nodes in every event.

We apply our methodology on three real complex networks
to demonstrate the validity and usefulness of our approach.
We show that our method can discover interesting insights in
dynamic networks. In addition, the validation of the resulted
pattern is examined by calculating the respective z-score.

In the remainder of the paper, we start by reviewing the state
of the art work regarding network evolution. After, we describe
the proposed methodology in section III, with all intermediate
steps and techniques used. Then, we evaluate our approach
in section IV, by applying it to network datasets. Finally, we
draw some conclusions.

II. RELATED WORK

A. Graph clustering

As defined by Satu E. Schaeffer [2], “graph clustering is the
task of grouping the nodes of the graph into clusters taking
into consideration the edge structure of the graph in such
a way that there should be many edges within each cluster
and relatively few between the clusters”. Most of the existing
graph clustering methods use only the topological structure of



a graph to partition it into the cohesive clusters. Clustering
based on normalized cut [12], modularity [13] or structural
density [14] are some of the common approaches.

On the other hand, there are some more recent studies that
partition the graph according to its local properties in a way
that nodes with the same feature vector are grouped into one
partition [15], [16].

The selection of a distance measure differentiates these two
approaches from each other. In the first group similarity of
nodes is measured based on connectivity (e.g., the number of
possible paths between two nodes) and structural similarity
(e.g., the number of common neighbors of two nodes); while
in the second group the similarity of two nodes is measured by
feature similarity (e.g., Euclidian distance between two feature
vectors).

B. Label acquisition

Label acquisition, as most commonly defined in the litera-
ture, involves determining the label for a node in a network
that is partially labeled. Normally, it is assumed that at least
some of the nodes have a predefined label and only the labels
for remaining nodes are predicted using relational classifiers
[17].

With networked data, the label of a node may influence
the label of a related node. Furthermore, nodes not directly
connected may be related through chains of links. This com-
plex dependencies thus suggest that it may be beneficial to
predict the label of all nodes simultaneously. Regarding the
values of an attribute or attributes for multiple connected nodes
for which some attribute values are unknown, a simultane-
ous statistical assessment is required and this can be done
by using collective inferencing [18]. Networked data allow
collective inference, meaning that various interrelated values
can be derived simultaneously [3]. Gallagher and Eliassi-Rad
[19] used another source of information in networks that is
independent of the available node labels and improved the
accuracy of node’s label by adding label independent features
which include nodes local measurements like degree and
betweenness.

All the mentioned studies aim to find the label of a node
in a partial labeled network and rely mainly on the available
information about label of some of the nodes, they predict
labels of nodes instead of assigning the labels. Our work in
label acquisition follows the work by Costa et al. [11], but
differs in that we consider all the nodes in the network instead
of just the singular node-motifs.

C. Node evolution

Different approaches for explaining network evolution have
been reported in the literature. Some have focused on the
global evolution of networks by an exploratory point of view.
[7] discovered the shrinking diameter phenomena on time-
evolving networks. [20] studied the evolution of communities
in social networks. Still from an exploratory perspective, [21]
studied the evolution of networks but at a more local level.

Using a methodology based on the maximum-likelihood prin-
ciple, [8] investigates a wide variety of the network formation
strategies, and shows that edge locality plays a critical role in
evolution of networks.

[22] described node’s centrality changes over time and
showed that hubs do not remain a hub for the all time. They
use nodes degree over time to compute correlations between
pairs of daily networks.

Other recent papers present algorithmic tools for the analy-
sis of evolving networks. [23] focuses on assessing the com-
munity affiliation of users and how this changes over time. [24]
applies the minimum description length (MDL) principle to the
discovery of communities in dynamic networks, developing
a parameter-free framework. This is the main difference to
previous work such as [25], [26]. However, as in [27], the
focus lies on identifying approximate clusters of users and
their temporal change. No exact patterns are found, nor is time
part of the results obtained with these approaches. [28] uses
the MDL principle for monitoring the evolution of a network.

Network motifs as small subgraphs that show the topolog-
ical properties of the network have also been used by [29]
to monitor temporal changes in the structure of an email
communication network. They considered z-score of motifs
as its significance in the network and trace it over time. The
dynamics of a network are studied in [22] by calculating the
network motifs frequency over the time.

III. METHODOLOGY

A network shows relations between objects, represented as
nodes. Structure and characteristics of a network are tech-
nically due to properties of nodes. We address the charac-
terization of network dynamics by tracking the evolution of
groups of nodes over time. The constitutive groups of nodes
are found in the networks where each group represent a part
of characteristics of network. In addition, the dynamics of the
network are assessed by regarding the changes happened in
the groups.

Our proposed method mainly has two phases, as is illus-
trated by figure 1. The first one finds the groups of nodes
building the networks. In this step basically nodes are clustered
regarding their local properties. The second step explores
events happening in the networks by deriving a set of rules
that explain that evolution.

A. Node label acquisition

Nodes in a network play different roles, holding different
positions such as being a hub or a bridge. Labels of nodes are
normally pre-defined classes assigned to nodes that represent
the role or functionality of nodes in the network. In our
method, the label of a node is automatically determined based
on its properties in the network. The same label is assigned to
the nodes that are in similar position, having similar properties.
We assess the distance of two nodes by their properties, rather
than using the number of edges between them. Two nodes are
close if they have a similar feature vector.



Fig. 1: Proposed methodology

Initially, we need to select a set of local measurements that
best characterize nodes in the network structure. Out of a large
number of existing properties [9], we employ the same set of
metrics used by Costa et al. [11] as the “feature vector” for
finding groups of nodes. This feature vector has the advantage
of measuring the connectivity of a node in the neighborhood
structure. It includes:

• the normalized average degree (r),
• the coefficient variation of the degrees of the immediate

neighbors of a node (cv),
• the clustering coefficient (cc),
• the locality index (loc), which is an extension of the

matching index and takes into account all the immediate
neighbors of each node, instead of individual edges, and

• the normalized node degree (K).
We use multivariate statistics and pattern recognition tech-

niques [30] to find groups of identical nodes. Clustering is
a method widely used for finding groups of objects, called
clusters, in the dataset such that the objects in the same group
are more similar to each other than they are to objects of
other groups. We use the well known k-means clustering algo-
rithm [31], which bases its operation on the euclidean distance
between nodes. This distance is calculated for every two nodes
by considering all five features. Each cluster contains nodes
with a similar position in the network regarding their feature
vectors. Hence, the same role or label can be assigned to them.

The number of potential groups of nodes in the network is
equal to the number of clusters in the dataset. Determining
the actual number of groups in a dataset is a fundamental
and largely unsolved problem in cluster analysis. We employ
the method by [32], since it does not require parametric
assumptions, is independent of the method of clustering, and
was shown to achieve excellent results. This method uses a
theoretic information approach that considers the transformed
distortion curve d

−p/2
K [32]. “Distortion” is a measure of

within cluster dispersion which is a kind of average Ma-
halanobis distance between the data and the set of cluster
centers as a function of the number of clusters, K. This
method is called the “jump method”. First, it runs the k-means
algorithm for different numbers of clusters, K, and calculates
the corresponding distortions, d̂K . Then it transforms the
distortion by power transformation of y = p/2, where p is

the number of dimensions in the dataset. The “jumps” in the
transformed distortion are calculated by Jk = d̂−y

K − d̂−y
K−1.

Finally, the appropriate number of clusters for the data is equal
to K∗ = argmaxkJk.

We use the jump method to determine the number of groups
of nodes. We do the clustering on the aggregated dataset that
includes feature vectors of every node for the whole lifetime
of the network. At the end of this phase, the coherent groups
of nodes are derived and labeled. Therefore, a sequence of
labels is generated for each node over time, that determines
to which cluster a node belongs at each time. In the next
phase, we attempt to extract occurring events in the network,
considering these sequences.

B. Cluster event detection

Changes in a network are due to some basic events: node
addition or deletion, and new edge addition or deletion. These
events generate more complex behaviors in networks such as
group formation or dissolution. We define five basic types of
events for a group according to the changes in its size, that
is, the number of constituent nodes. If the size of a group
of nodes changes considerably, it shows that properties of a
number of nodes has changed and subsequently structure of
network is altered. In a certain time interval in the network, a
group of nodes can grow, shrink, emerge, dissolve or remain
constant. Regarding these behaviors, we defined six event in
a network life time as follows:

• Growth: A group grows if its size has a constant increas-
ing trend in a time interval.

• Shrink: A group shrinks if its size has a constant de-
creasing trend in a time interval.

• Emerge: A new group emerges if its size has a constant
increasing trend in a time interval and it does not exist
in the previous intervals.

• Dissolve: A new group dissolve if its size has a constant
decreasing trend in a time interval and it does not exist
in the next intervals.

• Constant: A new group remains constant if its size does
not change. In this case, there might be some nodes
leaving or joining although the size of does not change
considerably.

There are two primary event categories occurring in the
network: shrink and growth. The other ones are specific cases
of the original ones. For example, dissolve is a special case of
shrink event where the size of the group shrinks to zero. All
the occurring events in a network of any of these types are
discovered and described by a two step method. In first step,
all time intervals where an event occurs in a cluster of nodes
are detected, such interval is called transition intervals. Then
a set of rules describing the event is generated. Our goal is to
discover rules that describe each event, such as rules that can
explain the origin of new nodes that have joined a group in a
certain time interval.

1) Transition intervals: a transition interval is a time in-
terval where a considerable number of nodes leave or join
a group. For a given group Ci, the size of group over time



constitutes a time series denoted as Fi(t), t ∈ [1, T ]. A
transition interval is the subsequence of Fi which holds a
constant increasing or decreasing trend. Hence, we extract
transition intervals of Fi by segmentation of the time series.
Starting from t = 1, Fi(t) is approximated by linear regression
to find the transition intervals. If the error of the fitted line for
a subsequence Fi[a : b] exceeds the threshold, the interval
[a, b] breaks to point j where it gives the best approximation
for Fi[a, j − 1], j < b. The error is measured in terms
of sum square of residuals. The threshold is controlled by
the maximum number of arbitrary transition intervals. The
maximum error is increased until the number of intervals is not
more than the defined maximum number of intervals. For this
method we can either define the maximum error for the linear
regression, or the maximum number of desired intervals. The
slope of the fitted line for each segment shows if the interval
is increasing or decreasing which respectively determines the
growth (emergence) or shrink (dissolve) events.

2) Transition rules: having a list of transition intervals for
each cluster of nodes, we extract a set of rules to describe
how an event happened. A transition rule is in the form of
Ci → Cj which shows nodes from group i moved to j. The
order of transitions is important, since it shows the trend of
changes in the network properties. For example, for a sequence
of {1, 1, 1, 2, 2, 3}, the transition rules are 1→ 2 and 2→ 3.
We extract these one-step transition rules for a time interval by
building a transition matrix in each time interval. The support
count of a rule Ci → Cj is defined as the number of nodes
that go from cluster Ci to Cj in that interval.

In the next section we apply our methodology on three dif-
ferent networks to characterize the dynamics of these networks
and evaluate the applicability of our method.

IV. EXPERIMENTS

The proposed methodology for automatically assigning la-
bels to nodes and track their evolution over time was im-
plemented in R. We first describe in some detail the used
networks and then we show the obtained results, along with
its evaluation.

A. Networks

For our experiments, we used three different real compleax
networks: a network of the world countries’ global trade which
we call GDP data [33], a network of USA airports1 and a co-
authorship network obtained from DBLP data [8]. We use the
undirected form of these networks. Table I overviews some
topological features of the three studied networks.

GDP: The first network is created from the Expanded Trade
and GDP Data [33]. The data represents the yearly imports
and exports, total trade and gross domestic product (GDP) of
196 countries spanning the 52 years from 1948 till 2000. The
time series for each country is the proportion of its share in
the global economy according to its GDP for that year. The
annual trade network is built by comparing the total trade for

1http://www.routeviews.org

Dataset Time |V | |E| Node growth Edge growth
snapshots rate rate

GDP 53 186 8839 2.47 7.93
USA 244 1919 14391 1.64 1.21
airports
DBLP 11 31592 49599 3.4 4.57

TABLE I: Datasets statistics: number of time-snapshots, num-
ber of nodes and edges at the final snapshot and node and edge
growth rate (ratio between the final and initial time-snapshots).

each country and its trade with each of the other countries.
Two countries A and B in the network at time t are connected
if the trade between them in year t is more than 10% of either
country’s total trade in year t.

USA airports: This data is the complete US airport network
from 1990 until April of 2011. We constructed monthly
networks where two airports are connected if a flight was
scheduled between them in that month.

DBLP: This is a co-authorship network from the DBLP data
with a yearly time granularity. The nodes are authors that are
connected in a certain year if they are co-authors in that year.
It includes co-authorship data from 1992 to 2002 [8].

B. Results and evaluation

Here, we present the results of our experiments on the
datasets. Table II provides a brief overview of the derived
results for the networks, namely the number of clusters, the
number of events and the number of rules, extracted in each
network.

Dataset Num. of clusters Num. of events Num. of rules
GDP 4 22 66
USA airports 6 52 296
DBLP 8 25 195

TABLE II: Datasets statistics: Number of clusters found,
numbers of detected events and number of extracted rules.

This methodology gives us a profile for the network, includ-
ing information about:

• The set of clusters, existing in the networks;
• The set of events, occurred in the network time span.
Figure 2 shows the profile of the groups found in each

network. The profile depicts the values of the feature vector
of each group in the network. As explained earlier, the feature
vector includes the metrics normalized average degree (r),
coefficient variation of the degrees of immediate neighbors
(cv), the clustering coefficient (cc), the locality index (loc),
and the normalized node degree (K).

For example, in the GDP global trade network of countries,
our method found four distinguishable groups of nodes. The
first group includes nodes that represent countries with very
high degree and many low degree nodes connected to them.
Neighbors of these nodes have low degree since the normal-
ized average degree of the immediate neighbors of a node for
this group is very low. This means that nodes of group one



(a) GDP network. (b) USA airport network. (c) DBLP network.

Fig. 2: The feature vector of the clusters in selected networks. The normalized average degree (r) is plotted on the second
axes on right side of plot.

behave as hubs in the network, that is, as hub countries in
global trade, with commercial transactions with many other
countries that have a high variation of degree in neighborhood
(cv). According to the value of (loc) and (cc), respectively,
the locality index and the clustering coefficient, nodes of this
group are highly connected in their neighborhood. United
States of America, Canada and France are members of this
group.

Dataset Event Time Transition Support Z score
interval rules

GDP Emerge (2) [26,32] 3 → 2 80 6.3
Shrink (4) [23,40] 4 → 3 100 14.70
Emerge (3) [12,22] 4 → 3 126 8.3
Shrink (1) [9,29] 1 → 4 25 12.1

USA Growth ( 3) [142,175] 1 → 3 1062 3.75
airports Growth (6) [1,79] 2 → 6 437 7.27

Shrink (2) [57,132] 2 → 3 551 4.79
DBLP Growth (4) [1,11] 0 → 4 6710 1.2

Growth (7) [6,11] 0 → 7 196 0.2
Shrink (3) [1,7] 3 → 0 726 1.3

TABLE III: Description of some extracted events in the net-
works. Numbers in the parenthesis denotes the cluster number,
holding the events

After this first clustering step, we continued with the second
phase. Table III shows some of the extracted events. Besides
the frequency count of every event in each dataset, and in
order to assert their significance, we compared the result with
randomized sequences. We built these random sequences by
shuffling the order of cluster membership of each node in the
network. This way, the random dataset has the same number
of nodes and cluster types. Since we have a dataset of cluster
sequences for each network, we built 10 datasets of random
sequences with the size as the number of nodes. We calculated
average and standard deviation of frequencies for each rule of
events in the 10 datasets. Finally, we calculated the Z-score for
the significance of each rule as compared to the randomized
form. We show in the table the rules with the highest z-score.

Figure 3 graphically illustrates some of the events happening
in each network in terms of transition of clusters. Each graph
includes all transitions of clusters in the specified time interval.
The label of nodes is the cluster number and the color of nodes
shows the type of event happened to the cluster.

For example, the first event (a) in the GDP network de-
scribes the emergence of cluster 3 in the [12,22] time interval.

This graph says that nodes that constitute cluster 3 either
come from cluster 4 or are the new nodes (cluster 0), just
joining the network. By observing Table III, we can see that
the main reason for this event is the transition from cluster 4.
The same type of interpretation could be applied for the two
other networks.

V. CONCLUSIONS

Many networks are intrinsically dynamic and evolve over
time. Discovering topological features in these networks is
far from an easy task. In this work, we proposed a network
characterization method that considers both a static and a
dynamic point of view. It is a two phase methodology that
automatically assigns labels to nodes of the network based
on their local properties and extracts events happening during
the evolution of network. The static view provides a general
description of the network through label assignment to groups
of nodes. Each group in the network is well characterized by
the corresponding feature vector profiling. From a dynamic
point of view, the methodology discovers five categories of
events for each cluster, emerge, growth, constant, shrink and
dissolve. The extracted events are described by some rules
that depict the reason of each event and the flow of transition
between clusters.

We applied our method to three real data networks to
demonstrate and assess its capabilities. It successfully clusters
nodes in groups performing a similar role in the network,
labels the groups and, through the second phase of the
methodology, derives events and their explanation in the form
of transition rules. The rules show node transitions between
clusters in the time interval that event happened. We evaluated
the extracted rules in term of z-score.

Future research will be pursued to extend this methodology,
so that we do not just look at individual nodes but subgraphs
in the network. In particular, given our prior work on efficient
methods for motifs discovery [34], [35], we are specially
concerned with using subgraph motifs as a metric for network
characterization, and then studying network evolution based
on such larger entities.
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Fig. 3: Some of the events happening in the networks.
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