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ABSTRACT
This paper describes a fully complete autonomous hybrid
robot system, named YAM (Yet Another Mouse), that is
able to navigate through an unknown maze environment.
YAM effectively tackles the problem of how to represent
the environment using its sensor data to produce probability
maps of the walls and beacons. Besides that, it is capable of
computing long-term path plans using an adapted breadth-
first search algorithm. It also shows how it is possible to
model the actual motors behavior as a reactive task, using
artificially created virtual short-term goals. We give real
contest results, showing how YAM behaved on the “Ciber-
Rato” robotics competition.

KEY WORDS
Intelligent Agents, Knowledge Representation, Path Plan-
ning, Robot Competitions.

1 Introduction

Since 1995 the University of Aveiro (from Portugal) has
been hosting a competition among small autonomous mo-
bile robots [1]. The competition is named “Micro-Rato”
(Micro-Mouse) and it is organized by the Electronics,
Telecommunications and Informatics Department. Al-
though the rules have changed throughout the years, the
basic problems tackled by the competition are localization
and navigation. The robot has to move in an enclosed area
(a maze) and needs to move itself to a goal area (a beacon).

In 2001, a software simulation of the “Micro-Rato”
contest was initiated. The general idea was to provide very
similar problems and rules but allow the participants to fo-
cus on more high level aspects, giving all of them an ho-
mogeneous virtual robot. This contest was named “Ciber-
Rato” (Cyber-Mouse) [2]. As in its “brother” hardware ver-
sion, “Ciber-Rato” (CR) has changed a bit along the years,
but the basic set of sensors and actuators have remained the
same.

We created a complete specification of a robot system,
named YAM, capable of solving unknown maze environ-
ments, having the secondary goal of creating a successful
entry to CR contest. The system is capable of transforming
sensor data into a suitable symbolic probabilistic represen-

tation of the maze. It is also able to calculate near optimal
paths between its goal points and it makes use of an hybrid
architecture to reactively decide which real motor powers
it should use.

We will start by making a brief description of the CR
simulation system. Then, we will describe all components
of YAM’s system and architecture, seeing how it provided
technical solutions and practical answers to the challenges
presented. We will continue showing official results ob-
tained in real contests and finalize making our conclusions
and talking about some possible future work.

2 The “Ciber-Rato” Simulation

CR uses a simulated networked software simulation. The
simulation has three basic components: the simulator (re-
sponsible for the actual implementation of the robot bod-
ies, the maze and all sensors and actuators), the visualiza-
tion system (which graphically depicts what is happening)
and the robots themselves (which are made by the com-
petitors). A single maze run can have at most three differ-
ent robots. All robots (as well as the included visualization
system) communicate with the simulator using predefined
XML messages through UDP sockets. The simulation is
not continuous, but discrete, in the sense that it is cycle
driven. Each cycle the simulator gives to robots their sen-
sor measures, waits for the actuator values, calculates all
new positions and continues to another cycle. The cycle
time varied during the years, and in 2006 it was between
40 and 80 ms. From now on, every time we specify some
simulation parameter, we refer to the current competition
values (2006 edition [3]), even if in the past that value was
different.

A robot is simulated as having a circular form with
its diameter representing a single basic unit on our virtual
world. They have available a set of four obstacle sensors
that measure the distance between the robot body and all
obstacles, including walls and other robots. Each obstacle
sensor covers a 60 degrees aperture, has a0.1 resolution
and it gives measures with some addictive gaussian noise,
following a0.25 standard deviation. One beacon sensor for
each beacon is also available, with a120 degrees aperture,
a unitary resolution and as before this sensor accumulates a



gaussian noise with standard deviation5. There exist big-
ger walls that hide the beacons to these sensors. The robot
also has a compass sensor that measures the orientation of
the robot with the same noise and resolution of the bea-
con sensor. Finally, all agents have a collision detector (a
bumper, to tell if the robot has collided with a wall or an-
other robot) and an exit detector (that tells if the robot is
inside a goal area). To actuate, two side motors are avail-
able, which we can activate in a[−0.15, 0.15] power range,
with a resolution of0.001. As before, motors have gaussian
noise, in this case with a3% standard deviation. Besides
that, robots have different LEDs available that are used to
indicate other events such as the end of its movements.

The maximum size of a maze is14 × 26. The goal of
a single CR run is to visit a set of different beacon areas,
signing the arrivals with a LED, and then go back to the
starting position as fast as possible, signing another LED.
To achieve this, the robots have a limited time (between
1800 and3600 cycles). Penalizations occur for each colli-
sion we provoke, and bonus points are given for each bea-
con successfully visited. The time the robot takes is only
measured in the trip between the last beacon visited (sig-
naled by another specific LED) and the start point. The
simulator calculates the best time that could be achieved in
this trip and penalizes the robot if it spends more time than
the best expected time.

Figure 1. An example maze seen on the default contest
visualization system.

An example maze can be seen on Fig. 1, showing
how the default CR visualization system represents it. For a
more detailed description of each year’s competition rules,
check [4].

3 YAM Description

In this section, we describe the architecture of YAM show-
ing how it reasons and acts.

3.1 Architecture

YAM aims to produce good decisions within each execu-
tion cycle. We used a simple single threaded architecture
as it proved capable to produce decisions quite fast, not
spending more than the available time for each cycle. This
architecture is described on Fig. 2.

Figure 2. YAM Architecture.

YAM is an agent that uses an hybrid architecture [5],
given that it mixes deliberative components with reactive
ones. YAM stores a symbolic description of the world de-
scribed in section 3.2 and reasons about it for finding the
best path to a determined goal point as described in sec-
tion 3.3. In this way, we can say that YAM is deliberative.
However, when it gets to determine the actual powers it
should give to the motors, YAM uses a “virtual beacon” to
decide its next motor powers in a fully reactive way, with-
out any knowledge of how the virtual beacon was found, as
described in section 3.4.

It would be very difficult to debug YAM only with
textual information, and therefore since the beginning a
graphical debugger (“Yam-Viewer”) was created. This tool
proved to be very useful and gave a way to verify the the-
oretical ideas. The debugger has several view modes and
can be turned on or off on demand.

3.2 Inner World Representation

One of the most challenging aspects of this contest is how
to internally represent a map of the maze. This is still a
research problem in robot mapping [6]. One key aspect
that almost all map representations have in common is the
fact they are probabilistic [6]. YAM also follows this rule
of thumb as we will see. Another important aspect is that
the environment of the maze is mainly static (the walls).
Given this, in order to efficiently use all the data that the
sensors receive, YAM constructs an internal representation
of its environment, divided in three components:

• Present Robot State (position and orientation)

• Wall Probability Map (where are walls located)

• Beacon Probability Map (where are beacons located)



Initially, YAM is considered to be in position(0, 0),
which means that we use the start point as the reference
point of our coordinate system. We now describe in more
detail each of the three components.

3.2.1 Present Robot State

In each cycle YAM uses its compass sensor to determine
its orientation. This value, although it has some noise, is
always a good approximation of the real value. In contrast,
we could infer the orientation based on the powers given
to the motors, but that would accumulate all noise as time
goes by, and in a practical experience it proved to be better
to use the available compass.

Knowing our orientation, YAM calculates its new po-
sition in the map, given as a coordinate(X, Y ), using the
rule described in equations 1, 2 and 3. In relation to cycle
n, X[n] andY[n] represent the agent position coordinates,
L[n] andR[n] represent the powers given respectively to
the left and right motors andθ[n] represents the robot ori-
entation.

Linear[n] = (L[n] + R[n])/2.0 (1)

X[n + 1] = X[n] + cos(θ[n]) × Linear[n] (2)

Y[n + 1] = Y[n] − sin(θ[n]) × Linear[n] (3)

Although some error is always introduced by the mo-
tor and compass noise, this proved to show no real signi-
ficative deviation to the real robot position and orientation.
This is very important, since eventual odometry errors on
this phase could be a cause of big problems.

3.2.2 Wall Probability Map

The maze has a14 × 26 maximum dimension. To facili-
tate its representation, the maze was discretized and trans-
formed into a grid of140 × 260, meaning that we used
a granularity of0.1 units. Since the origin of our refer-
ence system is the start point, and the robot can start in any
position of the map, we have to reserve memory to four
times the maze maximum dimension, in order to analyze
the robot’s movement in any direction. This results in a
structure of280 × 520 being kept in memory.

Each point of the grid keeps a floating point value,
representing the probability of a point having a wall. The
probability is saved in a scaled way, in the sense that it can
be positive and negative. Initially, each point has probabil-
ity zero. Then, on each cycle, several updates are made.
First, the points occupied by the agent body are marked
with minimum probability, since if the robot is on that po-
sition, no obstacles exist there. After that, based on the
values received by the obstacle sensors, the wall map is
changed, as depicted on Fig. 3.

If a sensor indicates a valueV , it means that an
obstacle (an other mouse or a wall) exists approximately
at the distance1/V , somewhere in the sensor range.

Figure 3. YAM’s use of obstacle sensors (from Yam-
Viewer).

This valueV has a maximum noise, given by the con-
stant noiseObstacle. All areas closer than1/(V +
noiseObstacle) (the worst case) are marked with mini-
mum probability (areaA in Fig. 3). Then, until distance
1/V (areaB in Fig. 3), the probability of having wall in
this area is reduced by a value proportional to the distance.
Finally, from 1/V to 1/V + minWallWidth (areaC in
Fig. 3, whereminWallWidth represents the minimum
wall width, available at the beginning of the simulation),
the map is updated, with the probability of having wall in-
creased in proportion to the distance. This behavior can
be summarized mathematically with the equations 4 to 10,
whered means distance, andpxy indicates the probability
of a single point having a wall.dFar is a custom defined
constant, andinc(d) is a value proportional to the point
distance, indicating how much should we change the wall
probability.

dA = 1/(V + noiseObstacle) (4)

dB = 1/V (5)

dC = 1/V + minWallWidth (6)

inc(d) = round(dFar/d × 4) (7)

dFar ≤ dxy ≤ dA → pxy = minProb (8)

dA < dxy ≤ dB → pxy = pxy − 4 × inc(dxy)(9)

dB < dxy ≤ dC → pxy = pxy + inc(dxy) (10)

YAM ignores sensor values when1/V > dFar, be-
cause when V get smaller, the noise is so predominant that
the values become unusable. In the current YAM imple-
mentation, an empirically verified value of25 grid units is
used fordFar. Also, note that a point takes more time to
become marked as a wall (as enforced by the factor four
in equation 9) to represent the fact that the sensors don’t
differentiate between an obstacle occupying a small part of
the range and another one occupying all the range. In this
way, it is not easy for a wall to “appear” in the map and
more quickly false walls are unmarked. Finally, the for-



mula forinc(d) (equation 7) was obtained using empirical
tests with different models. It is important to note that it
grows bigger as the distance gets smaller, that is, when we
have more certainty, as seen on Fig. 4.
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Figure 4. Value ofinc(d) in relation to point distanced.

Figure 5 illustrates how YAM successfully constructs
an internal representation of a real map.

Figure 5. Comparison between a YAM wall probability
map (from Yam-Viewer) and the real map used.

3.2.3 Beacon Probability Map

In a similar way to the wall probability map, each beacon (a
goal area) has a probability grid map. Each point is marked
with the probability of the respective beacon being there.
Let rel(P ) be the relative angle of a pointP to the value
measured by beacon sensor (which indicates that the bea-
con should approximately be at that angle). The probability
of the pointP , represented byprobBeaconP is updated as
described in equation 11. In this way, the smaller the value
of rel(P ), the bigger the probability of it being the real
beacon.

probBeaconP = probBeaconP + 50 − rel(P ) (11)

The best estimate of each beacon is the point with
higher probability. In order to maintain the values of prob-
ability manageable, all probabilities are decreased by a
constant value each time the maximum probability point
reaches a defined threshold. With this apparently simple

Figure 6. Comparison between a YAM beacon probability
map (from Yam-Viewer) and the real map used.

probability map, very accurate beacon maps can be created,
as the one of Fig. 6.

Sometimes big walls may be completely hiding all
beacons, and in this case no single prediction of the bea-
cons positions can be made. This would happen no mat-
ter what method was used. Our method always provides a
good estimate, based on all the information the beacon sen-
sors have given. During different editions, the beacon sen-
sor has suffered some changes (big walls did not exist, the
sensor had a bigger range and now the sensor has some la-
tency), but the initial implementation has always provided
good results and has not been modified.

3.2.4 Precalculation

Since the tasks described in the last two sections can be
very time consuming, virtual “masks” containing all the
possible updates for different angles (for walls and bea-
cons) are precalculated in the beginning. When moving
on a map, YAM simply puts that masks above its actual
position and updates its values in consonance.

3.3 Path Planning

The goal of the contest is to reach all beacons, and then
choose one of those beacons to initiate a return trip to the
starting point, as fast as possible. It should be noted that
no globally perfect strategies can be followed and real be-
haviors are always somehow dependent on the secret maps
chosen. YAM aims to be globally good and present a co-
herent performance in all maps.

If there are no estimates for the positions of the unvis-
ited beacons, YAM starts to traverse the maze as a whole. It
looks for unexplored map areas on the edges and gradually
goes to inner areas (as the map is being explored), follow-
ing a somehow spiral path. Using this strategy, and if time
allows, it is guaranteed that YAM traverses the entire maze.
Edge areas have priority as they normally provide a better
range of vision for discovering existing beacons.

Once YAM estimates the position of one or more bea-
cons, it chooses the closest unvisited beacon and marks it
has its goal. After visiting all beacons, YAM chooses the
one closer to the starting point as the one he will choose
to activate the return LED and then make the return trip.
Remember that after this LED is activated, the clock ticks
and the robot is penalized for any extra time it consumes



in relation to the best possible path. Before using the LED,
YAM also sees if it still has time to search unexplored ar-
eas to verify if they can provide quicker paths than the ones
already known. Once it thinks it is no longer safe to search
for unknown areas (the time is running out) or simply it
has already all the information it needs, YAM chooses the
starting point as its goal.

No matter what is calculated, YAM always chooses a
goal point as its objective, being it an actual real beacon,
the starting point, or a virtual beacon (when it traverses the
maze in a spiral way). Then it calculates a path from the
current robot position to the goal point. Several methods
for this exist [7], but almost all of them, like the A* algo-
rithm, present the restriction of not always finding an opti-
mal path. Instead, they calculate an approximation, using
some heuristics to trade accuracy for time.

In YAM’s case, the cycle time proved to be more
than sufficient to use a complete and adapted breadth-first
search. The search starts by putting the goal point on a list.
Then, the first point of this list is taken until it corresponds
to a point belonging to the robot body. Each time a point
is taken from the list, its neighbors are added to the end
of the list. And it is the definition of neighbors that YAM
uses that makes it able to calculate the path in an affordable
way. In fact, the neighbors to a single point correspond to
a jump of sizeN , first in each vertical direction, and then
on each diagonal direction. Each point has therefore eight
neighbors. AugmentingN , we shrink the actual map being
scanned. A value ofN too big would cause the search to
“jump” walls, giving a wrong path, since it would imply
that the robot could move through the walls. The current
implementation of YAM usesN = 3.

YAM considers all points above a defined threshold
as being a wall and all others as not having wall. It also
calculates if the center of the robot body could be situated
on that point, guaranteeing that no body points would touch
walls. Finally, it should be noted that when returning to the
starting point, YAM only uses already explored points of
the map, avoiding unexpected surprises that could cause
penalizations. Remember that the time it takes to return
to the starting point is very important in the final score.
Figure 7 illustrates a path to a goal point.

Figure 7. Comparison between a YAM generated best path
and virtual beacon (from Yam-Viewer) and the real map
used.

3.4 Motor Powers

With the best path to the goal point already planned, YAM
still has to decide what specific powers it should give to
its motors to traverse that path. This is done by creating a
“virtual beacon” in the more distant point of the path that
YAM can still see with no obstacles in the middle. This
is done using Bresenham line algorithm [8] to draw virtual
lines to every path point and checking if they touch any
obstacle. Figure 7 exemplifies a virtual beacon.

Having the virtual beacon for the current cycle, the
robot decides how to act with a completely reactive algo-
rithm, manually tuned to make the robot avoid obstacles
and move parallel to walls (to avoid bouncing its body).
Figure 8 briefly describes the algorithm used. YAM has
obstacle sensors on its body radius, with two sensors on
the center and two side sensors which are located on a 60
degrees angle distance to the center.lightDir is the rela-
tive angle to the virtual beacon andtooClose, dirT ooFar,
dirTurn andsmallClose are manually tuned constants.
When the robot is close to an obstacle or to the final start-
ing point, its speed is also decreased to achieve better pre-
cision.

IF (anySensor < tooClose OR Collision)
ROTATE_BEST_SIDE

ELSE IF (abs(lightDir) > dirTooFar)
ROTATE_RESPECTIVE_SIDE

ELSE IF (abs(lightdir) > dirTurn AND
respectiveSensor > smallClose)

MOVEANDROTATE_RESPECTIVE_SIDE
ELSE

FULL_SPEED_AHEAD

Figure 8. YAM’s reactive pseudo-algorithm for following
a virtual beacon.

4 Competition Results

Since 2002 YAM participates with its basic architecture
and algorithms intact. As said before, several rule changes
were made, but YAM behavior was created having some
of that possible changes already in consideration. Table 1
shows how did YAM ranked on all the contest editions it
participated in. All competition editions were made hav-
ing two start rounds that selected the nine best robots for
the third round, which then selected the three best robots to
participate in a final round. This last round decides the con-
test for itself, not accounting the robot’s score on previous
rounds.

As we can see, YAM quickly became the champion
and obtained the first place in two consecutive years. In
2004, for the first time, YAM did not reach the final. On the
first two rounds of that year, YAM obtained by far the best



Edition 2002 2003 2004 2005 2006

YAM Rank 1st 1st 9th 2nd 4th
Nr Participants 13 14 13 10 7

Table 1. YAM global rank on Ciber-Rato competitions

overall results. On round three something really strange
happened and our agent simply started to rotate on the same
place. After the end of the competition, the organization
did some log checking and saw that some network problem
occurred and informally told me that. No complaint was
formally made, respecting the competition spirit, but it was
still to be proved that YAM was not the best robot present
in the competition. In 2005, for the first time, our robot be-
haved normally and another robot (“El Raton”) had a better
behavior. YAM reached the final, but the winner was the
only robot which explored the fact that a returning led was
introduced, continuing to explore the map for better paths
while there was time (as now YAM does), gaining a deci-
sive advantage. This was a risky move, but one that has
proved to be right. Finally, in 2006, YAM did not reach the
final, having the same points has the 3rd place robot, but
losing to it in a special tie-break rule, which was used for
the first time, to decide the access to the final.

More detailed results and logs of the contests can be
obtained in [4].

5 Conclusions and Future Work

YAM is a fully functional autonomous robot, using an hy-
brid agent architecture. It can localize itself and navigate
trough a maze-like environment. YAM successfully maps
sensor measures to a probabilistic map representation of the
maze. It calculates near optimal paths to achieve long-term
plans and has a reactive behavior to follow those paths, us-
ing “virtual beacons”. Also there was no single maze used
on a competition that YAM could not solve in time.

Although the competition rules have changed a lot
during the years, the initial design of the agent is almost
intact, which proves YAM uses a robust and flexible archi-
tecture. More than that, YAM was initially the undisputed
competition champion and still remains very competitive.
In our opinion, YAM can therefore be called a winning so-
lution for maze-like virtual robot competitions and the ex-
perience acquired on its development and implementation
can be useful to others.

One main limitation of YAM architecture is the im-
possibility to act on a more continuous world, since it has a
completely cycle driven control flow. We plan to adapt and
transform YAM to use a multi-threaded architecture, capa-
ble of reasoning almost in real-time. Other future planned
work include a better and scientific analysis of the prob-
ability formulas for the maps, an odometry corrector for
spatial misalignment provoked by long runs and a study of
different path planning algorithms, including iterative ones,

that do not need to re-calculate the path in each cycle. One
other area that we wish to explore is cooperation with the
hardware version of the contest, helping in the high-level
part of real robot competitors.

Finally, we plan to participate on upcoming CR com-
petitions, trying to reacquire the first place and always
thriving for a better competition and agent intelligence. Fu-
ture rule modifications will certainly be a challenge to the
so far adequate architecture, since the organization always
try to make things more interesting and create new chal-
lenges to the competitors.
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