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Abstract—Unexpectedly frequent subgraphs, known as motifs,
can help in characterizing the structure of complex networks.
Most of the existing methods for finding motifs are designed
for unweighted networks, where only the existence of connection
between nodes is considered, and not their strength or capacity.
However, in many real world networks, edges contain more
information than just simple node connectivity.

In this paper, we propose a new method to incorporate edge
weight information in motif mining. We think of a motif as a
subgraph that contains unexpected information, and we define
a new significance measurement to assess this subgraph excep-
tionality. The proposed metric embeds the weight distribution
in subgraphs and it is based on weight entropy. We use the g-
trie data structure to find instances of k-sized subgraphs and to
calculate its significance score. Following a statistical approach,
the random entropy of subgraphs is then calculated, avoiding the
time consuming step of random network generation.

The discrimination power of the derived motif profile by the
proposed method is assessed against the results of the traditional
unweighted motifs through a graph classification problem. We
use a set of labeled ego networks of co-authorship in the biology
and mathematics fields. The new proposed method is shown
to be feasible, achieving even slightly better accuracy. Since it
does not require the generation of random networks, it is also
computationally faster, and because we are able to use the weight
information in computing the motif importance, we can avoid
converting weighted networks into unweighted ones.

Index Terms—Complex Networks, Network Motifs, Weighted
networks, Information Theory, Entropy

I. INTRODUCTION

A large body of knowledge has been developed for pat-
tern mining in networks [1], [2], [3], [4], [5], since it has
applications in a broad range of fields such as sociology [6],
biology [7] or transportation networks [8], where entities are
modeled as nodes that are connected if they have interactions
or are related. However, most of the developed methods are
dedicated to unweighted networks, without taking into account
the strength or capacity of the connections.

A pattern in a network is normally defined as a subgraph
which is very frequent or infrequent (in case of anomalies).
A specific form of patterns are called motifs, which can be
thought of as small subgraphs that appear in a network at
significantly higher frequencies than what would be expected
in similar randomized networks [9]. This type of patterns can
really help in characterizing the networks, since they are not
frequent only by chance, and therefore really highlight the
specific structural properties of the networks. That is why mo-
tifs are also known as the building blocks of networks. It has
been demonstrated that they can have functional significance

in transcriptional regulatory networks [10] or protein-protein
interaction networks [11].

We note that network motifs, by their definition, are dif-
ferent from frequent subgraphs [1], [2] or substructures [12].
For an unweighted network with binary connections (where
two nodes are either connected or not), motif mining consists
essentially in enumerating all subgraphs of specific sizes in a
network, and finding those that appear more frequently than
expected [9]. This full subgraph enumeration leads to a higher
computational complexity for motif mining algorithms, when
comparing to frequent subgraph mining algorithms where
pruning criteria such as the anti-monotonicity property are
used to limit the search space and to improve efficiency.
Another restricting issue in motif mining is the calculation
of random frequency of subgraphs. From a statistical point of
view, the random frequency of a subgraph is reliable only if
a reasonable number of random subgraphs are generated for
this purpose. These properties imposed by the definition of
motifs make it computationally hard to increase the size of
subgraphs.

For a better characterization of complex networks, one
needs to utilize all available information, including the weights
of the edges. This is important in networks such as the traffic
flow in a transportation network, strength of social relations,
or connectivity strength between every pair of brain regions.
To find patterns in weighted networks, the majority of the
existing methods need a weight threshold over edges to convert
a weighted network to an unweighted one, where nodes are
connected if the weight is more than the threshold. A big
challenge for this approach is to find an appropriate value
for the threshold, and different choices of values lead to
very different network topologies. For example, two nodes
that are connected in a network for threshold a might be
disconnected in a network with threshold b. A limited number
of methods were designed to find patterns considering the
weight information and to tackle this issue [13], [14]. They
propose a weighted support measure for frequent subgraph
mining algorithms, based on average weights.

In a weighted network, one requires a measure different
from the usual frequency. Saramaki et al. [15] used the average
of weights to find motifs in a network. They define two
measures, intensity and coherence, based on the average of
weights in instances of a particular subgraph type. A subgraph
is a motif if these measurements differ from random values.

In this paper we propose a new method to find the subgraphs
that are significant in terms of weight distribution. Hence, we



need a significance measure that incorporates the weight infor-
mation. Analogous to motif mining in unweighted networks,
a subgraph is relevant if the value of the designed measure
is significantly different from its expected random value. We
use Shannon’s concept of information entropy [16] as the
significance measure. Information entropy gives a quantitative
measure to assess the amount of latent information in different
objects. Entropy measures the uncertainty of a variable; the
more randomness it has, the higher the entropy is. Entropy
is also used as a measure to differentiate random occurrences
or noise in datasets. Given this, it fits well in the problem
of motif mining where motifs are the ones which appear in
different frequencies than it would be expected in randomized
networks. An entropy based approach was also successfully
used to discover colored motifs in biological networks [17].
Our approach is however conceptually different, because we
incorporate weight information, while this other approach
considers unweighted edges and different node classes.

We can say that a subgraph contains almost no information
if its weight distribution is completely random. Therefore, a
subgraph is relevant, and characteristic of the network, if its
weight entropy differs significantly from the weight entropy in
random networks. To calculate the random entropy, we exploit
an analytical approach. In this way, we greatly decrease needed
computation time, avoiding the costly step of having to do an
exhaustive random network generation for assessing subgraph
significance.

Motif mining methods for unweighted networks mainly fall
into two main conceptual approaches. Network-centric meth-
ods look for all possible k-sized subgraphs, by enumerating
connected sets of k vertices, and in the end they do tests
to discover the isomorphic class of each subgraph found.
ESU [18] and Kavosh [19] are examples of two state of the
art algorithms following this methodology. Subgraph-centric
approaches, on the other hand, query individual subgraphs one
at the time. Grochow and Kellis [20] developed and efficient
algorithm for this.

We have recently developed a new specialized data struc-
ture, g-tries[21], that can efficiently represent and query any
collection of subgraphs, following an intermediate set-centric
approach, in which we really define the custom set of sub-
graphs we are interested in. G-tries are multiway trees that
take advantage of common substructures in the subgraphs
to efficiently search at the same time for occurrences of all
the subgraphs in the collection. G-tries have been shown to
be significantly faster than previous methods when finding
motifs [21], [22], and we used them to calculate the more
traditional unweighted significance score of subgraphs.

In order to evaluate the feasibility of our new approach,
we tackle a graph classification problem, by using a set of
subgraphs as a feature vector for classifying networks. We
compare the accuracy obtained when using our new weighted
motif feature set and the traditional unweighted motif profile.
The results show that the proposed measure is feasible and
can find a set of subgraphs that help to classify the networks.

The reminder of paper is organized as follows. Section II de-

fines the proposed significance measure. Section III describes
our practical implementation of our new metric. Section IV
discusses the experimental results and the evaluation of the
developed method. Finally, section V concludes and gives
possible future directions.

II. WEIGHT ENTROPY OF SUBGRAPHS

In this section the necessary concepts for formalizing motifs
in weighted networks are described and the proposed signifi-
cance measure, weight entropy, is introduced.

Since edge weights may be continuous values, it is not
straightforward to include them in the mining methodology.
For a weighted network, we need a measure that not only
considers the frequency, but also includes the weight distribu-
tion over the edges in a subgraph. In other words, we need a
measure that can assess the whole information embedded in a
subgraph in order to assign an importance degree for it to be
a pattern.

The occurrence of a subgraph is a part of the network
characteristics and can describe the functionality or class of
the network, if this occurrence does not happen by chance.
Hence, if its information content is different from random
networks, it is not random. Such a value can be used as a
measurement to distinguish the subgraphs in a network as
relevant patterns. Information content of an event is commonly
used as a discriminating measure [23]. Shannon’s theory of
information [16] gives us a mathematical tool to quantify
the amount of information gained from an event. Information
theory assesses how surprising, or unexpected, an observation
or event is. If an event always happens, there is no information
gain in detecting this event.

Entropy is a function of the probability distribution P =
(p1, .., pn) where pi is the probability of occurrence of an
event. By defining the occurrence of a subgraph with an edge
weight distribution as an event, we can use entropy as a mea-
sure to quantify the importance of subgraph for being a pattern.
This measure not only considers the weight distribution in the
form of probability function, but also assesses the information
content of a subgraph.

If X is the random variable describing a particular subgraph
gkh with k nodes and h edges in a network then it can have
different states regarding different edge weight set ~W = {wi |
i = 1, .., h}. The weight entropy of a subgraph is:

H ~W (X) = −
∫
p(X)log(p(X)) (1)

where p(X) is the probability of occurrence of weight set ~W
in the subgraph gkh and is given by:

p(X) = P ( ~W ≤W ) (2)

where W is a vector of upper bounds for weights of edges in
the subgraph.

For each particular type of subgraph of size k in a network,
we assign a weight entropy that reflects the weight distribution
in the subgraph and shows if the distribution is random or
describes a property in the network.



In this paper, we define a weighted motif as a subgraph
whose weight entropy is significantly different from random
weight entropy: ∣∣HR −H ~W

∣∣ > δ (3)

where HR is the weight entropy in random networks, called
random entropy and δ is a user-defined threshold to find
motifs.

An essential step of unweighted motif mining methods is the
random simulation for calculating the mean and variance of a
subgraph frequency in similar random networks [24], typically
conserving the degree sequence of the original networks. This
step is computationally very expensive. In this paper, for
calculating the random entropy, we do not need this exhaustive
generation of random networks, but instead we use analytical
formulas to find the probability of occurrence of a subgraph
gk with weight set ~W in an Erdös-Rényi (ER) random graph
model. This probability is the main element for calculating the
random entropy regarding the equation 1 and is equal to:

P
gkh
~W

= p( ~W ) ∗ µ(gk) (4)

where p( ~W ) is the probability that edges in gkh have weight
set ~W = {wi | i = 1, .., h} and µ(gk) is the probability
occurrence of a subgraph gkh. The first component, denoted
by p( ~W ) follows f(w), the weight distribution in the original
network. The joint probability is as follows where the weight
of edges in a random network are independent:

p( ~W ) = P ({wi | i = 1, .., h}) =
h∏
i

f(wi) (5)

In a random graph G over a set of nodes V , connectivity
between every two nodes i and j is independent and identically
distributed in the networks. Edges are described by a set of
variables X = {Xi,j} for all i, j ∈ V where Xi,j is 1 if
two nodes are connected, and it is 0 if not. This stationary
property of process of random network generation entails
that the edge distribution in a network is independent of
permutation of nodes, meaning the probability of occurrence
of an edge between two nodes i and j does not depend on
(i, j) (exchangeable assumption). Picard et al. proposed an
analytical method to find the probability of occurrence of a
motif in every random network where random variable X is
iid [25]. The probability of motif occurrence is independent
of the occurrence position. For the ER model, where the
exchangeable assumption holds, the probability of occurrence
of gk is as follows:

µ(gk) =
∏

Pr{(Xi,j = 1)}eij = αh (6)

where h is the number of edges in gk and eij is 1 if nodes
j and j are connected and 0 otherwise, for all i, j ∈ V (gk).
Finally, by substituting the random probability of occurrence
subgraph gk with weight set ~W in formula 1, the random
weight entropy is equal to:

HR = −
∫
wi

αh ∗ f(wi)hlog((α ∗ f(wi))h) (7)

III. WEIGHTED MOTIF MINING

We now describe how we implemented our proposed mea-
surement. We are trying to find significant subgraphs, called
motifs, having in consideration not only frequency but also
weight distribution of edges in the subgraph. Formally, motifs
of size k in a weighted network are subgraphs with k nodes
where weight distribution has higher entropy than random
weighted networks. To implement the weighted method de-
scribed in section II, we modified the g-tries search algorithm
to find such subgraphs and calculate the entropy measure.
We divide the implementation into two parts, namely weight
entropy of subgraphs in the original network, and random
weight entropy for random networks:

A. Entropy of subgraphs in original network

The overall process for finding motifs of size k in a
weighted network is that we first need to find all subgraphs of
size k (storing the weight set over the edges for each subgraph
type i), and secondly we find the probability of occurrence
of gki with weight set {w1, w2, ...wh}. This probability is
a multivariate function whose dimension increases as the
number of edges in the subgraph increases. To find the weight
distribution of a given subgraph, we use the stored weight sets
while enumerating the instances of the subgraph in the original
network.

We use g-tries [21] for storing and searching for subgraph
occurrences. G-tries are multiway trees that are able to store
a collection of subgraphs. Their basic principle is to identify
common substructure. Subgraphs with the same parent g-trie
node share the same topological structure with the exception of
a single node and its connections, as is exemplified Figure 1.

Fig. 1: An example g-trie storing all possible undirected
subgraphs of size 6. In each g-trie node, the black vertex is
the new one being added, and the white vertices are the ones
“inherited” from the parent g-trie nodes.

By using an efficient canonical labeling procedure and
symmetry breaking conditions, g-tries allow the search at the
same time for an entire set of subgraphs. This avoids the
redundancy of searching several times for the same substruc-
ture that belongs to different subgraphs, as it would happen
if we would search for each subgraph type individually, in a
subgraph-centric algorithm such as Grochow and Kellis [20].



At the same time, g-tries also do isomorphism testing as we
are traversing the g-trie tree, since when we are at a leaf we
can be certain that the subgraph found is of that type. This
contrasts with network-centric methods such as ESU [18],
which enumerate all connected sets of the desired number of
vertices and postpone isomorphism tests to when an entire
occurrence is found, not reusing information from previous
isomorphisms found.

We modified the original g-tries algorithm so that we are
able to store sets of edge weights for each subgraph type,
instead of simple integer frequency. After discovering all
occurrences of a subgraph gk in the network, we find its
multi-dimensional distribution of weights and calculate Hw

of subgraph gk in the network, regarding equation 1.

B. Random entropy

The second component for finding motifs is the calculation
of the random entropy, regarding equation 3. This step is
different from conventional motif mining method in the sense
that we do it in an analytical way, avoiding the need for
generating random networks and computing the frequency
of subgraphs in this ensemble of networks. We follow the
statistical scenario described in section II.

In calculating the random entropy, the main component is
the weight distribution f(w) in the whole network regarding
equation 7. An approach to find a distribution is to build
the histogram of the data. We use a discretization method
to find the histogram, and there are several methods for this
purpose. Some of them are supervised methods that need a
class label, such as an entropy based method, and others are
unsupervised, such as equal width or equal frequency. Here,
we use an equal frequency method since we do not have any
class label and also because this method finds the intervals that
have enough instances for inference, avoiding the generation
of sparse intervals in terms of frequency. Equal frequency
discretization divides the range of weights for an edge into
r intervals where each interval includes n/r values, and n
is the number of weight sets. In this way, we have a set
of break points b1, ..., br−1 and a set of frequency counts
that define r intervals in the range of each edge weight:
(−∞, b1] , [b1, b2] , ..., [br−2, br−1] , [br−1,∞). Label bi is as-
signed to values belonging to interval i. Finally, the random
entropy is calculated using equation 7 and weight distribution
f(w).

IV. EVALUATION AND RESULTS

The main motivation of this paper was to build a method
capable of finding relevant subgraphs that characterize the
networks. Therefore, we need a way to show that incorporating
the weight information in motif mining algorithms can find the
right subgraphs as motifs that best represent the functionality
or class of the network. One of the main applications of
motif discovery using any algorithm is to predict the type of
the network. We can build motif profiles that can be used
as fingerprints for network classification in different domains
such as biological [26] or social [27] networks. Given this,
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Fig. 2: Set of subgraphs used for motif mining in the ego
networks.

as an evaluation method, we decided to use a classification
problem where there is a set of networks with pre-defined
labels or classes and the motif profile is used as a feature
vector for classification.

For this purpose, we need a dataset of labeled networks.
In this paper we use the co-authorship networks of publica-
tions authored by researchers from the University of Porto,
ranging from 2003 to 2011. These are publications drawn
from ISI Thompson Web of Knowledge. We randomly selected
100 authors from two different scientific fields: biology and
mathematics. Then, for each author, we built the ego net of
authors’ collaborations, that is, the network composed solely
by the authors that have at least one paper co-authored with
him, and their respective interconnections (co-authorship of
papers). The label of each ego network is the scientific field
that the author belongs to. We selected 30% of authors from
mathematics and the others from biology. The weight of the
edges is the number of papers that two authors published
together.

We apply our proposed method and also the more classical
unweighted version of motifs on the dataset to derive the motif
profiles which are then used as a feature vector for a standard
classifier. Then, the accuracy of classification using both the
weighted and unweighted methods are compared to assess
the obtained performance in finding the correct motifs in the
networks.

We use a variety of classification techniques for the eval-
uation, including: (i) Decision Trees (C4.5) [28], (ii) Naive
Bayesian Classifiers (NB) [29], and (iii) Support Vector Ma-
chines (SVM) [30]. The classification results were computed
using 10-fold cross validation.

The proposed method and the unweighted one both generate
a vector of importance values for subgraphs, respectively



called h-score score and z-score. In an unweighted network,
the significance of a subgraph is measured in terms of a z-
score:

z-scorek =
freqoriginal(Gk)−freqrandom(Gk)

σ(freqrandom(Gk))

where freqrandom and σ(freqrandom) are respectively the
average and standard deviation of the frequency in the ran-
domized networks. We derived the motif profile of networks
for subgraphs of size 3 to 5 (the usual size in motif mining
studies), depicted in Figure 2.

Figures 3 and 4 depict the kernel density estimates of
importance scores for the used 100 ego networks in biology
and mathematics fields. The plots give the probability that the
score of a subgraph fall in an interval. Although both measures
give very similar results, h-score values are more concrete
and less scattered. As we can see in the figures, h-scores
of subgraphs are more centralized around the mean value
of importance measure. Hence, if a subgraph is a promising
feature in a network, h-score tends to give a stronger value
to it. In the figures, the green baselines show the threshold of
±0.6. Regarding the baselines, we can see that if a subgraph is
a motif the h-score can detect it with higher probability than
z-score. Comparing the histograms across the two research
fields, biology and mathematics, we can see clearly that both
measures give higher score to different sets of subgraph for
each field. For example, subgraphs of size 5 have higher aver-
age importance in biology, specially subgraph 5-20 and 5-21
which are more connected. While in mathematics, the average
score for smaller and less connected subgraphs, such as 4-1
and 5-1, is higher. The observed pattern for these two fields
are in good accordance with results derived in our previous
work [27] where co-authorship networks are compared across
different scientific fields by their motif profile.

We did the classification with two different scenarios: binary
feature vectors and continuous values. In the first scenario,
we have a binary vector of size 29 (the number of subgraph
types) where we use 1 if the importance value of subgraph is
above a defined threshold δ, and we use 0 if it is below the
threshold. In the second scenario, we used the original value
of motif profiles. For the purpose of comparison we normalize
the significance values of both methods into interval of [−1, 1].

The accuracy of built models for the two motif mining
methods are compared in table I. The last row of the table
shows the results for the case in which we used the continuous
values of motif profiles.

From table I, we can see that both methods achieve rea-
sonably good results. Compared to the unweighted version of
motifs, the proposed method, not only can characterize the
networks, but can also do it with slightly better accuracy.
In addition, it has two advantages. First, it takes advantage
of weight information in the networks and there is no need
for putting a threshold over the weight of edges. Secondly,
since this method mainly relies on the distribution of weight
in the network, we could use statistical methods to calculate
the random value of entropy and we avoid the expensive
computational step of motif mining algorithm, which is the

TABLE I: The accuracy of the classifiers using the new
proposed weighted motif mining method and the classical
unweighted method.

threshold δ
weighted motifs unweighted motifs

C4.5 NB SVM C4.5 NB SVM

0.2 80.7 74.1 69.3 71.2 69.4 64.2

0.4 79.9 72.7 72.3 76.5 73.6 67.8

0.6 81.2 75.3 71.3 82.1 75.4 68.1

(continuous) 71.9 68.3 64.3 65.7 67.8 61.7

random network simulation and correspondent subgraph fre-
quency computation, for measuring the z-score.

V. CONCLUSIONS

Many real complex networks contain more connectivity in-
formation than a simple boolean function that tells us whether
a pair of nodes is connected or not. The edges can have
weights that greatly improve the expressiveness and informa-
tion content of the connections. For instance, on co-autorship
networks, an unweighted network would not distinguish a
connection between two authors that wrote dozens of papers
together from a connection between a pair of authors that only
were co-authors on a single paper. The same concept can be
applied in many other network types, expressing for example
the amount of traffic flow in a transportation network, or
the connectivity strength between brain regions. In this paper
we proposed precisely a novel methodology that is able to
find motifs in weighted networks, incorporating the weight
information in its calculations.

It is has been shown that subgraph patterns, or motifs, can
characterize the functionality of unweighted networks [26].
We defined motifs in weighted networks as the subgraphs
that include unexpected information content, that is, that
are different from random networks. We proposed a new
significance measure based on weight entropy of subgraphs.
In our method, we exploit an analytical approach instead of
random networks generation for calculating random entropy.

The derived results are compared against unweighted motifs
in terms of capability for network characterization. With this
purpose in mind, a graph classification problem is used to
evaluate the results. The evaluation shows that the proposed
method is able to find the set of subgraphs that can differentiate
networks at least as well as unweighted motifs, achieving even
slightly better accuracy. However, our method is even faster to
compute, given that we avoid the random network generation.

In the future we intend to apply our methodology to other
networks, exploring its power for general characterization of
any type of complex networks. We also intend to use a
more broad set of subgraph types (for instance using larger
sizes) and to experiment with other random network models,
different from the used Erdös-Rényi model.
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Fig. 3: Kernel density estimate of significance scores, h-score and z-score, for subgraph size 3-5 for biology ego networks.
The red vertical base lines depict the threshold of ±0.6 to consider a subgraph as a motif.
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Fig. 4: Kernel density estimate of significance scores, h-score and z-score, for subgraph size 3-5 for mathematics ego networks.
The red vertical base lines depict the threshold of ±0.6 to consider a subgraph as a motif.
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