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José Ferreira1, Alberto Barbosa1,2, and Pedro Ribeiro1,2

1Departamento de Ciência de Computadores, Faculdade de Ciências
Universidade do Porto, R. Campo Alegre s/n, 4169–007 Porto, Portugal

2 CRACS & INESC-TEC, Portugal,
jcff@fc.up.pt, alberto.barbosa@fc.up.pt, pribeiro@dcc.fc.up.pt

Abstract. Many complex systems exist in the physical world and there-
fore can be modeled by networks in which their nodes and edges are
embedded in space. However, classical network motifs only use purely
topological information and disregard other features. In this paper we
introduce a novel and general subgraph abstraction that incorporates
spatial information, therefore enriching its characterization power. More-
over, we describe and implement a method to compute and count our
spatial subgraphs in any given network. We also provide initial experi-
mental results by using our methodology to produce spatial fingerprints
of real road networks, showcasing its discrimination power and how it
captures more than just simple topology.
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1 Introduction

Complex networks are a very powerful abstraction of real-world systems that
allow us to analyze the underlying interactions [11]. Many of these systems have
a correspondence to the physical world, such as transportation networks (e.g.
road, train or subway), power grids or brain networks. Their components are
therefore embedded in space and topology alone does not capture all the relevant
information [1]. Being able to understand and analyze these spatial networks is
therefore a crucial task with multidisciplinary applicability [2,3].

Subgraphs can be seen as the building blocks of networks and they are the
core of rich characterization concepts such as network motifs [9] or graphlet
degree distributions [13]. Despite extensions to incorporate dimensions such as
weight [4], time [12], color [15] or multiple layers [16], to the best of our knowl-
edge there is no general and widespread subgraph abstraction that incorporates
the spatial dimension. We should note that for specific domains there has been
some related work, such as in football, where passing networks between different
regions of the playing field have been created [10], but these remain specialized
and restricted to their own field of study.

In this paper we try precisely to aim towards a general concept of spatial
motifs able to characterize networks from any domain. Our first contribution
(Section 2) is a novel subgraph abstraction that incorporates spatial informa-
tion in a way that is general enough to incorporate several spatial dimensions
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(e.g. 2D or 3D) and granularities (e.g. large macroscale vs small microscale re-
gions). The key idea is to automatically create a spatial partition of the subgraph
bounding and to color the nodes according to the region they are on. Our second
contribution (Section 3) is an initial methodology and fully functional framework
to detect and count these spatial motifs, based on enumerating subgraph occur-
rences and then computing their spatial and topological type. Our third and last
contribution (Section 4) is a proof of concept experimental section, in which we
analyze several real word road networks, showing that unlike purely topological
motifs, we can distinguish between grid and non grid-like layouts.

2 A Novel Concept of Spatial Motifs

There are several possible ways for expressing spatial properties. For instance,
the distance between nodes can be used as edge weight [7], but this would not
take into account the relative position of the nodes. Another option would be to
use angles between nodes, hence losing the distance information. Our approach
relies on first creating a bounding box around the found subgraph using the nodes
spatial location, and then partitioning this box into regular-sized regions, thus
taking into account both the relative position and the distance between nodes.

For the sake of simplicity and given the space constraints, we will mainly
focus on a 2D example divided into 2× 2 quadrants, but as explained later, our
approach is general and extends naturally to higher dimensions. The creation of
the bounding box is straight-forward: we require a set of coordinates for each
node on the input, and for each found subgraph, we calculate the maximum and
the minimum of both the x and the y values, which gives us the limits of our
box. Then, we simply calculate the relative position of each node when referring
to the center of the bounding box, assigning a quadrant to the node on the
form of a color. An example can be seen in Figure 1, where the original spatial
network is given above, in the blue nodes, and all its three node spatial subgraph
occurrences are given below.

Fig. 1: Example of subgraphs with spatial coloring by 2D quadrants
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Taking into account the spatial dimension of the nodes on the previous figure,
we can enumerate five different subgraph types, being the fourth ({3, 5, 6}) and
the fifth occurrence ({3, 5, 7}) of the same type: they both have three nodes
in the same quadrants (one orange, one yellow and one green) and the same
connections (one orange-yellow edge and another yellow-green edge).

By contrast, if only purely topological properties were used, there would exist
only two subgraph types, as depicted in Figure 2, with the first five occurrences
being a chain of three nodes and the last one (({5, 6, 7}) being a triangle.

Fig. 2: Chain (type A) and Triangle (type B) topological subgraphs

The above example already illustrates how much richer our spatial represen-
tation is, but we would like to emphasize how general our conceptual approach
is. From a scale point of view, it naturally extends to higher numbers of nodes
(just consider more nodes in each subgraph). From a topological point of view,
it is also able to organically integrate features such as direction (just consider
that when distinguishing between different isomorphic types). From a granular-
ity point of view, we can also consider any regular division. Here we exemplified
with 2× 2 quadrants, but we could use any n× n partition, depending on what
we want to measure (and moreover we could even use on the same analysis sub-
graph occurrences at different n sizes to create a richer set of features). Finally,
our approach also naturally extends to higher dimensions (for instance, in a 3D
space one could use 2× 2× 2 octants as the equivalent of 2D quadrants).

3 Finding and Counting Spatial Motifs

In this section we explain our methodology for finding and counting the occur-
rences of spatial motifs as defined in the previous section. The motivation for
counting will become clearer on Section 4, but essentially by computing subgraph
frequencies we are able to obtain numerical features characterizing the underly-
ing network. Counting subgraphs is therefore a core network analysis primitive.
A fully detailed survey on how to count purely topological motifs can be seen
in [14], including approximate and parallel approaches.

Our proposed initial approach has two steps: (i) we first enumerate all sub-
graph occurrences of a given size k, obtaining sets of k connected nodes; (ii) for
each occurrence we identify its spatial type by producing a canonical labeling
that is unique to each colored isomorphic type. A fully functional implementation
is available at github 3.

3 we will make available a github link to the source code if the paper is accepted
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3.1 Enumerating Subgraph Occurrences

In order to enumerate the occurrences of subgraphs with k nodes, we opted
to use ESU [17], a general purpose subgraph enumeration algorithm capable of
finding each occurrence only once, avoiding symmetries. In short, this is done by
starting from a single node and expanding from there, using only vertices that
have an index (label at the original graph) greater than that of the original node
and that can be neighbors of a newly added vertex but not of any other one
previously added. In Figure 3 we illustrate this process with a small example
for k = 3 and an original network of six nodes. Inside each tree node box we
indicate two node sets: first the current subgraph being enumerated (Vsubgraph)
and secondly the set of nodes which can expand it (Vextension).

Fig. 3: Example of an ESU search tree for k-subgraph enumeration with k = 3

The root of the search tree is a starting point to evaluate the subgraph. It’s
children, on the second level, correspond essentially to one branch per node,
with the extension sets being their immediate neighbors with a larger index
than the node itself. For instance, the second branch contains Vsubgraph = {2}
and Vextension = {3} (3 is a neighbor of 2 and 1 is not considered since 1 < 2
and the subgraph with {1, 2} would be already considered in the first branch).
This process continues in the following tree levels: we add 3 to Vsubgraph since
it has two neighbors that meet the requirements, those are added to Vextension,
resulting in Vsubgraph = {2, 3} and Vextension = {4, 5}. Now we have two possible
branches, Vsubgraph = 2, 3, 4 and Vsubgraph = 2, 3, 5. In both these cases we have
|Vsubgraph| = 3 and we have reach the desired node set size.

After doing this to every single node we end up with the subgraphs of size
3 represented on the leafs of the tree. The required conditions for a node to be
added to Vextension make sure that no subgraph is found twice.



Towards the Concept of Spatial Network Motifs 5

3.2 Subgraph Types and Canonical Labeling

After having the node sets that correspond to each subgraph occurrence, we
still need to discover the spatial type of each one, so that we can increment its
frequency. For instance, as we could observe in Figure 1 that the fourth and fifth
subgraphs belong to the same type.

In our approach, we first determine the bounding box of each occurrence by
computing the minimum and maximum values of each spatial dimension. We
then partition the box into the desired number of regions and we “color” the
nodes according to the region in which each one falls, effectively obtaining what
could be considered a colored subgraph [15]. Afterwards, we compute a canonical
labeling such that two subgraph occurrences will have the same labeling if and
only if they correspond to the same (colored) isomorphic type.

Fig. 4: The first two subgraphs are of the same type and should have the same
canonical labeling; the third one should have a different labeling

Figure 4 illustrates the need for a canonical labeling that takes node colors
into account. From a purely topological point of view, all three subgraphs are
chains and therefore indistinguishable. However, when incorporating spatial in-
formation, this is not the case. We want the first and second subgraphs to have
the same label, as they have the same colored topological properties: one node
in each quadrant except the fourth one (represented by the colors orange, red
and yellow), and two connections (an orange-red edge and orange-yellow edge).
The third subgraph has different spatial properties that correspond to different
colored nodes and edges.

In general, even without colors, computing canonical labelings is a very hard
computational task, closely related to the graph isomorphism problem [5]. We
therefore resorted to nauty [8], a third-party and very efficient set of procedures
to determine the automorphism group of a vertex-colored graph. Since nauty has
built-in support for colored nodes, a call to the default method with the required
arguments and the quadrant as color is enough to give us the canonical label.
To achieve a labeling using colors, nauty requires the colors to be given in some
order, and the edge labels will be returned in the order the colors were provided,
that is, first the edges with the first color, then the ones with the second color,
and so on.
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4 Experimental results

In order to test our implementation and to showcase the applicability of our
proposed subgraph abstraction, we now provide a proof of concept. We use real
world road networks, which can be considered one of the quintessential spatial
network examples to which everyone can relate to. We selected two cities with
“grid-like” street layouts (Espinho, Portugal and Detroit, USA) and two with
“non grid-like” layouts (Porto, Portugal and Oxford, UK), aiming to distinguish
between these two layout groups using our proposed approach.

Our original source of raw street data was OpenStreetMap (OSM) [6], which
is a collaborative project that aims to provide a free editable geographic database
of the entire world. In Figure 5, we show an image of the approximate area used
for each of the cities mentioned above, taken from OSM, which clearly indicates
the nature of the road layouts that are being analyzed.

(a) Espinho (b) (Northwest) Detroit

(c) Porto (d) Oxford

Fig. 5: Layout of the four cities used as input
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From the raw data we create a network in which the nodes are true road
intersections and edges represent roads between them (this implied the creation
of an automated script that given a geographical bounding box will extract
all OSM features from it, which are further processed and simplified to create
the desired intersection network). In this network, we fix the subgraph size to
k = 3 and count the number of occurrences of each spatial subgraph. Figure 6
exemplifies this process for a small portion of a map, illustrating the extracted
network and all its occurring subgraph occurrences, some of them belonging to
the same spatial type. For instance, {1, 2, 3} and {3, 4, 5} are of the same type,
and the same can be said for {1, 2, 7} and {3, 4, 6}.

Fig. 6: The network corresponding to a map and its subgraph enumeration

To better understand and visualize the differences in subgraph occurrences,
we opted to further divide spatial types into classes (families of subgraphs), that
corresponds to the four 90 degrees rotations of the same simple type. Figure 7
illustrates this concept and one class of subgraphs.

Fig. 7: Subgraph class 1 and its four spatial subgraph types,
corresponding to 90 degree rotations

Figure 8 illustrates representatives of the six most frequent classes of sub-
graphs that we found in the studied road networks (the frequency of the other
possible classes is residual and their very low relative frequency does not impact
the conclusions of our analysis).



8 José Ferreira et al.

(a)Class 1 (b)Class 2 (c) Class 3 (d)Class 4 (e) Class 5 (f) Class 6

Fig. 8: Representatives of the most frequent classes of subgraphs considered

4.1 Results for “grid-like” street layouts

Figure 9 represents the top-4 (in order, from left to right) of the subgraphs with
most occurrences in Espinho and Detroit. The results are as expected and cap-
ture the grid-like nature of the layout. Even if the exact order of simple types
is not exactly the same, this top-4 corresponds to class 1 subgraphs, whose rep-
resentation resembles a right angle, that is, where each node is in a different
quadrant and the subgraph is a chain that connects nodes in consecutive quad-
rants.

(a) Espinho (b) Detroit

Fig. 9: Top-4 of subgraphs with most occurrences in the two grid-like cities.
Note that all the subgraphs are of class 1 (as defined in Figure 8)

The difference in frequency from the 5th to the 4th most common subgraph
is noticeable, particularly in the case of Espinho. In both cases, subgraph types
from the 5th to the 8th positions are of class 2. Tables 1 and 2 give more detail
on the results, showing the relative frequency (percentage of total occurrences)
of the 10 most common subgraph types and their associated class. In total, there
were 22 different subgraph types found for Espinho and 32 for Detroit.

4.2 Results for “non grid-like” street layouts

On the other hand, if the city does not have a well defined grid layout, we can
observe that the most frequent subgraphs are very different, as can be seen in
Figure 10. In fact, the top-4 for these two cities does not have any subgraph type
in common with the grid-like cities. Here, the topological chain type of subgraph
is still the most common, which means that if only the topological information
of the subgraphs was used, conclusions with this level of detail would not be
possible, but in this case instead of having each node in a different quadrant,
two nodes share a quadrant, there is a connection between them, and one of
them connects to a node in the opposite quadrant, with the entire top-4 of most
frequent subgraphs being of the same class.
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(a) Porto (b) Oxford

Fig. 10: Top-4 of subgraphs with most occurrences in the two non grid-like
cities. Note that all the subgraphs are of class 2 (as defined in Figure 8)

As on the previous section, we give detailed results of the top-10 most com-
mon subgraph types in Tables 3 and 4. Again there is a noticeable increase in
frequency from the 5th to the 4th most common subgraph, and the same class
appears from rank 5 to rank 8. In total, there were 28 different subgraphs found
for both Porto and Oxford.

Subgraph Relative
Rank Type Frequency

1 1 0.178258
2 1 0.167738
3 1 0.161894
4 1 0.160140
5 2 0.089421
6 2 0.080070
7 2 0.046756
8 2 0.044418
9 4 0.010520
10 3 0.009351

Top-10 total — 0.948567

Table 1: Spatial subgraph
frequencies in Espinho

Subgraph Relative
Rank Type Frequency

1 1 0.139369
2 1 0.138028
3 1 0.135329
4 1 0.134110
5 2 0.108859
6 2 0.097870
7 2 0.086585
8 2 0.083102
9 3 0.019452
10 3 0.019208

Top-10 total — 0.961913

Table 2: Spatial subgraph
frequencies in Detroit

Subgraph Relative
Rank Type Frequency

1 2 0.133904
2 2 0.131815
3 2 0.118655
4 2 0.118446
5 1 0.081888
6 1 0.080426
7 1 0.079590
8 1 0.075621
9 3 0.023605
10 3 0.022143

Top-10 total — 0.866095

Table 3: Spatial subgraph
frequencies in Porto

Subgraph Relative
Rank Type Frequency

1 2 0.149768
2 2 0.148675
3 2 0.133916
4 2 0.121618
5 1 0.074064
6 1 0.071331
7 1 0.070511
8 1 0.066684
9 4 0.024050
10 4 0.022683

Top-10 total — 0.883302

Table 4: Spatial Subgraph
frequencies in Oxford
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4.3 Comparison between cities

In Figure 11 we can observe a bar chart of the relative frequency of each subgraph
class per city, with the usage of their spatial properties.
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Espinho Detroit Porto Oxford

Fig. 11: Spatial subgraph fingerprint of each of the studied cities

If we remove the spatial component from the subgraphs, we are left with only
two types of subgraphs: chains and triangles. This means that spatial classes 1
to 4 will be of the single topological type A (chain), and classes 5 and 6 will of
the the topological type B (triangle). Using the same data as the previous plot
but ignoring the spatial properties results in the bar chart depicted in Figure 12.
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Fig. 12: Purely topological subgraph fingerprint of each of the studied studies
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We can observe from Figure 11 that the distribution of the subgraph classes
clearly shows a predominance of class 1 in the two grid-like cities, whilst class 2
is more common in the two cities without this layout, which allows us to easily
distinguish them, using only this distribution. Conversely, using the data from
Figure 12 it is not possible to make that distinction, as all cities show a clear
dominance of type A subgraphs with around the same difference in frequency
when compared to type B, which is really uncommon in street networks. It is also
interesting to note that the cities without a grid layout have a bigger frequency
of other types of subgraphs other than classes 1 and 2, even if though those types
are still by far the most relevant.

As a final note, we would like to remark that using a normal laptop the
subgraph counting and labeling phase takes less than a minute to compute even
in the largest considered network (Detroit, with 16 029 nodes and 24 773 edges).
A potential drawback of our proposed strategy is that increasing the size k of
the subgraph will inevitably lead to an exponential growth of the number of
subgraph occurrences and hence on the execution time. However, in this paper
we were mainly concerned with proving that the concept could be useful and
there are still many improvements that can be made regarding efficiency.

5 Conclusions and Future Work

In this paper we present a set of contributions aiming to incorporate spatial
properties into subgraph analysis. We first offer a novel abstraction that relies
on a bounding box and regular spatial partitions to attribute node colors that
describe the relative position of nodes within the subgraph. We then describe an
implementation of a framework capable of discovering and counting these spatial
subgraphs, based on enumerating occurrences and then discovering their type
using a specialized canonical labeling mechanism. Finally, we provide a proof of
concept experiment using real life data in which we show that our approach is
able to go beyond classical topological motifs, capturing enough information to
distinguish between different road network layouts.

We believe these are promising results that could lead into new insight on
the characterization and comparison of network with spatial information. Our
end goal is to be able to provide a universal spatial concept of network motifs
that can be generally applicable to networks of any domain.

In order to further extend our work, we intend to study the incorporation
of higher dimensional data, such as 3D brain networks, and we want to make
an extensive evaluation of the role of the granularity in the information gained,
by carefully analysing what happens when we use different amounts and sizes
of spatial partitions. Furthermore, we want to study how changing the point
of reference would impact the results (e.g. what happens to the patterns when
we make arbitrary rotations?) and we intend to explore different symmetries
and subgraph families that could provide classes that are invariant to spatial
transformations (e.g. mirror symmetry). We also want to understand how we



12 José Ferreira et al.

can assess statistical significance of the subgraph frequencies, by studying what
could be appropriate spatial null models.

Finally, we want to improve the efficiency, not only by improving the exact
counting computation, but also by trading accuracy for speed (e.g. using sam-
pling) or using parallelism (e.g. using several threads in multicore machines).
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