
1

Towards a Faster
Network-Centric Subgraph Census

Pedro Paredes Pedro Ribeiro
CRACS & INESC-TEC

DCC-FCUP, Universidade do Porto, Portugal
pparedes@dcc.fc.up.pt, pribeiro@dcc.fc.up.pt

Abstract—Determining the frequency of small subgraphs is
an important computational task lying at the core of several
graph mining methodologies, such as network motifs discovery
or graphlet based measurements. In this paper we try to improve
a class of algorithms available for this purpose, namely network-
centric algorithms, which are based upon the enumeration of
all sets of k connected nodes. Past approaches would essentially
delay isomorphism tests until they had a finalized set of k nodes.
In this paper we show how isomorphism testing can be done
during the actual enumeration. We use a customized g-trie,
a tree data structure, in order to encapsulate the topological
information of the embedded subgraphs, identifying already
known node permutations of the same subgraph type. With
this we avoid redundancy and the need of an isomorphism test
for each subgraph occurrence. We tested our algorithm, which
we called FaSE, on a set of different real complex networks,
both directed and undirected, showcasing that we indeed achieve
significant speedups of at least one order of magnitude against
past algorithms, paving the way for a faster network-centric
approach.
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I. INTRODUCTION

Many real-world systems can be modeled as complex net-
works, which are emerging as an ubiquitous and very flexible
model for a multitude of applications [1]. There are a large
number of methodologies and measurements available when
we want to characterize these networks [2]. A recent trend
has been to look for interesting groups of nodes within the
network. These groups may have a relatively large size, as is
the case in community detection [3], but they can also be of
smaller sizes, like it is the case on network motifs discovery [4]
or graphlet based metrics [5].

These two last methodologies have been successfully ap-
plied in the social networks domain. For instance, motifs
have been used to characterize and classify co-authorship
networks [6] and wikipedia edition networks [7]. Additionally,
graphlets have been used to provide a complete characteriza-
tion of social networks, allowing the selection of an adequate
model [8].

At the core of these methods lies the computation of
subgraph frequencies, also known as doing a subgraph cen-
sus. For instance, network motifs are defined as statistically
overrepresented subgraphs, which is translated into having a
higher frequency than expected [4]. This means that we need

to compute the amount of times each subgraph appears not
only on the original network, but also on a large ensemble
of similar randomized networks [9]. The problem is that
calculating the frequency of subgraphs is computationally
hard, since we are dealing with a task closely related to the
subgraph isomorphism problem, which is NP-complete [10].
The execution time grows exponentially as we increase the
size of the original network or the size of the subgraphs being
analyzed, which limits the applicability. Given the ubiquity
of complex networks, being able to do a faster subgraph
census would therefore have an impact on a multitude of fields,
enlarging the feasible limits for this computation.

Past algorithms for computing subgraph frequencies can be
divided in three major conceptual approaches. Network-centric
algorithms, such as ESU [11] or Kavosh [12], take a look at
the entire network and given a certain integer k they output
the frequency of all existing k-sized subgraphs. By contrast,
subgraph-centric algorithms, such as Grochow and Kellis [13],
search for one specific single subgraph type at a time, not
reusing any kind of information on subsequent searches. At the
middle of these two approaches, we have set-centric algorithms
such as g-tries [14], [15], which are given as input a certain
set of subgraphs and then proceed by computing the frequency
of all the subgraphs in that set.

In this paper we will be dealing with network-centric
approaches, for solving the problem of finding the frequency of
all subgraphs of a certain size. Note that for this specific task,
subgraph-centric methods would need to search individually
for all possible k-sized subgraphs, while set-centric methods
would need to receive as input the same set of all possible k-
sized subgraphs, regardless of having no guarantees that all
possible subgraph types will appear on the network being
analyzed. In their essence, network-centric methods reside
on two major steps: enumeration of connected sets of k
nodes and isomorphism tests to determine to which subgraph
type each node set belongs. Past classical approaches do
this “separately”: the enumeration part gives origin to sets
of k nodes; afterward, each set, which corresponds to one
occurrence of a subgraph, is the input to an isomorphism
computation (typically by calculating a canonical labeling)
so that the correspondent subgraph type frequency can be
incremented. This means that we will have as many isomorphic
computations as the number of occurrences of subgraphs,
while the number of actual different subgraph types is much
smaller.
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We present the FaSE algorithm, a solution that is geared
precisely towards avoiding redundancy on these tests. Instead
of delaying the isomorphism testing to when a node set is
“completed”, we do it at the same time the enumeration is
being done. We use a customized version of the g-trie, a tree-
like data structure designed for storing sets of graphs, in order
to represent the topology of the subgraphs being enumerated.
Each time a node is added to the set, we either create a
new ramification of the tree or we follow an already known
path, corresponding to a topologically equivalent subgraph.
A path from the root node to any leaf in the created tree
corresponds to a different node permutation of a certain graph
type. We compute a canonical labeling for each leaf in order
to identify its subgraph type but we avoid the need for that
computation on all other occurrences of the same type whose
node permutation corresponds to an automorphism, that is,
corresponds to the same path in the tree. In the end we get
an internal subgraph representation which is aware of the
topology, allowing for better understanding of what is really
being identified as common substructure and opening the way
for further improvements based on that knowledge.

We tested our approach on a set of representative real world
simple directed and undirected complex networks with varied
topological properties. We compared our results with the best
known network-centric approaches. We show that we are able
to obtain considerable speedups, being roughly an order of
magnitude faster than past methods which need to compute
isomorphism for all subgraph occurrences.

The remainder of this paper is organized as follows. Sec-
tion II defines the problem being solved and talks about related
work. Section III describes in detail our proposed methodol-
ogy. Section IV shows our experimental results. Section V
concludes the paper and also gives some directions for future
work.

II. PRELIMINARIES

A. Graph Terminology

To ensure coherence in the used terminology we briefly
review the notation used. A graph G is composed by the
set of vertices V (G) and the set of edges E(G), represented
by pairs (a, b) : a, b ∈ V (G). The size of a graph, denoted
by |V (G)|, is the number of vertices in the graph. A k-
graph has size k. All vertices are assigned consecutive integers
starting from 0. The neighborhood of a vertex v is defined as
N(v) = {u : (v, u) ∈ E(G) ∨ (u, v) ∈ E(G)}.

A subgraph Gk of a graph G is a k-graph where V (Gk) ⊆
V (G) and E(Gk) ⊆ E(G). This subgraph is said to be induced
when ∀u, v ∈ V (Gk) : (v, u) ∈ E(G) ↔ (v, u) ∈ E(Gk)
and is said to be connected when all pairs of vertices have
a sequence of edges connecting them. The neighborhood of
a subgraph, N(Gk), is the set of all the neighbors of its
vertices not included in Gk. The exclusive neighborhood of
a vertex v of graph G relative to a subgraph Gk is defined as
Nexc(v,Gk) = {u : u ∈ N(v) ∧ u /∈ N(Gk) ∧ u /∈ Gk}.

Two graphs G and H are isomorphic, denoted as G ∼ H ,
if there is a bijection between V (G) and V (H) such that two

vertices are adjacent in G if and only if their corresponding
vertices in H are adjacent.

B. Problem Definition

We will now define more precisely the problem we are trying
to solve:

Definition 1 (Subgraph Census Problem): Given an integer
k and a graph G, determine the frequency of all connected
induced k-subgraphs of G. Two occurrences of a subgraph are
considered different if they have at least one node that they do
not share.

We would like to emphasize that we are only concerned with
subgraphs that are both connected and induced. Note also how
we distinguish occurrences. Other possible frequency concepts
do exist [16], but here we resort to the standard definition. This
has direct implications on the number of existing subgraphs,
with no downward closure on the frequencies, since a subgraph
may appear more times than a subgraph contained in it.

C. Related Work

ESU [11] and Kavosh [12] are two of the best exact network-
centric algorithms and represent our base enumeration method.
Although they use different enumeration algorithms, they both
work by traversing all occurrences of k connected nodes,
with an isomorphic test being applied to each occurrence. Our
proposed algorithm differs from these approaches because it
integrates the isomorphism tests into the enumeration process,
as we will see in the following sections.

For a subgraph-centric approach, we refer the reader to
the work by Grochow and Kellis [13], that show how to
compute the exact frequency of a single subgraph by breaking
symmetries. Note that this is conceptually different from our
work in this paper, given that a census would require separate
computations for each different subgraph type.

Our previous work with g-tries [14], [15] is an exam-
ple of a set-centric method. It takes advantage of common
substructure and symmetry breaking conditions to create an
efficient algorithm for computing the exact count of a given
set of subgraphs. Although the data-structure used here has
similarities, our approach in this paper is conceptually different
because it is network-centric and does not require providing
an initial list of subgraphs to search for.

In this same line of thought, if the set of subgraphs to
consider if small enough, there is the possibility of doing some
precalculations that reduce the computational work needed
when computing the frequencies on an actual network data
set. For instance, one can cache the result of isomorphic
tests [17] or explore specific combinatoric features [18]. Our
work differs, because we avoid the need to rely on a pre-
defined set of subgraphs to consider. We target generalness
and applicability on any kind of networks and subgraphs

In this paper we are mainly concerned with exact frequen-
cies, but we would like to point out that there exist sampling
alternatives for providing approximate results, such as Kashtan
et al. [19], Rand-ESU [11], Rand-gtries [20] or GUISE [21].
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III. A FASTER SUBGRAPH CENSUS

Our proposal to improve the efficiency of the subgraph
census is to exploit the topology of subgraphs to partition them
into intermediate classes that are calculated as we are enumer-
ating occurrences. All subgraphs belonging to a particular class
are isomorphic and therefore we only need to compute a single
isomorphism test per class type. This contrasts sharply with the
past approach of doing one isomorphic test per occurrence,
greatly reducing the number of isomorphism tests needed.

Our algorithm, which we call FaSE (following the etymol-
ogy FAst Subgraph Enumeration) has two main parts, tightly
integrated with each other: enumeration and encapsulation. The
enumeration part is where each individual subgraph occurrence
from the main network is generated. This is done by an incre-
mental growth of a connected set of vertices. The encapsulation
part is where topological information about the subgraph
classes is stored, along with an increment on the frequency
of the respective class. Each time the enumeration adds a new
vertex to the current set, we generate a label describing the
connections of this new vertex. This is done using a generic
labeling process, which we call LS-Labeling, that generates
different classes of subgraphs. For the actual storage we use
a tree data structure that behaves as a customized g-trie, in
which we use the LS-Labeling as the separator, that is, as the
tree edges. The entire process is explained with more detail in
the following sections.

A. Subgraph Enumeration

The process of enumerating every subgraph occurrence is
a generic operation, meaning it allows different enumeration
approaches. Any algorithm that enumerates all connected sets
of k vertices in a larger network is acceptable, provided that
it does so in a way that incrementally grows the set, node by
node. The main idea is that an algorithm that transitions from
a state to another by adding a new node at the time allows
each enumerated occurrence to be labeled according to the
transitions it took to reach the final state.

ESU [11] and Kavosh [12] are our base network-centric
subgraph census algorithms and both fulfill the enumeration
requisites. They have similar complexities and execution times,
although they work differently. Given the space constraints,
and for the sake of better understanding, we will only describe
with more detail an ESU implementation, showing how we can
integrate it in our methodology. We note however that the same
process could indeed be followed by swapping the usage of
ESU with Kavosh, keeping all other parts intact.

1) ESU algorithm: The ESU algorithm enumerates all k-
subgraphs of network once and only once. It works by
maintaining two vertex lists: VS and VE (in the original
paper [11] VSubgraph and VExtension). The first one represents
the currently selected subgraph (set of connected vertices) and
the latter a list of all neighbor vertices that can be added.
Initially, it chooses each vertex v in the original graph G
and sets VS = {v} and VE = N(v). Then it recursively
removes each element u of VE and sets VS = VS ∪ {u} and
VE = VE ∪ {v ∈ Nexc(u, VS) : v > VS [0]} (VS [0] is the 0-
th element of VS). The usage of the exclusive neighborhood,

along with the condition v > VS [0], breaks symmetries and
guarantees that each occurrence is only found once. Note that
v > VS [0] means that the added vertices must have a label
larger than VS [0]. After this operation, a recursive call is made.
When the size of VS reaches k it means a new occurrence of
a k-subgraph was found.

Because of the way it works, ESU creates an implicit
recursive search tree. Each node of that tree is a distinct state
that has two parameters: VS and VE . Hence, it fits our initial
description of the suitable enumeration algorithms, since each
time a recursive call is made the labeling process can be done
and the current vertex set can therefore be classified. Figure 1
illustrates a search tree induced by the ESU algorithm.

Fig. 1. An example induced ESU search tree for a 3-subgraph census.

B. Encapsulating Isomorphism Information in a Tree

While doing the enumeration we need to gradually store
the information gathered. Since we are adding one vertex at
a time, we want a data structure that mimics this behavior.
At the same time, we want to make use of the relationships
between labelings to save memory. A tree complies with the
demands and naturally fits to the idea of having an hierarchical
identification of common topology. The data structure we use
is based on our previous work with g-tries [14], which can
be thought of as “prefix trees for graphs”, but the set-up and
usage of this data-structure is slightly altered. In the remainder
of this paper, and to avoid confusion, the term node will be
used to refer to tree nodes, while the term vertex will be used
for network and subgraph vertices.

1) G-Tries: The customized g-trie used in this work is a tree
structure whose nodes represent abstract models of graphs, as
exemplified in Figure 2. The base model, the root, represents
the empty graph. Each node stores topological information and
a counter representing the respective frequency. For each vertex
that is added to this initially empty graph there is a labeling as
described above such that it traces the newly added connections
in a deterministic way, meaning that for a different graph of
the same kind the label is the same. This labeling represents an
edge on the g-trie, that is, the label sets the destiny node (of the
edge). If there is no edge with that label yet and consequently
no node to represent the current graph, they are both created.
As a result, if the insertion of two graphs in the g-trie ends in
the same tree node, we can be assured that the two graphs are
isomorphic.
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Fig. 2. An example g-trie storing six different undirected 4-graphs. The black
vertices are the ones being added at each depth level.

In terms of actual functioning, our g-trie works by main-
taining a current node, which represents the current graph
(since it is inserted node by node), initially the root node. It
implements two procedures: Deepen and Jump. The first one
is responsible for inserting a new node in the current graph,
thus dropping one level in the tree (“deepening”). It requires
a labeling as an argument and simply sets the current node as
the corresponding node, incrementing its count and creating
it along with the due edge in case they both do not exist.
We use sequence prefix trees (“tries”) to represent the list of
labelings that correspond to the edges, guaranteeing linear time
searching and insertion. The Jump procedure does the opposite
of Deepen, traversing the tree to the parent node.

To insert graphs into the g-trie we take advantage of the
fact that the enumeration process builds a search tree, with a
new recursive call being made each time a new node is added.
The idea is to perform Deepen before each recursive call and
Jump right after. This is because all occurrences generated
from a certain state will share a common subtopology corre-
spondent to the partial set generated and therefore they also
share the same labeling. In practice, this means all enumerated
occurrences will be in a descendant tree node.

In conclusion, the g-trie can be abstracted as a simple tree
governed by the labelings. In fact, the only reason it represents
graphs in its nodes is because of the way the labeling is used.
So this structure is very generalized and can be applied to any
labeling.

2) LS-Labeling: As said above, it is a generic labeling and
only works with the condition that it creates classes of graphs
that are isomorphic. It acts as the core of the g-trie and has
direct influence in the branching factor of the tree, meaning
that different labelings will result in different run times. In
an abstract perfect environment, the LS-Labeling would be a
function that actually computed isomorphisms, but since that
calculation itself is computationally hard, the time saved by
using the g-trie would be spent on calculating the labelings.
So we want the LS-Labeling function to be polynomial, setting
up a trade off in the amount of calculation time spent on
the labeling and on the g-trie (and also on the isomorphism
calculations). Furthermore, we want a labeling that is able to be
computed incrementally as new vertices are added, so that we
can use only the part pertinent to any new vertex being added

(the other existing parts will already be stored on ascendant
nodes).

For our work we tried essentially two simple and intuitive
labelings: “adjacency list” and “adjacency matrix”, corre-
sponding to the equivalent graph data-structures, as their names
suggest. However, when a new vertex is added we only store its
connections to vertices already in the constructed set. Consider
now the undirected case, when adding the k-th vertex. For
the adjacency list we have a list of at most k − 1 integers
where an integer is present if there is an edge to the node
with that label. For the adjacency matrix we have a sequence
of k − 1 boolean values indicating if there is an edge to the
node whose label corresponds to the position in the sequence.
Figure 3 gives an example of these two undirected labelings.
In the directed case, we store in this way both the ingoing and
outgoing connections.

Fig. 3. Two different valid LS-Labeling schemes on two example graphs.
Black vertices are the ones being added.

We can easily prove the correctness of both approaches, but
since they are methodically equivalent we will refer to both by
considering their structure. Notice that the correction property
is that the labeling creates classes of isomorphic subgraphs, as
stated in the beginning of the section. Thus we can conclude
that the labeling is correct since we can find a bijection
between any two subgraphs belonging to a particular labeling
class by simply following the order of the enumeration (that
is implicit in the actual labeling) and consider the permutation
relative to this order. Hence they are all isomorphic and we
have our correctness proof.

In conclusion, LS-Labeling is a powerful and flexible op-
eration since its generic nature allows for multiple types
of labelings. This means we can regulate the trade off of
calculation time in the g-trie and in the labeling itself. Besides
it makes the algorithm work for different formulations of
the problem. For instance, the algorithm is exactly the same
whether the graph is undirected or directed, with the only
difference relying on the labeling itself. Also, it allows more
complex examples to be considered, such as colored graphs,
weighted graphs or multigraphs, just by using an adequate type
of LS-Labeling.

C. The FaSE algorithm

Algorithm 1 presents an overview of the complete FaSE
algorithm, which incorporates ESU enumerations with LS-
Labeling and g-tries. The expression += is used to express
incrementation by a certain value.
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Fig. 4. An example g-trie with list LS-Labeling after searching for 5-subgraphs. Details of the lower level are hidden for visual clarity.

Algorithm 1 The FaSE Algorithm
Input: A graph G and a subgraph size k
Result: Frequencies of all k-subgraphs of G

1: procedure FASE(G, k)
2: EnumerateAll(G, k, ∅, 0)
3: for all n in GTrie.leaves() do
4: frequency[CanonicalLabel(n.Graph)] += n.count

5: procedure ENUMERATEALL(G,K, S, d) � S:subgraph; d:depth
6: if d = K then
7: GTrie.current.count += 1
8: else
9: while nS ← EnumerateNext(S) do

10: w ← nS.NextNode()
11: nL ← LSLabel(S,w)
12: GTrie.Deepen(nL)
13: nS.Subgraph ← nS.Subgraph ∪ w
14: EnumerateAll(G,K, nS, d+ 1)
15: GTrie.Jump()

The procedure enumerateAll() passes through all oc-
currences of the subgraphs and increments the counter when
at the desired size. In the end, the actual frequencies are
implicitly stored at g-trie leaves. However, two different leaves
may correspond to the same subgraph isomorphic type, and
we still need to compute a canonical labeling to disambiguate
and guarantee that the final results will reflect the real fre-
quencies of each type. In our current implementation, this is
done through nauty [22], a third-party efficient isomorphism
toolkit, but any other algorithm that would produce a canonical
labeling could be used. Figure 4 shows a visual representation
of what a g-trie annotated with the list LS-Labeling would
look like after running FaSE. Note how at the same level we
end up having different nodes representing the same subgraph
type, due to the order in which the vertices were added to the
graph. Nevertheless, the number of leaves will be just a very
small fraction of the total number of occurrences, and that is
why we gain a significant amount of computation time: we

only do one isomorphic test per leaf, and not per occurrence.
Also note that in the specific case of the ESU algorithm the

actual state S used in the EnumerateNext() procedure is
also changed on each iteration of the while loop. To increase
the efficiency of the algorithm, the enumeration algorithms
can be hard coded to explore low level features of the specific
algorithms, as was done in our current implementation.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithm,
FaSE was implemented in C++, using ESU as the enumeration
algorithm1. All tests were run on a Linux machine with an Intel
Core 2 6600 (2.4GHz) and 2GB of memory. We used a wide
range of directed and undirected networks, showcasing general
applicability. All weights or self-loops were ignored. The
networks features are summarized in Table I. The StarWars
network was assembled by us using a script from the Star Wars
IV film, where vertices are characters in the movie and two
vertices are connected if there is a scene where both characters
speak.

We implemented both the list and adjacency LS-Labeling
functions, but in all the networks the list method ended up
having slightly better execution time, and so we opted to only
show the results obtained with it. We compared our results
with the two base network-centric methods: ESU and Kavosh.
The former through its publicly available tool FanMod [28]
and the latter through its original source code [12], both of
which also use nauty [22] for isomorphisms. We compared
the time needed for doing a complete k-subgraph census on
the original networks as we varied k from 3 to 9. For practical
reasons, we only show execution times up to 5 hours. The
results are detailed in Table II, with speedup indicating the
relative time gain versus ESU and Kavosh.

The most relevant fact to notice is that in all cases FaSE
outperforms both ESU and Kavosh, as expected, with the
speedup being approximately an order of magnitude faster.
More than that, as the size k grows the general tendency
is for the speedup to grow, with bigger gains in situations

1Our implementation, along with test data, can be consulted on the following
url: http://www.dcc.fc.up.pt/gtries/fase/
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TABLE I. COMPLEX NETWORKS USED IN THE EXPERIMENTS

Network Directed Nodes Edges Avg. Degree Type Source
StarWars No 51 157 3.08 Social Our Own

Jazz No 198 2,742 13.85 Social Arenas [23]
Power No 4,941 6,594 1.33 Geo-spacial Newman [24]

AstroPh No 18,772 198,050 10.55 Social SNAP [25]
Gloss Yes 72 118 1.64 Semantic Pajek [26]
Neural Yes 297 2,359 7.94 Biological Newman [24]
Email Yes 1,133 10,902 9.62 Social Arenas [27]
Foldoc Yes 13,356 120,700 9.04 Semantic Pajek [26]

TABLE II. DETAILED EXPERIMENTAL RESULTS FOR THE 8 COMPLEX NETWORKS USED.

Network K Subgraphs found FaSE ESU Kavosh
Types Occurrences Time (s) Leaves Time (s) Speedup Time (s) Speedup

StarWars

3 2 1,449 <0.01 3 <0.01 — <0.01 —
4 6 12,958 <0.01 17 0.04 23.5 0.03 17.6
5 21 98,426 0.01 171 0.39 30.7 0.21 16.5
6 106 630,369 0.08 2,406 3.12 38.0 1.90 23.1
7 699 3,445,808 0.58 26,692 21.95 38.0 13.26 23.0
8 5,601 16,320,648 3.55 203,687 133.34 37.6 78.18 22.0
9 41,790 67,883,236 19.08 1,133,749 (*) — 395.90 20.7

Jazz

3 2 67,414 <0.01 3 0.14 31.8 0.06 13.6
4 6 1,833,618 0.15 17 4.24 28.9 2.55 17.4
5 21 49,500,654 4.65 171 143.64 30.9 89.3 19.2
6 112 1,266,953,062 140.84 3,113 (**)3,630.00 25.8 2,912.43 20.7
7 853 30,166,157,456 3,946.81 106,417 >5h — >5h —

Power

3 2 17,631 <0.01 3 0.04 14.3 0.02 7.1
4 6 63,401 0.01 17 0.14 15.6 0.09 10.0
5 21 268,694 0.04 170 0.67 17.5 0.48 12.5
6 101 1,260,958 0.19 1,771 4.11 21.6 2.91 15.3
7 626 6,340,413 1.07 14,441 23.60 22.0 17.57 16.4
8 4,516 33,494,650 6.08 96,219 155.44 25.6 113.53 18.7
9 31,543 183,453,978 35.84 565,387 (*) — 722.91 20.2

AstroPh
3 2 10,046,498 1.02 3 15.69 15.4 8.88 8.7
4 6 923,805,607 95.92 17 (**)2,272.00 23.7 1,244.03 13.0
5 21 108,845,670,981 12,411.83 171 >5h — >5h —

Gloss

3 4 558 <0.01 14 <0.01 — <0.01 —
4 24 3,229 <0.01 122 <0.01 — <0.01 —
5 162 18,636 0.01 783 0.06 8.8 0.05 7.4
6 907 101,435 0.04 4,482 0.34 9.6 0.41 11.6
7 4,716 513,982 0.22 23,508 1.94 8.7 3.51 15.7
8 22,789 2,428,915 1.45 115,094 11.04 7.6 27.22 18.7
9 103,229 10,756,147 9.55 526,053 (*) — 205.72 21.5

Neural

3 13 47,322 0.01 45 0.09 16.7 0.04 7.4
4 197 1,394,259 0.13 1,846 2.21 17.5 1.71 13.5
5 7,072 43,256,069 4.73 76,214 102.14 21.6 91.03 19.3
6 286,376 1,309,307,357 170.96 2,499,645 (**)4,420.00 25.9 4,636.43 27.1

Email

3 2 85,729 0.01 3 0.13 12.9 0.07 6.9
4 6 1,905,641 0.17 17 3.87 22.6 2.52 14.7
5 21 49,324,622 5.56 171 117.49 21.1 79.99 14.4
6 112 1,375,965,126 182.45 3,113 (**)4,186.00 22.9 2,929.36 16.1

Foldoc
3 13 2,553,830 0.35 45 3.97 11.2 2.17 6.1
4 198 228,272,189 27.80 2,304 903.39 32.5 308.78 11.1
5 8,345 29,621,881,964 3,735.20 141,115 >5h — >5h —

(*) FanMod accepts only 8 as the maximum subgraph size.

(**) Overflow problem in its own reported enumeration time and so we used elapsed time.
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where the total execution time is higher, the ones which
benefit more from a faster algorithm. The specific speedups are
network-dependent and are related to the number of subgraph
occurrences versus the number of leaves in our g-trie. Note
that by itself the ratio between these two quantities cannot
be used to accurately predict the speedup because it only
represents aggregated values and the specific times needed for
the isomorphic tests are subgraph dependent.

Our current implementation uses ESU for enumeration. In
order to be sure that we are really improving the underlying
algorithm and not just creating a better implementation of
ESU, we tested the execution times when not using g-tries
and doing isomorphic tests trough nauty for each occurrence,
mimicking the original behavior of ESU. We observed that our
implementation was slightly faster than FanMod, but within the
same order of magnitude. Thus, if we compute the speedup of
FaSE against this implementation, we still are roughly an order
of magnitude faster. Noting that Kavosh is slightly faster than
ESU, we will potentially benefit from this if we implement the
enumeration part resorting to Kavosh instead of ESU.

The core of our gains resides on improving the isomorphism
tests, which is the major bottleneck of a subgraph census.
We experimented with our implementation stripping it from
everything but the enumeration process. This means no g-trie
was created, nor isomorphic tests were performed. Of course
that in this case we would not be able to actually compute the
census, but this can give a better sense of how much time the
enumeration process takes when compared to the isomorphic
tests. In fact, for the ESU case, the enumeration is just a
small fraction of the entire computation, and the weight of the
enumeration decreases as the size of the subgraph increases.

The Gloss network is the one where we achieve the worst
speedups, but it is also an outlier on all of our results. In
fact this is also the only case where FanMod is quicker than
Kavosh. Furthermore, our own implementation is also slower
than FanMod in this network. One possible explanation is that
there is something specific in FanMod implementation that
gives it an advantage for this particular data set.

Another aspect is that we currently use simple adjacency
matrix as the graph representations, which is unfeasible for
larger networks. We experimented with an adjacency list repre-
sentation and a naive binary search for checking edge existence
and we were able to run FaSE on networks with more than 1
million nodes. We could not compare with Kavosh because it
does not support such larger networks, but in comparisons with
FanMod we had better execution times, albeit with relatively
smaller speedups. We expect that the usage of more efficient
and specialized graph primitives will greatly improve our
times.

Finally, we point the reader to the number of leaves our
algorithm is generating. This is directly connected to the
memory needed by the g-trie and it means we cannot go to
much larger subgraph sizes than the ones depicted here, for
the general case. Nevertheless, as k grows, the number of
possible subgraph types also grows super exponentially and
simply storing the frequency results may become prohibitive.

V. CONCLUSION

In this paper we presented FaSE, a novel algorithm that
tackles the subgraph enumeration problem through a network-
centric approach. It identifies common substructures using
a tree data-structure allowing for savings in the number of
isomorphic tests needed. The results obtained show that FaSE
consistently outperforms the classic network-centric algorithms
that need one isomorphic test per occurrence, being one order
of magnitude faster.

FaSE is very generic, allowing for the usage of different
enumeration methods, as well as different LS-Labeling func-
tions. We intend to use this in the future, by implementing
potentially better enumeration algorithms (we will start with
Kavosh) and by experimenting with different LS-Labelings,
paving the way for more complex setups, such as multigraphs
and colored or weighted graphs. Note that the generalness of
our approach implies that it will more naturally adapt to these
scenarios. For instance, a method that relies on having a pre-
generated set would be unfeasible for a colored graph, because
the total number of possible subgraph types increases super
exponentially. In our case, the algorithm would naturally only
include the occurring types, which can be a very small fraction
of the entire set of possibilities.

Given that the work presented here only gives exact results,
we also intend to work on a sampling version, able to trade
accuracy for even better execution times.

The main limitation of FaSE is the number of leaves
it generates when comparing with the number of existing
subgraph types. We intend to reduce the number of leaves
by taking advantage of the fact that our intermediate data-
structure is aware of the topology. We wish to experiment
both with new LS-Labelings and with compressing the g-trie
by acknowledging the topological equivalence of different tree
nodes. The end goal is to have a g-trie with only has many
leaves has different subgraph types, produced dynamically
during the enumeration without any previous knowledge about
the network or subgraph types.
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