Condensed Graphs: a generic framework for
accelerating subgraph census computation

Miguel Martins! and Pedro Ribeiro®

CRACS & INESC-TEC
DCC-FCUP, Universidade do Porto, Portugal
mlmartins@fc.up.pt, pribeiro@dcc.fc.up.pt

Abstract. Determining subgraph frequencies is at the core of several
graph mining methodologies such as discovering network motifs or com-
puting graphlet degree distributions. Current state-of-the-art algorithms
for this task either take advantage of common patterns emerging on
the networks or target a set of specific subgraphs for which analytical
calculations are feasible. Here, we propose a novel network generic frame-
work revolving around a new data-structure, a Condensed Graph, that
combines both the aforementioned approaches, but generalized to support
any subgraph topology and size. Furthermore, our methodology can use
as a baseline any enumeration based census algorithm, speeding up its
computation. We target simple topologies that allow us to skip several
redundant and heavy computational steps using combinatorics. We were
are able to achieve substantial improvements, with evidence of exponen-
tial speedup for our best cases, where these patterns represent up to 97%
of the network, from a broad set of real and synthetic networks.

Keywords: subgraph frequency, subgraph census, condensed graph

1 Introduction

Many complex real world problems can be modelled with networks, from which
we need to extract information. Several graph mining methodologies rely on
understanding the importance of subgraphs as a very rich topological characteri-
zation. Two broadly known examples are are network motifs [12] and graphlet
degree distributions [15]. At the core of these approaches lies the subgraph census
problem, that is, computing the frequencies of a set of subgraphs. However,
this is a fundamentally hard computational task that is related so the subgraph
isomorphism problem, which is NP-complete [3].

Current algorithms for counting subgraphs typically rely on one of two different
conceptual approaches. Several algorithms, such as G-tries [17], QuateXelero [9]
or FaSE [13], are based on a subgraph enumeration phase intertwined with
isomorphic testing to discover the topological class of each enumerated subgraph
occurrence. These algorithms are very general and take advantage of common
topologies to speedup the isomorphism computation. Other methods such as
ORCA [6] or Escape [14] do not depend on fully enumerating all subgraph

2 Miguel Martins, Pedro Ribeiro.

occurrences, but at the same time are geared towards more specific and less
general sets of subgraphs, taking advantage of some of their analytical properties.

In this paper we propose an hybrid methodology that draws inspiration from
both the enumeration and analytical approaches, that we called the Condensation-
Decondensation Framework (CFW). The core motivation is to take advantage
of combinatorial effects that create substantial speedups while at the same time
being able to keep the general applicability of enumeration based algorithms, not
constraining the subgraphs or networks being analyzed. For this we also introduce
a new generic data structure, Condensed Graphs, that compresses subgraphs in
a lossless way, capturing multiple occurrences of the same subtopology. More
specifically, and as a proof of concept, we condense star-like peripheral structures,
that commonly emerge in real networks. Our framework encapsulates existing
enumeration based methods, speeding up their computation by taking advantage
of operations enabled through the use of Condensed Graphs. Here we show how it
could be coupled with both ESU [19] and FaSE [13] algorithms, but in principle
it could be applicable with other enumeration methodologies.

With all of this in place, we achieved very promising results on representative
sets of real world and synthetic networks, showcasing the applicability of our
methodology. In terms of compression, we depend on the existence of star-like
peripheries. Here we show that these are very common on real world networks,
and we are able to reach up to 97% of compression. Regarding speedup, our
experiments show that the gains can be substantial and that when the networks
exhibit this kind of topology we are able to achieve exponential gains. We also try
to quantify the desired structural properties that make networks more amenable
to our proposed approach.

2 Backgroud
2.1 Notation

A graph G = (V, E) is comprised by a set of edges E(G) connecting vertices V(G).
A k-graph is a graph with k vertices. In this paper we will only address simple
undirected graphs, with at most a single edge connecting the same pair of vertices.
Our data structure could however straightforwardly be extended to support
directed graphs, multigraphs or even more complicated graph representations.
For two graphs G and S such that V(S) C V(G), then it is said that S is
a subgraph of G. Moreover, if Vu,v € V(S) : (u,v) € E(G) <= (u,v) € E(S),
then S is an induced subgraph of G. Two graphs, G and G’, are said to be
isomorphic if and only if there is a bijection f : V(G) — V(G’), such that
(u,v) € E(G) < (f(u), f(v)) € E(G"). An automorphism is an isomorphism
from a graph on to itself, and the automorphisms of a graph G form a group
called Aut(G). Consider a vertex u € V(G), then the automorphism orbit of u is:

Orb(u) = {v e V(G)|v = g(u), g € Aut(G)} (1)

Simply put, if © and v are in the same orbit, they are topologically equivalent,
which means one could swap their labels without altering the graph topology.

Condensed Graphs 3

2.2 Problem Definition
In this paper we tackle the following computational problem:

Definition 1. (Subgraph Census Problem) Given some positive integer k
and a graph G, count the exact number of distinct occurrences of each of all
possible connected induced k-subgraphs of G. Two occurences are distinct if there
is at least one vertex that they do not share.

2.3 Related Work

Subgraph census computation has been studied for more then 15 years. In 2002
Milo et al. [12] coined the term network motifs as frequent overrepresented induced
subgraph patterns and offered the mfinder subgraph enumeration algorithm
as a first practical approach for computing subgraph frequencies. The first
major breakthrough was introduced by Wernicke [19] with the ESU algorithm,
which avoided graph symmetries and enumerated each subgraph only once.
Isomorphism tests for each discovered subgraph occurrence are made trough
the third party package nauty [11], a highly efficient isomorphism algorithm. In
order to reduce the number of needed isomorphism tests, approaches such as
QuateXelero [9] or FaSE [13] encapsulate the topology of the current subgraph
match, grouping several occurrences as belonging to the same isomorphic class.
If we know beforehand the set of subgraphs that we are interested on (which can
possibly be smaller than the entire set of all possible k-subgraphs), the g-tries
data structure [17] could be used, allowing for further improvements.

All the aforementioned approaches are general (i.e, are applicable to any sub-
graph size and also allow direction) and rely on doing a full subgraph enumeration.
However, for more specific sets of subgraphs there has been an increasing number
of more analytical algorithms that take into account the subgraphs topology
and its combinatorial effects. For example, ORCA [6], which counts orbits and not
directly subgraph occurrences, can tackle up to size 5 undirected subgraphs and
relies on a derived set of linear equations that relate the orbit counts. This was
also generalized for other small undirected orbits [7]. PGD [1] (up to size 4) and
Escape [14] (size 5) are other examples of state-of-the-art analytical algorithms
specialized on counting undirected subgraphs.

Our approach differs from these two conceptual approaches, as it tries to com-
bine the general applicability of the enumeration algorithms with combinatorial
improvements. However, instead on focusing on the topology of the subgraphs
we are looking for, we focus on how to compress the network we are analyzing,
targeting specific substructures than can be resumed as a combinatorial object.

All the aforementioned algorithms perform exact computations, but it should
be said that there are also methodologies that can trade accuracy for speed,
providing approximate results. Furthermore, some algorithms exploit parallelism.
For the purposes of this paper we pursue exact sequential census computation, as
to improve the baseline algorithm, but our approach could be further extended
on the future towards other directions. For a more detailed survey of the state of
the art on subgraph counting we refer the reader to [16].

4 Miguel Martins, Pedro Ribeiro.

3 A Novel Framework for Subgraph Census

3.1 Peripheral Stars

Our methodology revolves around peripheral areas of a network, which are
topologically self contained. This allow us to perform combinatorial calculations
to quickly identify a larger number of occurrences of the same subgraph topology,
avoiding the need to explicitly pass trough each single occurrence. As an initial
proof of concept, here we will focus on star subgraphs on undirected networks,
but we envision many other potential extensions to more complex peripheries.

Definition 2. (Peripheral Star Subgraphs) An induced subgraph S of a
graph G is said to be a peripheral star of size m if it is comprised by m vertices
of degree one, called the peripheral vertices, that are connected only to the
same vertex s, called the seed vertewx.

The terms peripheral star and star will henceforth be used interchangeably.
An induced star within a peripheral star will be called a substar. Furthermore,
we will use P(G) to denote the set of all peripheral vertices on a graph G.

A peripheral star only has two orbits: the seed vertex orbit, and the peripheral
orbit, This simple topology lies at the core of our speedup. Suppose you have a
star of size m. Then, for all i € [1,m], we know that the number of i-substars is
precisely C" = (7?), all of them with the exact same isomorphic class. A visual

example is given in Figure 1.

Graph containing . [.
All subgraphs containing 2-substars | Isomorphic Class

|
a 3-substar 1
e | e |
@l ® | @, @ @
(1) | (1) O
‘ | |
(5} &) , (5 6) (5 6) (5 6,

Fig.1. (Left) A graph containing a peripheral star (seed vertex: gray, peripheral
vertices yellow, regular vertices: white). (Middle) All possible 2-substars (Right) The
corresponding isomorphic class (the same for all subgraphs in the middle)

As the size m of the star, and the size k of the subgraph increase, the number
of combinations (T) increases exponentially, a property that we will exploit.

3.2 Condensed Graphs

The first step on our methodology is to compress the original graph, such that all
peripheral star subgraphs are discovered and reduced to identifying its size. This
process is exemplified in Figure 2. Let SQ, be the number of peripheral vertices
connected to a vertex u (which correspond to the numbers inside parenthesis in
the figure). Condensing a graph can be thought as the process of eliminating all
peripheral vertices and adding extra information to all other nodes in the form
of SQ, for all vertices u of the condensed graph.

Condensed Graphs 5
Q@3
o e e Condensation
@ : >
@ 9.@ (1)(0)

Fig. 2. (Left) A graph. (Right) the resulting Condensed Graph (seed vertices in gray).

We can trivially condense any graph in O(|V|+|E|) time by iterating through
all vertices, reassigning labels to non-peripheral vertices based on the order they
were visited. This is in fact a lossless compression scheme, since we still maintain
all the original topological properties and we can easily decompress back to
a graph isomorphic to the original one in time O(|V| + |E|), an operation we
describe as decondensation.

3.3 Taking Advantage of Condensation

Classical enumeration algorithms try to explicitly traverse all subgraph occur-
rences, effectively increasing the frequency by one each time. The key point of
our work is precisely to account for multiple occurrences at the same time, taking
advantage of the combinatorial effects of self contained peripheries, avoiding the
costly explicit traversal of all topologically equivalent substars.

Our framework is general and can be applied to any enumeration algorithm
that builds subgraphs by adding one vertex at a time. Consider that we are
performing a k-subgraph census and that we already have a partially enumerated
vertex set Viupgrapn Of size d < k, that we want to extend up to size k. When we
add a seed vertex, we can consider all the possible substars that this new vertex
may induce. Figure 3 exemplifies this concept. Condensed graphs’ properties allow
to proceed with the extension and simultaneously tracking multiple occurrences.

3-subgraphs 4-subgraphs 5-subgraphs 6-subgraphs

Q

Condensed Graph

|

|

|

(5) (0) Possible |
Extensions

up to size 6 :

o > .

|

|

|

)

5 occurrences

G)

10 occurrences

G)

10 occurrences

©)

I
|
I
|
|
|
|
I
|
1 occurrence |

Fig. 3. Extending a condensed graph to subgraphs up to size 6.

With all of these concepts in place, we are now ready to explain our Condensation-
Decondensation Framework (CFW), that is able to improve an existing baseline
subgraph census algorithm. An overview of our approach is given in Algorithm 1,
which describes, in a k-census of graph G, how to extend any partially enumerated
set of nodes Viubgrapn, Whose current frequency is given by cur frequency-

To start the process, we should start by calling extend_subgraph(G, k,u,1) for
all nodes u € V(G), that is, we try to create a subgraph starting from every node.

6 Miguel Martins, Pedro Ribeiro.

Algorithm 1 Condensation-Decondensation Framework

1: procedure EXTEND_SUBGRAPH(G, k, Vsubgraph, CUT frequency)

2 if |Viubgrapn| = k then

3 Frequency[Vsubgraph] += CUT frequency

4 else

5: for all vertex u extending Viubgrapn do > Using baseline enumeration algorithm
6 for all i € {0...min(k — |Vsubgrapr| — 1, 5Qu)} do

7 Vewtended < Vsubgrapn U {u} U {i peripheral nodes attached to u}

8 extend_subgraph(G, k, Veatended, CUT frequency X (S?“))

Now, for each node we add (line 5), we take into account all possible substars
that extend up to size k (lines 6 and 7), and we are able to directly identify how
many isomorphic occurrences of that particular substar can be obtained (line 8),
as previously explained. Notice how we multiply by the current frequency, which
allows to consider subgraphs that incorporate multiple substars from different
seed vertices. The process stops when we reach the desired subgraph size (line
2), when we can safely increment the frequency by a value reflecting how many
multiple isomorphic occurrences we are considering (line 3), as opposed to simply
incrementing by one in the baseline enumeration algorithm.

3.4 Baseline Enumeration Algorithms

For the purposes of this paper we will be adapting two well known subgraph
counting algorithms that fit into our framework: they explicitly enumerate all
occurrences and they work by extending subgraphs one vertex at a time. Given
the space constraints of this paper, we will only give a very high level description
of the two algorithms, and we refer the reader to the respective original papers
for more in-depth detail.

The first of these algorithms is ESU [19], which uses carefully chosen restrictions
on the way it extends subgraphs, to guarantee that each set of k connected
nodes is only enumerated once. Each of these occurrences is then run trough
nauty [11], a very efficient third-party isomorphism algorithm, so that we identify
the topological class for which we need to increment the frequency.

The second algorithm we adapted was FaSE [13], which improves the previous
approach by avoiding the need of doing one isomorphic test per occurrence. In
order to do that, while still using the same baseline enumeration procedure as
ESU, it uses the G-Trie data structure [17], which can be briefly described as
a trie of graphs. In this way, node sets that induce the exact same adjacency
matrix will give origin to the same path in the g-trie, allowing us to group
many occurrences as belonging to the same topological class. Due to naturally
occurring symmetries in the subgraphs, several different paths on the g-trie may
still correspond to the same topology, and we still need to identify this. However,
we only need one isomorphism test per group of occurrences (a path in the
g-trie), which allows for a substantial speedup when compared to the classical
ESU algorithm.

Condensed Graphs 7
4 Experimental Results

Our main goal is to compare the baseline algorithms ESU and FaSE, to the
adaptations using our framework, respectively called Co-ESU and Co-FaSE. All
experiments were done on a machine with a 2.4 GHz Intel i5 CPU, 8 GB 1600
MHz DDR3 RAM running macOS High Sierra 10.13.6. All algorithms were
implemented in C++ using clang-902 as the compiler.

4.1 Real World Networks

We will first test the algorithms on a broad set of real networks from different
backgrounds, which are described in Table 1. For the purposes of this paper we
ignored both weights and direction. Thus, we transformed econpoli (directed)
to an undirected network and ignored the weights in rtobama.

’ Name ‘ Type ‘DescriptionHVG)|‘|E(G)|‘|P(G)HC’R‘usmr‘maxsmr‘Source‘
facebook Social Friendships | 2888| 2981| 2790(97%279.0 756| [18]
rtobama Social Retweets 9631 9772 9104|93%| 69.2| 7413| [18]
reality Social | Phone calls | 6809| 7680| 6284(92%| 77.6 233| [18]
mvcortex | Brain | Fiber tracts 194 214] 160(|82%| 14.6 23| [18]
]
I
]

econpoli |Economic| Transactions |15575| 17468| 12187|74%| 10.7 490| [18
genefusion|Biological|Gene Interact.| 291| 279 203|56%| 3.3 29| [10

gridworm |Biological|Gene Interact.| 3518| 6531 1887|45%| 6.6 323 [18

Table 1. The set of used real networks, in decreasing order of compression ratio (C'R).

For each network, the previous table reports the number of nodes (|V(G)|) and
edges (|E(G)]), as well as the number of peripheral nodes (|P(G)|). To indicate
the potential for speedups using our framework, we give an idea of much we are

compressing the graph in the form of a compression ratio CR = %7

where P;(G) are stars of size 1, which we disregard given that they are not
combinatorially exploitable. Furthermore, we report the average size of stars
larger than size 1 (fstqr) and the size of the largest star (maxgeqr)-

Table 2 summarizes the experiments done with real networks, reporting the
execution time (in seconds) of all algorithms, as well as the speedup of our
adaptations when compared with the respective baseline algorithm. In each
network, we show the results obtained for different subgraph sizes k.

The first major insight is that our adaptations are always quicker than their
original counterparts for all non-trivial cases (> 1s), confirming we are indeed
improving the baseline algorithms. Furthermore, our speedup tends to increase
superlinearly with the size k in both algorithms, with more gains on the cases
where the computation time is already higher. This is due to the fact that larger
larger subgraphs will naturally correspond to an (exponentially) larger number of
occurrences that we can combinatorially exploit. We also note that our speedup

8 Miguel Martins, Pedro Ribeiro.

Network | & k cen;:usb Uelxecutlon tclg_llz é% Speedup k (l;eansbgb elxecutlon Ct:_n;a é}z Speedup
3 0.23 0.01 23.3x 0.04 0.01 3.8x

facebook 4 44.91 0.07| 641.6x 4.72 0.01| 471.5x
5 9720.98 1.08{9000.91x| 1006.70 0.05|20133.9x

6 |[> 5 hours 13.11 N/A|> 5 hours 0.31 N/A

3 19.96 0.19| 105.07x 2.058 0.1 20.6x

rtobama |4 |> 5 hours 2.98 N/A| 8439.36 0.23(36692.9x
5 |> 5 hours 254.79 N/A|> 5 hours 7.62 N/A

3 0.14 0.09 1.54x 0.02 0.05 0.39x

reality 4 7.60 0.58| 13.09x 1.00 0.09| 11.11x
5 451.61 10.08| 44.80x 43.72 0.53 82.5x

6 |> 5 hours 244.19 N/A| 2307.81 12.48| 184.9x

7 1.69 0.1 16.94x 0.50 0.01 49.6x

8 16.63 0.79| 21.06x 6.96 0.05| 139.2x

mvcortex |9 120.36 3.67| 32.79x 65.80 0.22| 299.1x
10 933.74 18.27| 51.11x 662.87 0.83| 798.6x

11| 6340.48 51.91| 122.14x| 4067.36 3.47| 1172.2x

3 0.07 0.47 0.16x 0.04 0.34 0.1x

econpoli |4 2.62 3.2 0.82x 2.23 0.53 4.2x
5 165.15 66.58 2.48x 130.04 2.61 49.8x

8 2.67 0.45 5.92x 1.19 0.04 29.7x

. 9 21.45 1.93| 11.11x 6.85 0.16 42.8x
genefusion | gy g5 7.72| 10.60x| 38.60 0.67| 57.6x
11 209.43 29.18 7.18x 211.60 1.73] 122.3x

4 28.63 7.51 3.81x 1.25 0.38 3.3x

gridworm |5 5307.49 391.71] 13.55x 125.64 16.94 7.4x
6 |> 5 hours > 5 hours N/A|> 5 hours 16726.42 N/A

Table 2. Speedup of our adaptations vs baseline algorithms on real networks.

is typically higher with FaSE, which is already substantially faster than the
ESU algorithm. We suspect this might be caused due to synergies between our
condensation-decondensation operation and the way FaSE operates, which might
result in smaller g-tries and less isomorphic tests needed.

For the two top performing networks facebook and rtobama, we focus on
FaSE and Co-FaSE, since ESU did not perform fast enough in our time constraints
to draw significant conclusions. Although facebook has higher C R, both show
evidence of exponential speedup. However, in rtobama speedup seems to grow
faster, reaching 4 orders of magnitude for £ = 2 while facebook only matches
this results for & = 3. Going into further detail, even the precise values of
speedup favor rtobama, (36692.87x versus 20133.9x). Note that the maxg;q, in
facebook is 756, while in rtobama is 7413, accounting for ~ 26% and ~ 77% of
the total networks’ sizes respectively. Moreover, (Z) scales exponentially with n

Condensed Graphs 9

with regards to k. Although fisq, is higher for facebook the difference in size of
maxXg,, completely overshadows the impact of the former metric.

The next pair of networks analysed reality and mvcortex, that have a CR
disparity of 10% between them. Regarding the former, in both comparisons,
speedup seems to increase in a linear fashion, with 1 order of magnitude of
speedup improvement measured for Co-ESU for k = 5, and 2 orders for Co-FaSE
for k = 4. Addressing the latter network, speedup in both cases grows in a linear
fashion with k, but in different orders of magnitude. In the case of Co-ESU, we
measured up to 2 order of magnitude. In Co-FaSE, the results are more dramatic,
reaching 3 orders of magnitude. We suspect that, mvcortex showed considerably
better results than reality, even with less C' R, because we were able to measure
values of k that were closer to the optimum value of (™*}***") and by extension,
took full advantage for smaller stars.

Focusing on econpoli and genefusion they differ 18% in C'R. For the former
network, due to the size discrepancy among them and our hardware and time
limitations, this led to a smaller number of observations. The consequences in
speedup remain very similar for both adaptations, with a spike for k = 7, that we
once attribute to the order of growth of maxima of (Z) Addressing genefusion,
we were able to draw measure performance up to k = 11. Keep in mind that
argmax, (ma"s“”‘) = 15 and, as theory predicts concerning Co-FaSE, speedup
grows linearly steady up to k = 10, but for £ = 11 it almost doubles, since it is a
point of ramp-up for the gradient of (Z) Surprisingly, this was not observed for
ESU, and we do not yet have any credible theory regarding this phenomenon.

Finally, our last and worst performing network, gridworm, that has 11% less
condensation ratio than genefusion. Its maxg,, accounts for ~ 11% of the
overall network. However, due to its size and complexity, we were only been
able to measure speedup for a small range of k. Surprisingly, it is one of the
few examples (along with econpoli, but much more drastic), that benefits ESU
the most which is improved by one order of magnitude k = 5. For the same k,
Co-FaSE follows behind closely measuring 7.4z speedup.

4.2 Synthetic Networks

To gain more insight into the specific properties that benefit our approach, we
follow the same experimentation workflow, but for synthetic networks, generated
using the NetworkX package [5]. We considered the following network models:

Barabaési-Albert [2] This model generates scale-free networks, who emerge in
a plethora of phenomena in the real world, using preferential attachment as its
connection mechanism. We will refer to it as BA(n,m), with n being the number
of nodes and m the number of initial edges on each newly added vertex

Holmes-Kim [8] This model extends the BA model to produce networks with
an higher clustering coefficient: after an edge is created between the newly added
vertex v and another vertex w, a random neighbour of w is selected and an edge
between it and v is created with probability p, thus forming a triangle between
these three vertices. The alias for this model will be HK(n,m, p).

10 Miguel Martins, Pedro Ribeiro.

Random Power-Law Trees [4] This model generates trees with a power law
degree distribution. The model is too intricate to summarize, but essentially
NetworkX’s implementation takes three parameters, n the size of graph, v the
exponent of the power-law and tries, the number of tries necessary to ensure the
degree sequence forms a tree. The alias for this model will be PLTrees(n, v, tries).

To make comparisons fair, we generated all networks with 1000 vertices.
Table 3 gives an overview of the used synthetic networks, including the model
parameters and the topological characteristics of the generated networks.

y Model [VAOIIE@G)[IP(G)]] CR|pstar[maxstar]
BA(1000,1) 1000| 999 686|53%| 4.27 49
HK(1000, 1,0.9) 1000| 999 677(53%| 4.05 44
PLTrees(1000, 3,100000)| 1000 1052 526(45%| 3.17 54

Table 3. The set of used synthetic networks generated using NetworkX package.

We purposefully chose an high p parameter in HK, to see how well our frame-
work would work on a scale-free network with high average clustering coefficient.
Note that for for both BA and HK the m parameter is 1, since its a necessary
condition for emergence of peripheries. Regarding PLTrees , the + is set to 3 by

default to result in a scale-free network.
To avoid visual clutter, we will not include the model parameters in Table 4,

and they will be referred simply by BF, HK and PLTrees

Network| . k ce]r%sstglexecutlon tclgr_lgéi} Speedup k;;srléus rxecutloné;r_r;eaés}i): Speedup
5 2.14 0.36 5.96x 0.17 0.03 5.6x

BA 6 53.68 5.98 8.98x 3.6 0.21 17.2x

71 1084.62 120.31 9.02x 118.87 2.88 41.3x

8 [11756.72 1607.72 7.31x| 4621.29 31.03| 150.0x

5 3.47 0.39 8.91x 0.28 0.02 14.2x

HK 6 44.86 7.76 5.78x 44.86 0.23| 195.0x

71 1027.72 232.21 4.43x 106.52 2.86 37.2x

8| 8413.58 2821.62 2.98x| 2406.00 42.5 56.6x

6 3.25 0.02| 162.70x 0.20 < 0.01 N/A

7 29.85 0.05| 596.98x 2.40 0.01| 240.4x

PLTrees| 8 264.26 0.16|1651.63x 19.90 0.02| 995.2x
91| 1569.30 0.51|3077.07x| 213.22 0.05| 4264.5x
10/11843.88 2.414934.95x| 2666.02 0.25|10664.1x

Table 4. Speedup of our adaptations vs baseline algorithms on synthetic networks.

Concerning BA, FaSE clearly benefits from our framework, showing evidence
of superlinear speedup, up to 2 orders of magnitude of improval. In the case of

Condensed Graphs 11

ESU, a slight increase from k =5 up to k = 7 was measured. In k = 8 the trend
shifts in the opposite direction. We suspect that, for larger values of k, a similar
pattern would occur, with an average of 1 order of magnitude of improvement
with slight shifts in the trend of speedup. Note that has k — ([22%ster] = 500)
the results can change drastically.

Addressing HK, the measurements are relatively similar to the ones observed
in BA. Once again, FaSE benefits the most from our implementation. In this
case, the trend does not appear to be strictly monotone. We suspect it will
vary between 1 and 2 orders of magnitude of speedup as k grows, and then an
upwards shift improvement when when the gradient ramps up as k approaches 500.
Unfortunately, we are limited once again by our hardware and time constraints
to make an concrete comparison.

PLTrees display our best results on synthetic data. ESU shows evidence of
a non-linear relationship regarding speedup, reaching 3 orders of magnitude of
improvement. Although speedup seems to grow more slowly, between k = 6 and 8.
Concerning FaSe, it is once again favoured, and shows evidence of superlinear
speedup, reaching 4 orders of magnitude of performance improvement.

5 Conclusion

The goal of this paper was to build a generic framework adaptable to current
subgraph census algorithms, from which we selected and effectively adapted
ESU and FaSE. We have experimentally shown that our adaptations are signifi-
cantly faster for a diverse set of networks extracted from different contexts. The
framework enhanced significantly both algorithms on our experimen, up to 4
orders of magnitude speedup for both Co-ESU and Co-Fase, with indications
of exponential speedup for our best cases. Note also that Co-ESU does not uses
g-tries, and it still outperformed FaSE in all networks except gridworm, which
further outlines the potential of our approach.

The condensation ratio of a network is highly correlated with performance,
but does not fulfill a causal relationship. We refer back to to the properties of
the binomial the function that, coupled with the size of the largest star, affect
speedup drastically. Note that maxg,, only gives a lower bound insight for
potential speedup, since it does not account for the remaining smaller stars. From
this, it is easy to see why networks with higher condensation ratio like reality
are outperformed by others with less condensation like mvcortex, since we are
able to explore values of k close to the maximum of for its maxgq,.-.

On our set of synthetic networks, we observed that our framework improves
performance on scale-free networks, that are very recurrent on a plethora of real
world phenomena, with the best case being the PLTrees.

The results are very promising and indicate this is a viable path for improving
existing enumeration algorithms without losing generality. For the close future,
we intend to tackle other types peripheries and to extend our approach to more
complex networks, including aspects such as edge direction, temporal information
and multiple layers of connectivity.

12

Miguel Martins, Pedro Ribeiro.

Acknowledgements: This work is financed by National Funds through the
Portuguese funding agency, FCT - Fundagao para a Ciéncia e a Tecnologia within
project : UID/EEA/50014/2019.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Ahmed, N.K., Neville, J., Rossi, R.A., Duffield, N.: Efficient graphlet counting for
large networks. In: Int. Conference on Data Mining. pp. 1-10. IEEE (2015)

. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science

286(5439), 509-512 (1999)

Cook, S.A.: The complexity of theorem-proving procedures. In: ACM symposium
on Theory of computing. pp. 151-158. STOC ’71, ACM (1971)

Gao, Y.: The degree distribution of random k-trees. Theoretical Computer Science
410, 688-695 (2009)

Hagberg, A., Schult, D., Swart, P., Conway, D., Séguin-Charbonneau, L., Ellison,
C., Edwards, B., Torrents, J.: Networkx. high productivity software for complex
networks. Webovd stra nka https://networkx. lanl. gov/wiki (2013)

Hocevar, T., Demsar, J.: A combinatorial approach to graphlet counting. Bioinfor-
matics 30(4), 559-565 (2014)

Hocevar, T., Demsar, J.: Combinatorial algorithm for counting small induced graphs
and orbits. PloS one 12(2), 0171428 (2017)

Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Physical
review E 65(2), 026107 (2002)

Khakabimamaghani, S., Sharafuddin, I., Dichter, N., Koch, I., Masoudi-Nejad, A.:
Quatexelero: an accelerated exact network motif detection algorithm. PloS one 8(7),
e68073 (2013)

Kunegis, J.: Konect: the koblenz network collection. In: Proceedings of the 22nd
International Conference on World Wide Web. pp. 1343-1350. ACM (2013)
McKay, B.D.: nauty user’s guide (version 2.2). Tech. rep., Technical Report TR-
(CS-9002, Australian National University (2003)

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: simple building blocks of complex networks. Science 298(5594), 824-827
(2002)

Paredes, P., Ribeiro, P.: Towards a faster network-centric subgraph census. In:
International Conference on Advances in Social Networks Analysis and Mining. pp.
264-271. IEEE (2013)

Pinar, A., Seshadhri, C., Vishal, V.: Escape: Efficiently counting all 5-vertex
subgraphs. In: International Conference on World Wide Web. pp. 1431-1440. Inter-
national World Wide Web Conferences Steering Committee (2017)

Przulj, N.: Biological network comparison using graphlet degree distribution. Bioin-
formatics 23, e177-e183 (Jan 2007)

Ribeiro, P., Paredes, P., Silva, M.E., Aparicio, D., Silva, F.: A survey on subgraph
counting: Concepts, algorithms and applications to network motifs and graphlets.
arXiv preprint arXiv:1910.13011 (2019)

Ribeiro, P., Silva, F.: G-tries: a data structure for storing and finding subgraphs.
Data Mining and Knowledge Discovery 28, 337-377 (March 2014)

Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: AAAT (2015), http://networkrepository.com
Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Transactions on
Computational Biology and Bioinformatics 3(4), 347-359 (2006)

