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ABSTRACT
Machine learning methods to aid defence systems in detecting ma-
licious activity typically rely on labelled data. In some domains,
such labelled data is unavailable or incomplete. In practice this
can lead to low detection rates and high false positive rates, which
characterise for example anti-money laundering systems. In fact,
it is estimated that 1.7–4 trillion euros are laundered annually and
go undetected. We propose The GANfather, a method to generate
samples with properties of malicious activity, without label require-
ments. We propose to reward the generation of malicious samples
by introducing an extra objective to the typical Generative Adver-
sarial Networks (GANs) loss. Ultimately, our goal is to enhance the
detection of illicit activity using the discriminator network as a
novel and robust defence system. Optionally, we may encourage
the generator to bypass pre-existing detection systems. This setup
then reveals defensive weaknesses for the discriminator to correct.
We evaluate our method in two real-world use cases, money laun-
dering and recommendation systems. In the former, our method
moves cumulative amounts close to 350 thousand dollars through a
network of accounts without being detected by an existing system.
In the latter, we recommend the target item to a broad user base
with as few as 30 synthetic attackers. In both cases, we train a new
defence system to capture the synthetic attacks.

ACM Reference Format:
Ricardo Ribeiro Pereira, Jacopo Bono, João Tiago Ascensão, David Aparício,
Pedro Ribeiro, and Pedro Bizarro. 2023. The GANfather: Controllable gener-
ation of malicious activity to improve defence systems. In pre-print ArXiv,
July, 2023. ACM, New York, NY, USA, 8 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION
Digital systems’ growing dominance in various aspects of our soci-
ety opens up new opportunities for illicit actors. For example, digital
banking enables clients to open bank accounts more easily but also
facilitates complex money laundering schemes. It is estimated that
undetected money laundering activities worldwide accumulate to
1.7–4 trillion euros annually [16], while operational costs related to
anti-money laundering (AML) compliance tasks incurred by finan-
cial institutions accumulate to $37.1 billion [23]. Another example
are recommender systems, which are often embedded in digital ser-
vices to deliver personalised experiences. However, recommender
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Figure 1: Comparison of our method to some widely used
approaches. (a) GAN: a vanilla GAN setup does not require
any labels, but one cannot choose the class of a generated
sample since the distribution of the data is learned as a whole.
(b) Conditional GAN (cGAN): using a cGAN, one learns the
class-conditional distributions of the data, allowing the user
to choose the class of a generated sample. However, labels are
needed to train a cGAN. (c) Adversarial Attack (evasion): start-
ing from a malicious example, perturbations are found such
that a trained classifier is fooled and misclassifies the per-
turbed example. While labels are typically required to select
the initial example as well as to train the classifier, eventually
the adversarial attacks can be used to obtain a more robust
classifier. (d) The GANfather: our method has some desirable
properties from the three previous approaches: no labels are
needed (as in a GAN), samples of a desired target class are
generated (as in a cGAN) and a robust detection system can
be trained (as in adversarial training). The combination of
these properties in one framework is especially suitable in
domains where no labelled data is available.

systems may suffer from injection attacks whenever malicious ac-
tors fabricate signals (e.g., clicks, ratings, or reviews) to influence
recommendations. These attacks have detrimental effects on the
user experience. For example, a one-star decrease in restaurant
ratings can lead to a 5 to 9 percent decrease in revenue [20].
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The detection of such malicious attacks is challenging in the
following aspects. In many cases, these illicit activities are adver-
sarial in nature, where an attacker and a defence system adapt to
each other’s behaviour over time. Additionally, labelled datasets are
unavailable or incomplete in certain domains due to the absence
of natural labels and the cost of manual feedback. For example,
besides the large amount of undetected money laundering, the in-
vestigation of detected suspicious activity is often far from trivial,
resulting in a feedback delay that can last months.

To address these issues, we propose The GANfather, a method
to generate examples of illicit activity and train effective detection
systems without any labelled examples. Starting from unlabelled
data, which we assume to be predominantly legitimate, the pro-
posed method leverages a GAN-like setup [12] to train a generator
which learns to create malicious activity, as well as a detection
model (the discriminator) learning to distinguish between real data
and synthetic malicious data.

To be able to generate samples with malicious properties from
legitimate data, we propose to include an additional optimisation
objective in the training loss of the generator. This objective is a use-
case-specific, user-defined differentiable formulation of the goal of
the malicious agents. Furthermore, our method optionally allows to
incorporate an existing defence system, as long as a differentiable
formulation is possible. In that case, we penalise the generator when
triggering existing detection mechanisms. Our method can then
actively find liabilities in an existing system while simultaneously
training a complementary detection system to protect against such
attacks.

Our method has some desirable properties that make it particu-
larly well-suited for adversarial domains where no labelled data is
available:

• No labelled malicious samples are needed. Here, we assume
that our unlabelled data is predominantly of legitimate nature.

• Samples with features of malicious activity are generated.
The key to generate such samples from legitimate data is to in-
troduce an extra objective function that nudges the generator
to produce samples with the required properties. We implicitly
assume that malicious activity shares many properties with le-
gitimate behaviour. We justify this assumption since attackers
often mimic legitimate activity to some degree, in order to avoid
raising suspicion or triggering existing detection systems.

• A robust detection system is trained. By training a discrim-
inator to distinguish between the synthetic malicious samples
and real data, we conjecture that the defence against a variety of
real malicious attacks can be strengthened.

While each of these properties can be found separately in other
methods, we believe that the combination of all the properties
in a single method is novel and useful in the discussed scenarios.
In Figure 1, we illustrate visually how our method distinguishes
itself from some well-known approaches. Finally, while we only
perform experiments on two use-cases (anti-money laundering and
recommender systems) in the following sections, we believe that
the suggested approach is applicable in other domains facing similar
constraints, i.e., no labelled data and adversarial attacks, subject to
domain-specific adaptations.

2 METHODS
We provide a general description of our proposed framework in
Section 2.1. We proceed to describe two use-cases: anti-money laun-
dering (AML) (Section 2.2) and detection of injection attacks in
recommendation systems (Section 2.3). In Section 2.4, we show the-
oretically, in a simplified setting, how our generator’s loss function
changes the learning dynamics compared to a typical GAN.

2.1 General description
Figure 2 depicts the general structure of our framework. It com-
prises a generator, a discriminator, an optimisation objective, and,
optionally, an existing alert system. Each component is discussed
in more detail below.

Generator.As in the classical GAN architecture, the generator𝐺
receives a randomnoise input vector and outputs an instance of data.
However, unlike classical GANs, the loss of the generator L(𝐺) is a
linear combination of three components: the optimisation objective
for malicious activity L𝑂𝑏 𝑗 (𝐺), the GAN loss L𝐺𝐴𝑁 (𝐺, 𝐷) that
additionally depends on the discriminator 𝐷 , and the loss from an
existing detection system 𝐴, L𝐴𝑙𝑒𝑟𝑡 (𝐺,𝐴):

L(𝐺) = 𝛼L𝑂𝑏 𝑗 (𝐺) + 𝛽L𝐺𝐴𝑁 (𝐺, 𝐷) + 𝛾L𝐴𝑙𝑒𝑟𝑡 (𝐺,𝐴) (1)

where 𝛼 , 𝛽 and 𝛾 are hyperparameters to tune the strength of each
component. The last term is optional, and if no existing detection
system is present we simply choose 𝛾 = 0. Note also that one of the
parameters is redundant and we tune only two parameters in our
experiments (or one if 𝛾 = 0).

We show in Section 2.4 that the stable point of convergence for
the generator in our theoretical example moves away from the data
distribution for any 𝛼 > 0.

Discriminator. The discriminator setup is the same as in a clas-
sical GAN. It receives an example and produces a score indicating
the likelihood that the example is real or synthetic. Importantly, as
explained in Section 2.4, the generator subject to Equation 1 will
generate data increasingly out of distribution for larger 𝛼 . There-
fore, we do not require the discriminator accuracy to fall to chance
level at training convergence, as is usual with GANs. Instead, the
discriminator may converge to perfect classification and may be
used as a detection system for illicit activity. In our experiments,
we use the Wasserstein loss [2] as our GAN loss.

Malicious optimisation objective. The optimisation objective
quantifies how well the synthetic example is fulfilling the goal
of a malicious agent. It can be a mathematical formulation or a
differentiable model of the goal. This objective allows the generator
to find previously unseen strategies to meet malicious goals.

Alert system. If an existing, differentiable alert system is present,
we can add it to our framework to teach the generator to create
examples that do not trigger detection (see Equation 1). In that
scenario, it is then beneficial for the discriminator to focus on the
undetected illicit activity. Whenever the existing system is not
differentiable, training a differentiable proxy may be possible.

Generator vs. Discriminator views. If required by the ma-
licious optimisation objective, our generator can be adapted to
generate samples which are only partially evaluated by the dis-
criminator. For example, the layering stage of money laundering
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Figure 2: The GANfather framework. Its main components are a generator,𝐶1, which generates realistic attacks, a discriminator,
𝐶2, which detects these attacks, and an optimisation objective, 𝐶3, to incentivise the generation of malicious instances. Finally,
our method optionally supports the inclusion of an existing alert system, 𝐶4.

typically involves moving money through many financial institu-
tions (FIs). However, each detection system operates within single
institutions, limiting their view of the entire operation. Our method
can be adapted to capture this situation, by generating samples
containing various fictitious FIs, but only sending the partial sam-
ples corresponding to each FI to the discriminator. In recommender
systems, the malicious objective can act on a group of synthetic
illicit actors to generate coordinated attacks, while the detection of
fraudulent users is typically performed on a single-user level.

Architecture optimisations. In the next sections, we provide
more details about the specific architectures used in the two experi-
ments. We note that the architecture details (layer types, widths and
number of layers) were first optimised using a vanilla GAN setup
(i.e. setting 𝛼 = 0, 𝛽 = 1, 𝛾 = 0 in Equation 1). With the architecture
fixed, the other hyperparameters were tuned as explained in the
next sections.

Code availability. The Pytorch code for both models can be
found on GitHub (the link will be provided after double blind re-
view).

2.2 Anti-Money Laundering (AML)
We tackle the layering stage of money laundering, in which crimi-
nals attempt to conceal the origin of the money by moving large
amounts across financial institutions through what are known as
“mule accounts”.

Representing dynamic graphs as tensors. To represent the
dynamic graph of transactions, we can use a 3D tensor as depicted
in Figure 3.We assume the nodes of the dynamic graph are accounts,
and the edges are transactions. The first two dimensions correspond
to the weighted adjacency matrix of the accounts and the third
dimension is time. We discretise the events into time windows of
fixed length and group events that belong to the same entry in the
tensor by summing their amounts. In other words, each entry 𝐴𝑖 𝑗𝑘

of the tensor corresponds to the cumulative amount sent between
account 𝑖 and account 𝑗 on timestep 𝑘 . Our representation covers
any dynamic network with a 3D tensor whose size is fixed and pre-
specified, which allows us to avoid using recurrent models. While

this approach may limit the size of generated data, domain experts
reported that up to 95% of the money-laundering investigations
involve cases containing up to 5 accounts.

Architecture. We implement the generator using a set of dense
layers, followed by a set of transposed convolutions. Then, we create
two branches: one to generate transaction amounts and the other
to generate transaction probabilities. We use the probabilities to
perform categorical sampling and generate sparse representations,
similar to real transaction data. After the sampling step, the two
branches are combined by element-wise multiplication, resulting
in a final output tensor with the dimensions described above.

The discriminator receives two tensors with the same shape as
inputs: one containing the total amount of money transferred per
entry, and the other with the count information (mapping positive
amounts to 1 and empty entries to 0). Each tensor passes through
convolutional layers, followed by permutation-invariant operations
over the internal and external accounts. Then, we concatenate both
tensors. We reduce the dimensionality of the resulting vector to a
classification outcome using dense layers.

We provide more details about both architectures on our GitHub
repository.

Money Mule objective. To characterise the money flow be-
haviour of layering, where money is moved in and out of accounts
while leaving little behind, we define the objective function as
the geometric mean of the total amount of incoming (𝐺 (𝑧)𝑖𝑛) and
outgoing (𝐺 (𝑧)𝑜𝑢𝑡 ) money per generated account (Equation 2).

L𝑂𝑏 𝑗 (𝐺) = −
∫ √︁

𝐺 (𝑧)𝑖𝑛 ×𝐺 (𝑧)𝑜𝑢𝑡 · 𝑝 (𝑧)𝑑𝑧 (2)

Here 𝑧 represents random noise input to the generator𝐺 and 𝑝 (𝑧) is
its probability distribution. This objective encourages the generator
to increase the amount of money sent and received per account and
keep these two quantities similar, as observed in mule accounts.

Existing Alert System. In AML, it is common to have rule-
based detection systems. In our case, the rules detection system
contains five alert scenarios, capturing known suspicious patterns
such as a sudden change in behaviour or rapid movements of funds.
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Figure 3: Data representation of transactional data. From the raw tabular data, we build the tripartite graph of the transactions,
which is in turn represented as a 3D tensor. Here, S stands for Source accounts, M stands for Middle accounts, D stands for
Destination accounts and T for the Time dimension.

However, these rules are not differentiable, and our generator re-
quires feedback in the form of a gradient. Hence, we construct a
deep learning model as a proxy for the rules system.We hard-code a
neural network mimicking the rules’ logic operations by choosing
the weights, biases and activation functions appropriately. This
network gives the same feedback as the rules system would, but in
a differentiable way.

2.3 Recommendation System
In this work, we consider collaborative filtering recommender sys-
tems. However, our method is compatible with any other differ-
entiable recommender systems. The system receives a matrix of
ratings 𝑅 with shape (𝑁𝑢 , 𝑁𝑖 ), where 𝑁𝑢 is the number of users
and 𝑁𝑖 is the number of items. First, we compute cosine distances
between users, resulting in the matrix 𝐷 of shape (𝑁𝑢 , 𝑁𝑢 ). Then,
we compute the predicted ratings 𝑃 as a matrix product between
𝐷 and 𝑅. We decided to not represent time since most classical
recommender systems do not account for it. However, it is possible
to include temporal information using a similar setup to what we
described in the AML use case. We also note that, unlike in the AML
scenario, we do not have an existing detection system in this setup.
We provide details about the architectures of both the generator
and the discriminator on our GitHub repository.

Injection Attack Objective. We define the goal of malicious
agents as increasing the frequency of recommendation of a specific
item. The objective function in Equation 3 incentivizes the generator
to increase the rating of the target item 𝑡 for every user.

L𝑂𝑏 𝑗 (𝐺) =
∫ 𝑁𝑢∑︁

𝑖

𝑁𝑖∑︁
𝑗

(𝑃𝑖 𝑗 (𝑧) − 𝑃𝑖𝑡 (𝑧))+ · 𝑝 (𝑧)𝑑𝑧 (3)

Here, the matrix of predicted ratings 𝑃 depends on the random
inputs 𝑧 through the generator𝐺 and (·)+ denotes a rectifier setting
negative values to zero.

2.4 Theoretical justification
In this section, we provide a theoretical justification to enlighten
certain aspects of our setup, in a simplified setting. We will assume

no existing detection system is available (𝛾 = 0 in Equation 1). In
the case such a system would be available, we assume its effect is
to limit how far the generated data distribution can be from the
real data distribution. Furthermore, we assume that a malicious
objective would promote a change in the distribution of at least
one feature of the generated data compared to the real data.

In order to facilitate the analytical calculations, we make the
following simplifying assumptions. Firstly, we assume that our
data consists of only one feature, for which the regular (legitimate)
activity is distributed following a normal distribution 𝑝data with
mean 𝜇𝑑 and standard deviation 𝜎𝑑 :

𝑝data = N (𝜇𝑑 , 𝜎𝑑 ) (4)

Secondly, we assume that we do not have any samples of malicious
activity but that we know that it is characterised by larger values of
this feature compared to the legitimate activity. Thirdly, we assume
that the generated data follows a normal distribution 𝑝gen with
mean 𝜇𝑔 and standard deviation 𝜎𝑔 . Using 𝛾 = 0 and 𝛽 = 1 − 𝛼 in
Equation 1, assuming 0 ≤ 𝛼 ≤ 1, we can write the training criterion
of the generator as:

L(𝐺) = (1 − 𝛼) ·
(
2 · JSD

(
𝑝data |𝑝gen

)
− log(4)

)
− 𝛼𝜇𝑔 (5)

where the first term denotes the GAN loss [12] and the second
term denotes our malicious objective rewarding the generator to
produce samples with properties of the malicious data (i.e. increase
the mean 𝜇𝑔 as much as possible).
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We can analytically solve the Jenson-Shannon Divergence (JSD)
between the normal distributions, using 𝜎2𝑚 = 𝜎2

𝑑
+ 𝜎2𝑔 ,

JSD
(
𝑝data |𝑝gen

)
=

1
2
KL

(
𝑝data |0.5 ∗ (𝑝data + 𝑝gen)

)
+ 1
2
KL

(
𝑝gen |0.5 ∗ (𝑝data + 𝑝gen)

)
=

1
2

[
log

𝜎𝑚

𝜎𝑑
+
𝜎2
𝑑
+ (𝜇𝑑 − 0.5(𝜇𝑑 + 𝜇𝑔))2

2𝜎2𝑚
− 1
2

+ log 𝜎𝑚

𝜎𝑔
+
𝜎2𝑔 + (𝜇𝑔 − 0.5(𝜇𝑑 + 𝜇𝑔))2

2𝜎2𝑚
− 1
2

]
(6)

From this, we can calculate the gradient w.r.t. 𝜇𝑔 :

𝜕JSD(𝑝data |𝑝gen)
𝜕𝜇𝑔

= 𝜕

(
1
2

[
log

𝜎𝑚

𝜎𝑑
+
𝜎2
𝑑
+ (𝜇𝑑 − 0.5(𝜇𝑑 + 𝜇𝑔))2

2𝜎2𝑚
− 1
2

+ log 𝜎𝑚

𝜎𝑔
+
𝜎2𝑔 + (𝜇𝑔 − 0.5(𝜇𝑑 + 𝜇𝑔))2

2𝜎2𝑚
− 1
2

])
/𝜕𝜇𝑔

=
𝜇𝑔 − 𝜇𝑑

4𝜎2𝑔 + 4𝜎2
𝑑

(7)

Combining (5) and (7), we find that the gradient of the training
objective of the generator w.r.t. the mean of the generated distribu-
tion 𝜇𝑔 is

𝜕L(𝐺)
𝜕𝜇𝑔

=
(1 − 𝛼)

2
𝜇𝑔 − 𝜇𝑑

𝜎2𝑔 + 𝜎2
𝑑

− 𝛼 (8)

Without loss of generality, we set 𝜎2𝑔 + 𝜎2data = 𝑘/2, such that

𝜕L(𝐺)
𝜕𝜇𝑔

= (1 − 𝛼)
𝜇𝑔 − 𝜇𝑑

𝑘
− 𝛼 (9)

Denoting 𝜕𝜇𝑔
𝜕𝑡 as the changes of 𝜇𝑔 over time (i.e. a continuous

version of the discrete gradient updates) and 𝜂 as the learning rate,
this leads to the following linear dynamical system which we can
analyse in function of 𝜇𝑔 , 𝜇d and the hyperparameter 𝛼 :

𝜕𝜇𝑔

𝜕𝑡
= −𝜂 𝜕L(𝐺)

𝜕𝜇𝑔

= −𝜂 (1 − 𝛼)
𝜇𝑔 − 𝜇𝑑

𝑘
+ 𝜂𝛼

= −𝜂𝑑𝜇𝑔 + 𝜂𝑑𝜇𝑑 + 𝜂𝛼 (10)

where we defined 𝑑 = (1 − 𝛼)/𝑘 . The stability of this linear system
is defined by the sign of −𝑑 , which is always negative and hence
the system has a stable fixed point. The stable fixed point for this
dynamical system is easily found to be

𝜇★𝑔 = 𝜇𝑑 + 𝛼

1 − 𝛼
𝑘 (11)

We plot the phase diagram of the dynamical system in Figure 4,
showing the fixed point in function of the parameter 𝛼 .

Figure 4: Phase portrait of our toy system. The fixed point of
𝜇𝑔 depends on hyperparameter 𝛼 . For 𝛼 → 1, the fixed point
approaches infinity. For 𝛼 → 0, the fixed point converges to
𝜇𝑑 . Arrows denote the direction of the gradient 𝜕𝜇𝑔

𝜕𝑡 .

From these simplified setting calculations, we can conclude that:
• For 𝛼 > 0, our generated data will move away from the real
data distribution and increasingly comply with the malicious
objective.

• Different values of 𝛼 will result in varying levels of deviation
from the real data. In the absence of ground truth to evaluate
the system, hyperparameter tuning and empirical testing are
necessary.

• When generated data deviates from real data, the discrimina-
tor will increasingly achieve a perfect performance even at
training completion. This is a major difference to standard
GAN training.

3 RESULTS
We evaluate the efficiency of The GANfather to generate and de-
tect attacks in two use-cases: money laundering (Section 3.1) and
recommendation system (Section 3.2).

3.1 Money Laundering
Setup.We use a real-world dataset of financial transactions, con-
taining approximately 200,000 transactions, between 100,000 unique
accounts, over 10 months1. Some of these accounts are labelled as
suspicious of money laundering. We build a real test set of 5000
accounts, 184 of which are label positive (suspicious). We imple-
ment The GANfather’s generator and discriminator following the
architectures presented in Section 2.2.

Results. We conduct a hyperparameter random search over
the learning rate ([10−4, 3 × 10−3]) and the weights 𝛼 (set to 1), 𝛽
([102, 105]) and 𝛾 ([103, 4 × 103]) mentioned in Equation 1).

In Figure 5, we compare the distribution of money flows from
such a generator compared to the real data distribution. We can
observe that the generated samples successfully move more money
through the accounts than real data (up to 350,000 dollars vs. up to
9,000 dollars respectively). Interestingly, the distribution of amounts
used is similar to real data, and the main difference is the number
of transactions used.
1Due to the confidential nature we cannot disclose the actual dataset.
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Figure 5: Comparing distributions of total money flow, amounts and counts between generated and real data.

Next, we test the detection performance of the trained discrimi-
nators on generated data. To detect potential bias in a discriminator
trained solely on samples of the corresponding generator, we first
build a mixed dataset, where synthetic malicious data is sampled
from various generators.We combine this synthetic dataset with real
data, and use it to evaluate the trained discriminators. Importantly,
no retraining on this mixed dataset is performed. We observe that
most discriminators can distinguish between real and generated
examples with 100% accuracy, especially those trained with higher
values of the 𝛽 hyperparameter (see Equation 1, and note that in
this experiment 𝛼 was fixed to a value of 1).

Then, we evaluate the detection performance on the real test set.
We train a model 𝐷𝑀 with the same architecture as the discrimina-
tor using the mixed dataset mentioned in the previous paragraph.
This training does not require real labels, since we use generated data
as positive examples (suspicious) and assume that all real examples
are negative (legitimate). After training, we evaluate three detection
scenarios: the set of rules mentioned in Section 2.2; the model 𝐷𝑀 ,
with the threshold tuned to match the alert rate of the rules2; a
combination of both (alert if either of them triggers). The results
are shown in Table 1. We see that, even though the model 𝐷𝑀 was
trained using only generated data as positive examples, it achieves
better detection performance than the rules. Furthermore, only 10
of the 128 alerts of the Rules+Model scenario were alerted by both
detection systems, and the true positives had little overlap as well
(5 out of 54). This means that, by including the rules’ feedback in
the loss of the generator, it learns to create synthetic examples that
are not captured by the rules but are similar to real examples of
suspicious activity. As such, a model trained with those synthetic
examples can be used to complement the rules, with the advantage
of being easy to tune to a desired alert rate.

Alert Rate % Recall % Precision %
Rules 1.4 13.6 36.2
Model 1.4 18.5 49.3
Rules + Model 2.6 29.3 42.2

Table 1: Detection of real labels.

2We assume that the rules are fixed, so we cannot tune the number of their alerts.

3.2 Recommender System
Setup.We use the MovieLens 1M dataset3, comprised of a matrix
of 6040 users and 3706 movies, with ratings ranging from 1 to 5
[13]. We implement the generator and discriminator and collabora-
tive filtering recommender system as described in Section 2.3. To
compute the predicted ratings, during training we take a weighted
average of ratings considering all users in the dataset. We consider
all users during training because the initially generated ratings
are random, and only providing feedback from the top-N closest
users limits the strategies that the generator can learn. In contrast,
we consider the top-400 closest neighbours to compute predicted
ratings at inference since we observed empirically that this value
produces the lowest recommendation loss.

In this scenario, we do not use an existing detection component,
corresponding to 𝛾 = 0 in Equation 1. We train our networks
with 300 synthetic attackers but evaluate the generator’s ability to
influence the recommender system with injection attacks of various
sizes. We also define four baseline attacks: (1) a rating of 5 for the
target movie and 0 otherwise, (2) a rating of 5 for the target movie
and ∼90 random ratings for randomly chosen movies, (3) a rating
of 5 for the target movie and ∼90 random ratings for the top 10%
highest rated movies, (4) a rating of 5 for the target movie and ∼90
random ratings for the top 10% most rated movies.

Results.We choose 𝛽 = 1−𝛼 in Equation 1, with 0 ≤ 𝛼 ≤ 1 and
perform a hyperparameter search over 𝛼 . We observe that increas-
ing 𝛼 leads to generators whose attacks increasingly recommend
the target movie, at the cost of moving further away from the rating
distributions of real profiles.

In Table 2, we show how many real users have the target movie
in their top-10 recommendations, depending on the number of gen-
erated users that we inject and how they were generated (through
The GANfather or the described baselines). We observe that even
with a very limited proportion of generated users (30 among 6040
real users, 0.5%), they are able to greatly influence many real users
( 3.7%). In contrast, the baselines have very small impact on the
recommendations of real users. Lastly, as expected, increasing the
number of injected users increases the target movie’s recommenda-
tion frequency to real users.

3https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset



The GANfather: Controllable generation of malicious activity to improve defence systems arXiv, July 2023,

Generation strategy 30 users 60 users 120 users
The GANfather 225 290 428
Baseline 1 0 0 0
Baseline 2 0 0 0
Baseline 3 1 3 7
Baseline 4 0 0 0

Table 2: Number of real users with the target movie in
their top-10 recommendations, after injecting 30, 60, or 120
generated users.

Finally, we analyse the detection of synthetic attacks. As in the
AML scenario we build a test set containing real and synthetic data,
where the synthetic data contains a mixture of samples from various
trained generators to identify the possible bias of a discriminator
to attacks by the corresponding generator. We then quantify the
AUC of the trained discriminators. We observe that most discrimi-
nators trained in a GAN setting (taking turns with a generator to
update their weights) achieve around 0.75 AUC. Unlike the AML
scenario, this suggests that the discriminators are tuned to detect
synthetic data from their respective generators, but less so from
other generators. If instead we build amixed training set combining
real samples with synthetic data from various generators and use
it to retrain a discriminator, it achieves near-perfect classification
(above 0.99 AUC).

4 RELATEDWORK
Controllable data generation.Wang et al. [31] review control-
lable data generation with deep learning. Among the presented
works, we highlight [8]. It leverages a GAN trained with reinforce-
ment learning to generate small molecular graphs with desired
properties. Their work is similar to ours in that we both (1) extend
a GAN with an extra objective and (2) use similar data representa-
tions, namely sparse tensors. However, whereas [8] uses a labelled
dataset of molecules and their chemical properties, our method
does not rely on any labelled data.

Adversarial Attacks. A vast amount of literature exists on the
generation of adversarial attacks (see [36] for a recent review). Such
attacks have been studied in various domains and using various
setups (e.g. cybersecurity evasion using reinforcement learning [1],
intrusion detection evasion using GANs [30], sentence sentiment
misclassification using BERT [11]). In all cases, a requirement is
that labelled examples of malicious attacks exist.

Anti-Money Laundering. Typical anti-money laundering solu-
tions are rule-based [25, 33, 34]. However, rules suffer from high
false-positive rates, may fail to detect complex schemes, and are
costly to maintain. Machine learning-based solutions tackle these
problems [7]. Given the lack of labelled data, most solutions em-
ploy unsupervised methods like clustering [26, 32], and anomaly
detection [5, 10]. These assume that illicit behaviours are rare and
distinguishable, which may not hold whenever money launder-
ers mimic legitimate behaviour. Various supervised methods have
been explored [14, 21, 22, 24, 29], but most of these works use syn-
thetic positive examples or incompletely labelled datasets. To avoid
this, Lorenz et al. [19] propose efficient label collection with active
learning. Deng et al. [9] and [6] explore data augmentation using

conditional GANs. Lastly, Li et al. [17] and Sun et al. [27] propose
a metric to detect dense money flows in large transaction graphs,
resulting in an anomaly score. Their method does not involve train-
ing of a classifier, and instead relies on generating many subsets of
nodes and iteratively calculating the anomaly score.

Recommender systems (RS) injection attacks.Most injec-
tion attacks on RS are hand-crafted according to simple heuristics.
Examples include random and average attacks [15], bandwagon
attacks [3] and segmented attacks [4]. However, these strategies
are less effective and easily detectable as most generated rating
profiles differ significantly from real data and correlate with each
other. Tang et al. [28] address the optimisation problem of finding
the generated profiles that maximise their goals directly through
gradient descent and a surrogate RS. Some studies apply GANs
to RS to generate attacks and defend the system. Wu et al. [35]
combines a graph neural network (GNN) with a GAN to generate
their attack. The former selects which items to rate, and the latter
decides the ratings. Zhang et al. [37] and Lin et al. [18] propose a
similar setup to ours in which they train a GAN to generate data
and add a loss function to guide the generation of rating profiles.
The main differences to our work are the usage of template rating
profiles to achieve the desired sparsity, the chosen architecture and
loss functions. In our work, sparsity is learned by the generator
through the categorical sampling branch (see Section 2). Moreover,
our method allows the generation of coordinated group attacks by
generating multiple attackers from a single noise vector.

5 CONCLUSION
In this work, we propose The GANfather to generate data of a class
for which no labelled examples are available (malicious activity),
while simultaneously training a detection network to classify this
class correctly.

We performed experiments in two domains. In the anti-money
laundering setting, the generated attacks are able to move up to
350,000 dollars using just five internal accounts, andwithout trigger-
ing an existing detection system. Thenwe show that for a real-world
labelled dataset, a model trained with these generated attacks can
be used to complement the rules, alerting previously undetected
suspicious activity. In the recommender system setting, we gener-
ate attacks that are substantially more successful at recommending
the target item than naive baselines. Then, we train a near-perfect
classifier to detect the synthetic malicious activity. While a real
test in a deployment scenario is lacking and should be addressed in
future work, we believe our current experiments provide a proof of
value of the method. In these experiments, our method generates a
variety of successful attacks, and we therefore believe it can be a
valuable method to improve the robustness of defence systems.

The limitations of our method lie in its assumptions. Firstly, we
assume that the unlabelled data is dominated by legitimate events,
and our method would not work in settings where this is not the
case. Secondly, we assume that we can quantify the malicious ob-
jective in terms of available features. In this case, one could argue
we can just use the malicious objective as a detection score. How-
ever, the detection system often has a (much) smaller view than the
malicious objective. For example, anti-money laundering systems
only view incoming and outgoing transactions for one financial
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institution. However, our objective can be adapted to generate ma-
licious activity mimicking flows across multiple synthetic financial
institutions, while keeping the view of the discriminator on an indi-
vidual institution level. Thirdly, while our method does not prevent
generated data to be very different from real data, we argue that the
strength of our method is in generating more subtle attacks that
are not immediately distinguishable from real data. Finally, while
we chose the malicious objectives to be as simple as possible in our
proof of concept experiments, there is no restriction to make them
more complex as long as they are differentiable.

To conclude, our method fits the adversarial game between crimi-
nals and security systems by simulating various meaningful attacks.
If existing defences are in place, our method may learn to avoid
them and, eventually, train a complementary model. Incorporating
machine learning models into the detection system typically en-
hances the detection of illicit activity by triggering more precise
alerts, while being easier to fine-tune and maintain. We believe our
work contributes to increase the robustness of detection methods
of illicit activity.
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