
An efficient approach for counting
occurring induced subgraphs

Luciano Grácio, Pedro Ribeiro

CRACS & INESC-TEC
DCC-FCUP, Universidade do Porto, Portugal
lgracio@fc.up.pt, pribeiro@dcc.fc.up.pt

Abstract. Counting subgraph occurrences is a hard but very impor-
tant task in complex network analysis, with applications in concepts
such as network motifs or graphlet degree distributions. In this paper we
present a novel approach for this task that takes advantage of knowing
that a large fraction of subgraph types does not appear at all on real
world networks. We describe a pattern-growth methodology that is able
to iteratively build subgraph patterns that do not contain smaller non-
occurring subgraphs, significantly pruning the search space. By using the
g-trie data structure, we are able to efficiently only count those subgraphs
that we are interested in, reducing the total computation time. The ob-
tained experimental results are very promising allowing us to avoid the
computation of up to 99.78% of all possible subgraph patterns. This
showcases the potential of this approach and paves the way for reaching
previously unattainable subgraph sizes.

Keywords: Subgraph Counting, Pattern-Growth, Induced Subgraphs,
Occurring Subgraphs, Network Motifs

1 Introduction

Many real-world systems can be modeled and analyzed using complex networks.
Being able to extract information from these networks is therefore a vital task
with applications in a multitude of domains [2]. One very important network
mining primitive is the ability to count the occurrences of induced subgraphs.
The frequency in which different subgraph types appear inside a network pro-
vides a rich characterization of its topology and lies at the core of concepts such
as network motifs [10] and graphlet degree distributions [13].

Counting subgraphs in general graphs is however a computationally very hard
task. Even just knowing if a subgraph appears at all inside another graph, that
is, determining if its frequency is higher than zero, is already an NP-complete
problem [3]. This limits the applicability since the computation time grows ex-
ponentially on the size of both the subgraphs and the networks containing them.

Current approaches are typically focused on computing the frequency of all
possible subgraph types of a given size k. As k increases, the amount of different
types increases exponentially. For instance, there are only two different undi-
rected subgraph types of size 2 (a triangle and a chain), but more than 105 of



size 8 and more than 109 of size 11. However, in real-world networks, many of
these subgraphs do not occur at all (i.e., many types have a frequency of zero).
In fact, as we show in section 4, as k increases we might have less than 1% of
occurring subgraphs.

Present counting methodologies are generally oblivious to the absence of
many subgraph types and do not take advantage of this. In this work we propose
an approach that fully exploits this characteristic of the subgraphs frequency dis-
tribution in order to improve the efficiency and reduce the computation time.
We adopt a pattern-growth strategy in which we start by computing the fre-
quency of subgraphs of a smaller initial size ki. We then iteratively increase this
size up to a desired size k by growing only the occurring subgraphs. We do so
by making sure that we are only generating subgraph types that do not con-
tain smaller non-occurring subgraphs inside themselves, which greatly reduces
the possible subgraph search space. As the basis counting algorithm we use g-
tries [14], a data structure that can efficiently store and count any given custom
set of subgraphs. This allows the use of information about subgraphs that do not
appear, guiding the computation towards subgraphs that do occur and avoiding
unnecessary work.

The experimental results obtained with our proof of concept implementation
are very promising and show the potential of the approach. We were always able
to avoid computing the vast majority of the subgraphs, up to 99.5% in some
networks, effectively avoiding the computation time. We also show that as we
increase the size k, the fraction of non-occurring subgraphs also keeps increasing
and appears to follow a logistic function, which further emphasizes the gains of
our methodology and its capability to reach previously unfeasible sizes.

The remainder of this paper is organized as follows. Section 2 discusses back-
ground concepts, defines the problem we are solving and gives a brief overview
of related work. Section 3 presents our proposed methodology in detail. In Sec-
tion 4 we provide experimental results, showcasing the gains obtained by our
approach. We finally give concluding remarks in Section 5.

2 Background

2.1 Notation

We first review the main graph concepts used, establishing a coherent termi-
nology to be used throughout this paper. A graph G can be defined as a set of
nodes (or vertices) V (G), and a set of edges, E(G), each connecting two nodes.
An n-graph is a graph of size n, that is, a graph with n nodes. For the sake of
simplicity, we will only consider undirected graphs, in which edges do not express
direction, but our results expand naturally to directed graphs.

Two graphs G and H are isomorphic if there is a one-to-one mapping between
the nodes of both graphs and there is an edge between two nodes of G if and
only if their corresponding vertices in H also form an edge. An automorphism is
an isomorphism of a graph into itself. The equivalence classes of the nodes under



the action of the automorphisms are called orbits, that is, two nodes belong to
the same orbit if when mapped to one another, they give origin to isomorphic
graphs. Figure 1 exemplifies this concept where, for instance, the star shaped T4

pattern has two orbits: the white center node and the black periphery nodes.

Fig. 1: All possible subgraph types of sizes 3 and 4, and their corresponding orbits
(nodes with the same color have the same orbit in the corresponding subgraph).

H is a subgraph of G if V (H) ⊂ V (G) and E(H) ⊂ E(G). This subgraph
is said to be induced if (a, b) ∈ E(H) ⇐⇒ (a, b) ∈ E(G). We will only be
considering induced subgraphs. Note that the non-induced occurrences are also
implicitly counted when finding the induced occurrences. If G contains H as a
subgraph, we say that it is a supergraph of H. The set of all supergraphs of H
is denoted as super(H).

The subgraph types of a given size k are the set of all possible connected and
non-isomorphic k-graphs. The frequency of a subgraph type is the number of
times it occurs inside another graph. For the purposes of this paper we consider
the classical and most used definition of frequency, which allows overlapping of
nodes and edges between different occurrences (for other possible and less used
frequency concepts we refer the reader to [16]). The set of all the subgraph types
of size k with a frequency higher than zero in a graph G is denoted as k-O(G)
(the “O” stands for occurring). For the non-occurring set of k-subgraphs we
use k-NO(G). Figure 2 illustrates these concepts, showing the occurrences of all
subgraphs of sizes 3 and 4. For instance, the frequency of subgraph type T1 is
4. Note how supergraphs do not necessarily have a smaller or equal frequency
than its subgraphs. For example, the single occurrence of the triangle T2 induces
two occurrences of the pattern T6, which contains inside it the triangle. This has
implications on the computation tractability, as there is no downward closure
property on the frequencies, and separates our problem from a more classical
frequent subgraph mining task [8].

Fig. 2: Example graph and its corresponding 3 and 4-subgraph occurrences.



2.2 Problem Definition

Definition 1 (The occurring induced subgraph counting problem). Given
a graph G and an integer k, determine the exact frequencies of the subgraphs
in k-O(G), that is, count all induced occurrences of k-subgraphs that occur at
least once in G. Two occurrences are considered different if they have at least
one node or edge that they do not share. Other nodes and edges can overlap.

Note that k-NO(G) is just the complement of k-O(G) and is also implicitly
calculated by solving this problem. Furthermore, for most of the applications the
interest is in the positive frequencies. For instance, network motifs can be thought
of as overrepresented subgraphs [10], and the first step towards its discovery
implies computing the frequencies of subgraphs that do appear on the given
network.

2.3 Related Work

Current approaches for exact counting of general subgraphs typically follow one
of three different strategies. Some methods are network centric, in the sense that
given a number k, they compute the frequency of all possible subgraphs of size k.
They generally work by enumerating all connected sets of k nodes and by iden-
tifying the isomorphic class of each occurrence. Examples of this are ESU [19]
and FaSE [11]. They differ from our work because they do not explicitly take
into advantage information about subgraphs that are certain to not exist. Other
methods are subgraph-centric, meaning that they only count occurrences of a sin-
gle individual subgraph type. Examples of this are Grochow [5] and ISMAGS [7]. In
principle they could be coupled with our approach as counting algorithms. How-
ever, they do not use information from previously computed frequencies. Finally,
set-centric methods lie in-between the two previous described approaches. They
allow for counting custom sets of subgraphs, larger than a single subgraph, but
also smaller than all possible k-subgraphs. The best-known example for this ap-
proach is the g-trie data structure [14] and the associated counting algorithms.
We leverage precisely this capability by integrating it in our workflow as de-
scribed in Section 3 and we add the capability of only searching for subgraphs
that do not contain non-occurring smaller subgraphs.

Besides these general and exact approaches there are a multitude of algo-
rithms. Some are geared towards specific types of subgraphs (for example star
shaped subgraphs [4] or undirected subgraphs up to size five [6]). Others, such
as MOSS [18] or Rand-FaSE [12], trade accuracy for speed and provide only ap-
proximate results.

We should also mention that several works exploit parallelism to further
improve the computation time. Here we are more focused on the core method-
ological approach, and our proof of concept implementation is sequential, but
our work can be adapted to use parallelism. In fact, there is an almost direct
way of benefiting from this since there already exists distributed-memory [15]
and shared-memory [1] parallel implementations of g-tries that we use as our
base counting algorithm.



3 Proposed Methodology

3.1 Overview

We propose an incremental approach as detailed in the following algorithm:

Algorithm 1: High-level overview of our proposed methodology

Input : A graph G and an integer k ≥ 4
Output: The exact frequencies of all subgraphs in k-O(G)

1 C3 ← all 3-subgraph types // current candidate subgraphs

2 B ← ∅ // blacklisted subgraphs

3 for i← 3 to k do
4 Fi ← frequencies of all i-subgraphs ∈ Ci in graph G
5 if i < k then
6 B ← B ∪ all i-subgraphs ∈ Ci with frequency = 0
7 Ci+1 ← (i + 1)-super(Ci) that don not have any subgraph in B

8 end

9 end
10 return Fk

We assume that k ≥ 4 since 2-subgraphs are just edges and computing 3-
subgraph frequencies would be equivalent to simply counting without the op-
portunity to use a blacklist to limit the search. Note also that since we are
considering simple undirected subgraphs, the initial candidate list C3 consists
on exactly two possible subgraphs: a triangle and a chain, corresponding to pat-
terns T1 and T2 in Figure 1. In the following sections we give more detail on
how to achieve each of the steps described by this algorithm and how the whole
process results in an efficient computation of the occurring k-subgraphs.

3.2 Counting sets of subgraphs

The entire approach relies on keeping a list of current candidate subgraphs Ci

which should not include subgraphs that are sure to not occur, hence pruning
the search space. We then naturally need the ability to compute the frequency
of all subgraphs in this candidate list (line 4 in Algorithm 1), both for adding
more non-occurring subgraphs to our blacklist, and for generating the next set
of candidates with one more node.

Computing these frequencies efficiently is not a trivial task. Taking advantage
of the mutual information between the candidates is essential, even more since
we are ruling out non-occurring subgraphs, which also highlights the topological
characteristics that the occurring subgraphs should not have. With that purpose
in mind we use the g-tries, previously developed by us, which are efficient data
structures for storing and finding sets of subgraphs. In the same way that a
prefix-tree can efficiently store strings by storing only once common prefixes
between them, a g-trie takes advantage of the similarities between subgraphs
and represents them with the aim to minimize redundancy. Figure 3 exemplifies
the concept. Note how descendants of a g-trie node share the same subgraph.



Fig. 3: An example g-trie containing all undirected 3 and 4-subgraphs.

After inserting the candidates (Ci) in a g-trie, we perform a census operation
that computes their frequencies in G. Given the space constraints, we refer the
reader to [14] for an in-depth explanation on how g-tries do this very efficiently,
including how the g-trie itself is built given a set of subgraphs and how the usage
of symmetry breaking conditions are able to constrain the search.

3.3 Blacklisting subgraphs

In the process of counting occurrences of a set of subgraphs, not only do we
gather information about the subgraphs that occur in G but also about the ones
that are non-occurring. This section describes how we use that information. The
two main properties we exploit are the following:

1. If a subgraph G′ does not occur in G, no element of super(G′)
occurs in G. When we find a non-existing subgraph G′ ∈ NO(G), we can
also rule out the possibility that any subgraph that contains G′ exists in G.

2. Any (sub)subgraph of a (sub)graph contained in the blacklist has
a positive frequency. If they were non-occurring, then they would have
been put into the blacklist during previous iterations, break property (1).
This means that the blacklist is in its essence minimal, storing the smallest
possible subgraphs that do not occur in G.

We now describe how to implement and use the blacklist.

Creation Once we have computed all i-subgraphs ∈ Ci which do not occur
in G, we insert them into a new g-trie, which we append to the blacklist B,
currently implemented as an array of g-tries (line 6 of Algorithm 1).

Usage The blacklist B is used every time we consider adding a new candidate
subgraph S (line 7 of Algorithm 1). This process is quite similar to the occur-
rence counting solution described above, but in this case we are searching for
the blacklisted subgraphs in S and the process is interrupted once any of the



subgraphs is found. We iterate through all the g-tries in B, from the smallest
to the largest size. If we discover an occurrence in S of any of the subgraphs
in any of the g-tries, the process is interrupted and we know that we do not
need to append S to the next iteration’s candidates Ci+. We denote this as
is blacklisted(S). Keep in mind that there is also no need to append S to B,
since it already contains a subgraph that is blacklisted. In fact, the lack of need
to keep these discarded candidates in memory is one of the main advantages of
this approach. In the case that no occurrences were found in any of the g-tries,
we append the candidate to Ci+1.

3.4 Candidate generation

In the candidate generation phase of the iterative process, Ci+1 is created (line
7 of Algorithm 1). In order to do this we start by considering a limited set of
candidate subgraphs, by generating super(i-O(G)), that is, the set of graphs of
size i + 1 that contains at least one subgraph of an occurring subgraph of Ci.
Note that we still need to pass the generated subgraphs through the blacklist
filter, since it is most likely that some will contain blacklisted subgraphs. For
instance, consider the subgraph types exemplified in Figure 1 and imagine a
situation where the chain T1 occurs and the triangle T2 does not (and hence
is included in the blacklist). The subgraph type T6 would be generated as an
expansion of T1, but would still be filtered out by the blacklist, since it contains
T2.

We start by presenting a naive solution to this problem of supergraph gen-
eration, in which given an i-subgraph H, we want to generate all the (i + 1)-
subgraphs in super(H).

Exhaustive Node Enumeration: we add a new node and try to connect it
to all possible subsets of the existing i nodes. This results in 2i − 1 possible
connected (i + 1)-subgraphs (the −1 term comes from excluding an empty set
of current nodes, which would result in an unconnected new node).

The main problem with this exponential solution is that many subgraphs
of the same type are redundantly created. In fact, connecting the new node to
any two subsets that exhibit the same orbit classes will result in isomorphic
subgraphs. Recall that the concept of orbits is exemplified in Figure 1. For
instance, connecting a new node to any single node in the triangle T1 (with
only one orbit), will always result in subgraph T6. To address this problem, we
developed a smarter method for generating supergraphs, that we now describe.



Orbit-Aware Enumeration: we only connect the new node to all possible
orbit combinations. For instance, if a 4-subgraph has two nodes in orbit a and
two nodes in orbit b (an example of this is subgraph T7), instead of naively
trying all possible 24 − 1 = 15 sets, we only connect to 8 subsets of existing
orbits: {a}, {a, a}, {b}, {b, a}, {b, a, a}, {b, b}, {b, b, a} and {b, b, b, a}. In order to
implement this strategy we use a very efficient third-party software (nauty [9])
to compute the automorphisms and orbit classes.

While our orbit-aware strategy avoids duplicates growing from the same sub-
graph, it might still happen that duplicate (i+1)-subgraphs emerge from different
i−subgraphs, due to the effect already described when considering the usage of
the blacklist. For instance, consider Figure 1 and subgraph type T6, which would
be generated as a supergraph of T1, but also as a supergraph of T2. To avoid
having these duplicates and only keep one copy of each isomorphic subgraph
class, we insert all candidates in a g-trie, which efficiently checks if the subgraph
was already inserted.

4 Experimental Results

All tests were executed in a laptop with an Intel i7-6700HQ CPU, and 16GB
of RAM. We used three different undirected real-world networks with varied
topological characteristics, as described in Table 1.

Name Size Nr. Edges Description

karate 34 78 social ties between members of a karate club [20]

circuit 252 399 electronic circuit (s420) [10]

euroroad 1174 1417 europe main roads network [17]

Table 1: Real-world networks used in our experiments.

In order to test and explore our methodology, we ran a thorough experiment
in which we kept increasing the subgraph size k being computed and we took
note of the following values:

– occurring: number of occurring subgraphs of size k in G;
– blacklisted: number of subgraphs kept in the blacklist B after that iteration;
– blocked: number of subgraphs types that were generated but were not in-

serted into the candidates because they contained blacklisted subgraphs;
– all: number of all possible undirected subgraphs types of size k;
– avoided: percentage of all whose generation was avoided by our solution;
– time: execution time, measured as elapsed time between launching the pro-

gram up to computing the k-frequencies, including everything in-between.



We now present three tables with the obtained results:

size k occurring blacklisted blocked all avoided time (s)

4 6 0 0 6 0.00% 0.00

5 21 0 0 21 0.00% 0.00

6 89 23 0 112 0.00% 0.03

7 476 81 297 853 2.22% 0.14

8 2612 832 6821 11117 10.34% 1.73

9 11569 3272 153286 261080 37.28% 33.28

10 40069 7886 2348283 11716571 79.89% 405.25

Table 2: Results obtained for the karate network.

size k occurring blacklisted blocked all avoided time (s)

4 5 1 0 6 0.00% 0.00

5 11 7 3 21 3.70% 0.00

6 33 14 56 112 14.39% 0.02

7 89 37 486 853 33.37% 0.05

8 293 61 3891 11117 63.80% 0.20

9 1001 142 31123 261080 88.03% 1.20

10 3659 379 259851 11716571 97.79% 8.44

11 13462 1203 2174907 1006700565 99.78% 66.77

Table 3: Results obtained for the circuit network.

size k occurring blacklisted blocked all avoided time (s)

4 5 1 0 6 0.00% 0.00

5 13 5 3 21 3.70% 0.00

6 41 15 51 112 10.07% 0.02

7 137 38 501 853 25.90% 0.06

8 511 105 4830 11117 53.41% 0.33

9 1937 299 47290 261080 81.61% 2.42

10 7428 909 453838 11716571 96.12% 19.23

11 28190 2521 4143557 1006700565 99.59% 175.27

Table 4: Results obtained for the euroroad network.

The results are very promising. The first main aspect to notice is that in
all networks we are able to avoid computing the frequency of the vast majority
of the entire set of all possible k-subgraph types (column avoided), with values
reaching up to 99.78% with k = 11 in the euroroad network. Although the ex-
act percentage may vary, it seems to follow a logistic distribution in the tested
networks, as shown in Figure 4. This provides further evidence that our strategy
has the potential to avoid most of the computation by making use of the infor-
mation of smaller sized subgraphs. Furthermore, we do this while being able to
provide exact results, assuring accuracy and always knowing all subgraph types
that occur at least once.



Fig. 4: Fraction of avoided subgraphs with increasing size k.

By looking at the blacklist size (column blacklisted), we can have a better
notion on how we are filtering out non-occurring subgraphs. Gains are more
immediate and larger when smaller subgraphs already have zero frequency. For
instance, the clique of size 4 - type T8 in Figure 1 - does not occur in the
euroroad network. As a result we blacklist it in the first iteration, avoiding the
computation of all its supergraphs. However, even in the cases where we start
blacklisting later (for instance, the karate network contains all possible size 4
and 5 subgraph types and the blacklist only contains subgraphs of size ≥ 6),
the quantity of blacklisted nodes still steadily grows and the quantity of avoided
subgraphs seems to follow a similar shape. This gives empirical evidence that it
might take longer, but as soon as we discover subgraphs that do not occur, they
quickly give origin to many other related non-occurring subgraph types. Further
preliminary experiments with other networks also support this observation. We
should also indicate the really reduced size of the blacklist when compared with
all possible subgraphs, showcasing our capability of having a very compact way
of representing patterns known to not occur.

Another aspect to mention is that the number of subgraph types that appear
at least once (column occuring) is always a small fraction of all possible types.
Furthermore, this fraction of occurring subgraphs keeps shrinking as k increases,
which indicates it might scale to larger values of k.

In what concerns execution time, even with just our preliminary non-optimized
implementation we are already competitive up to size 9 when compared with the
set-centric and very efficient g-trie base method starting with a g-trie containing
all possible k-subgraphs (we achieve slightly slower times but still on the same
order of magnitude). For sizes 10 and 11, this base approach is not even appli-
cable, as the number of all possible subgraphs is so large that it is impossible to
store them all on a g-trie. This showcases the need for a methodology like the
one we propose.

As a final remark we would like to comment on the potential of our approach.
Previous approaches that rely on knowing beforehand all possible subgraph types



are severely limited in time and memory, as the number of possible subgraph
types grows superexponentially (column all). This is the case for general set-
centric or subgraph-centric algorithms when we do not have a way of filtering
subgraphs. It is also the case for network-centric methods, which typically pro-
vide a large memory footprint that might even grow exponentially as k increases
(an example of this is FaSE [11]). Even less memory hungry analytic approaches
might rely on knowing all types, as in the case of ORCA [6], which builds an in-
tricate system of equations that relate all different subgraph types to accelerate
the computation and cannot directly compute only a small fraction of these.
Our approach provides a more efficient way of exploring the search space and
can be combined with any base approach takes advantage of knowing which
subgraph types we are looking for. Furthermore, the memory requirements are
only bounded by the size of the occurring and blacklisted subgraphs, greatly
enhancing the limits of applicability to much larger sizes.

5 Conclusion

Being able to count the frequency of subgraphs is a fundamental graph mining
task with many applications. In this paper we present a novel approach for com-
puting the frequency of all k-subgraphs that appear at least once. We propose
a pattern-growth approach that is able to prune the search space. For this pur-
pose, we keep a minimal list of subgraphs that we know that do not occur and
we use it as a blacklist to filter out non-occurring subgraphs. With this, we are
able to iteratively keep increasing the subgraph size with a very compact list of
viable candidate subgraphs. The results obtained are very promising and we are
able to avoid the computation of up to 99.78% of all possible subgraphs. The
experiments showcase the capability of our approach and indicate that we can
contribute towards increasing the feasible subgraph sizes.

For future work, we plan to further optimize our implementation and provide
the community with an open-source tool. Furthermore, we intend to make a more
systematic and thorough experimentation on a large set of both synthetic and
real-world networks, gaining more insight on the distributions of occurring and
blacklisted subgraphs, and also on the avoided fraction of subgraphs. We would
also like to better explore the candidate generation algorithm and to explore
other pruning options besides only avoiding non-occurring subgraphs.

Acknowledgements

This work is financed by the ERDF – European Regional Development Fund
through the Operational Programme for Competitiveness and Internationali-
sation - COMPETE 2020 Programme within project POCI-01-0145-FEDER-
006961, and by National Funds through the FCT – Fundação para a Ciência
e a Tecnologia (Portuguese Foundation for Science and Technology) as part of
project UID/EEA/50014/2013.



References

1. Apaŕıcio, D.O., Ribeiro, P.M.P., da Silva, F.M.A.: Parallel subgraph counting for
multicore architectures. In: Parallel and Distributed Processing with Applications
(ISPA), 2014 IEEE International Symposium on. pp. 34–41. IEEE (2014)

2. Costa, L.d.F., Oliveira Jr, O.N., Travieso, G., Rodrigues, F.A., Villas Boas, P.R.,
Antiqueira, L., Viana, M.P., Correa Rocha, L.E.: Analyzing and modeling real-
world phenomena with complex networks: a survey of applications. Advances in
Physics 60(3), 329–412 (2011)

3. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. In:
Graph Algorithms And Applications I, pp. 283–309. World Scientific (2002)

4. Gonen, M., Ron, D., Shavitt, Y.: Counting stars and other small subgraphs in
sublinear-time. SIAM Journal on Discrete Mathematics 25(3), 1365–1411 (2011)

5. Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration
and symmetry-breaking. In: Annual International Conference on Research in Com-
putational Molecular Biology. pp. 92–106. Springer (2007)

6. Hočevar, T., Demšar, J.: A combinatorial approach to graphlet counting. Bioinfor-
matics 30(4), 559–565 (2014)

7. Houbraken, M., Demeyer, S., Michoel, T., Audenaert, P., Colle, D., Pickavet, M.:
The index-based subgraph matching algorithm with general symmetries (ismags):
exploiting symmetry for faster subgraph enumeration. PloS one 9(5), e97896 (2014)

8. Jiang, C., Coenen, F., Zito, M.: A survey of frequent subgraph mining algorithms.
The Knowledge Engineering Review 28(1), 75–105 (2013)

9. McKay, B.D., Piperno, A.: Practical graph isomorphism, ii. Journal of Symbolic
Computation 60, 94–112 (2014)

10. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: simple building blocks of complex networks. Science 298(5594), 824–827
(2002)

11. Paredes, P., Ribeiro, P.: Towards a faster network-centric subgraph census. In: Pro-
ceedings of the 2013 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining. pp. 264–271. ACM (2013)

12. Paredes, P., Ribeiro, P.: Rand-fase: fast approximate subgraph census. Social Net-
work Analysis and Mining 5(1), 17 (2015)

13. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioin-
formatics 23(2), e177–e183 (2007)

14. Ribeiro, P., Silva, F.: G-tries: a data structure for storing and finding subgraphs.
Data Mining and Knowledge Discovery 28(2), 337–377 (2014)

15. Ribeiro, P., Silva, F., Lopes, L.: Efficient parallel subgraph counting using g-tries.
In: 2010 IEEE Int. Conference on Cluster Computing. pp. 217–226. IEEE (2010)

16. Schreiber, F., Schwöbbermeyer, H.: Frequency concepts and pattern detection for
the analysis of motifs in networks. In: Transactions on computational systems
biology III, pp. 89–104. Springer (2005)

17. Šubelj, L., Bajec, M.: Robust network community detection using balanced prop-
agation. The European Physical Journal B 81(3), 353–362 (2011)

18. Wang, P., Zhao, J., Zhang, X., Li, Z., Cheng, J., Lui, J.C., Towsley, D., Tao, J.,
Guan, X.: Moss-5: A fast method of approximating counts of 5-node graphlets in
large graphs. IEEE Tran. on Knowledge and Data Engineering 30(1), 73–86 (2018)

19. Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB) 3(4), 347–359 (2006)

20. Zachary, W.W.: An information flow model for conflict and fission in small groups.
Journal of anthropological research 33(4), 452–473 (1977)


