
A Parallel Algorithm for Counting Subgraphs in
Complex Networks

Pedro Ribeiro, Fernando Silva, and Lúıs Lopes
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Abstract. Many natural and artificial structures can be represented as
complex networks. Computing the frequency of all subgraphs of a certain
size can give a very comprehensive structural characterization of these
networks. This is known as the subgraph census problem, and it is also
important as an intermediate step in the computation of other features
of the network, such as network motifs. The subgraph census problem is
computationally hard and most associated algorithms for it are sequen-
tial. Here we present several increasingly efficient parallel strategies for,
culminating in a scalable and adaptive parallel algorithm. We applied
our strategies to a representative set of biological networks and achieved
almost linear speedups up to 128 processors, paving the way for making
it possible to compute the census for bigger networks and larger subgraph
sizes.

Keywords: Complex Networks, Graph Mining, Parallel Algorithms, Sub-
graph Census

1 Introduction

A broad range of biological structures can be represented as complex networks.
The study of such networks is relatively recent and has received increased atten-
tion by the scientific community [2]. A large number of concepts and techniques
appeared to analyze and understand complex networks, leading to an impressive
panoply of different measurements used to mine interesting data from them [6].

One important measure is the frequency in which subgraphs appear in a net-
work. Sometimes we are just interested in determining frequent patterns [13],
while in others we need to determine a full count of all different classes of iso-
morphic subgraphs [4]. This last option is also known as a subgraph census and
can provide a very accurate structural characterization of a network. This is typ-
ically applied for subgraphs of a specific size and it is normally limited to small
sizes, mostly for efficiency reasons. This has been done not only on biological
networks [16], but also on other domains, such as social networks analysis, where
the triad census is very common [25].

Subgraph census also plays a major role as an intermediate step in the cal-
culation of other important measures, such as network motifs [17], which are
basically subgraphs that are statistically over-represented in the network (and
conjectured to have some functional significance). Network motifs have applica-
tions on several biological domains, like protein-protein interaction [1] and brain
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networks [22], or in other domains, like electronic circuits [10]. The practical
available algorithms and tools for network motifs all use a census to discover
the frequency in the original network and then calculate it again for a series of
similar randomized networks [17,27]. This is a computationally hard problem
that is closely related to the problem of graph isomorphism [15]. Some tech-
niques were developed to speedup the calculations, like sampling [12], but they
normally trade accuracy for speed.

In all these applications, having a more efficient way to calculate the census
is highly desirable. As we increase the size of the subgraphs, their frequency
increases exponentially and it becomes unfeasible to count all of them using
traditional approaches. Moreover, to date, almost all algorithms for complete
subgraph census are sequential. Some exceptions exist, particularly in the area
of network motifs, but they are scarce and still limited (c.f. section 2.3). One
reason is that present network motifs methods still resort to the generation of
hundreds of random networks to measure significance. This puts the obvious op-
portunity for parallelism not in the census itself but in the generation of random
networks and their respective census. However, analytical methods to estimate
the significance are now appearing [14,19] and once they are fully developed the
burden of the calculation will then reside on the census of the original network.

Considering the relevance of calculating exhaustive census and the compu-
tational complexity involved, resorting to parallel algorithms to speedup the
calculation is, in our view, an approach that will impact in many application
areas, particularly in the study of biological networks. The use of parallelism
can not only speed up the calculation of census, but also allow the calculation
of the census for subgraph sizes that were until now unreachable.

This paper focuses on strategies for solving the subgraph census problem
in parallel. With this objective in mind we start with an efficient sequential
algorithm, ESU [27], and progressively modify it to accommodate scalable par-
allel execution and data-structures. This process led us to the formulation of a
novel adaptive parallel algorithm for subgraph census that features a work shar-
ing scheme that dynamically adjusts to the available search-space. The results
obtained show that the algorithm is efficient and scalable.

The remainder of this paper is organized as follows. Section 2 establishes
a network terminology, formalizes the problem we want to tackle and gives an
overview of related work. Section 3 details all the followed parallel strategies
and the algorithm we developed. Section 4 discusses the results obtained when
applied to a set of representative biological networks. Section 5 concludes the
paper, commenting on the obtained results and suggesting possible future work.

2 Preliminaries

2.1 Network terminology

In order to have a well defined and coherent network terminology throughout
the paper, we first review the main concepts and introduce some notation that
will be used on the following sections.
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A network can be modeled as a graph G composed of the set V (G) of vertices
or nodes and the set E(G) of edges or connections. The size of a graph is the
number of vertices and is written as |V (G)|. A k-graph is graph of size k. The
neighborhood of a vertex u ∈ V (G), denoted as N(u), is composed by the set
of vertices v ∈ V (G) that are adjacent to u (u is not included). All vertices are
assigned consecutive integer numbers starting from 0, and the comparison v < u
means that the index of v is lower than that of u.

A subgraph Gk of a graph G is a graph of size k in which V (Gk)⊆V (G) and
E(Gk)⊆E(G). This subgraph is said to be induced if for any pair of vertices u
and v of V (Gk), (u, v) is an edge of Gk if and only if (u, v) is an edge of G. The
neighborhood of a subgraph Gk, denoted by N(Gk) is the union of N(u) for all
u ∈ V (Gk). The exclusive neighborhood of a vertex u relative to a subgraph Gk

is defined as Nexcl(u,Gk) = {v ∈ N(u) : v /∈ Gk ∪N(Gk)}.
A mapping of a graph is a bijection where each vertex is assigned a value.

Two graphs G and H are said to be isomorphic if there is a one-to-one mapping
between the vertices of both graphs where two vertices of G share an edge if and
only if their corresponding vertices in H also share an edge.

2.2 Subgraph census

We give a rigorous definition for the subgraph census problem:

Definition 1 (k-subgraph Census). A k-subgraph census of a graph G is
determined by the exact count of all occurrences of isomorphic induced subgraph
classes of size k in G, where k ≤ |V (G)|.

Note that this definition is very broad and can be applied to all kinds of
networks, whether they are directed or undirected, colored or not and weighted
or unweighted. Also note that here, unlike in [12], we are concerned with an
exact result and not just an approximation.

A crucial concept that we have not yet completely defined is how to distin-
guish two different occurrences of a subgraph. Given that we are only interested
in finding induced subgraphs, we can allow an arbitrary overlap of vertices and
edges or have some constraints such as no edge or vertex sharing by two occur-
rences. The several possibilities that we can have for the frequency are considered
and discussed in [21]. Here we focus on the most widely used definition that we
formalize next:

Definition 2 (Different occurences of k-subgraphs). Two occurrences of
subgraphs of size k, in a graph G, are considered different if they have at least one
vertex or edge that they do not share. All other vertices and edges can overlap.

Note that this has a vital importance on the number of subgraphs we find
and consequently to the tractability of the problem.

2.3 Related work

There exists a vast amount of work on graph mining. Particularly, the field of
frequent subgraph mining has been very prolific, producing sequential algorithms
like Gaston [18]. Although related, these algorithms differ substantially in con-
cept from our approach since their goal is to find the most frequent subgraphs
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that appear in a set of graphs, while we try to find the frequency of all subgraphs
on a single graph.

Regarding subgraph census itself, most of the work on social networks is
based on small sized subgraphs - mostly triads [25,8] - and therefore does not
focus on efficiency, but rather on the interpretation of the results. However, for
network motifs, efficiency does play an important role and much importance is
given to the algorithm for generating the census. Increasing the speed may lead
to detection of bigger patterns and even an increase in size of just one can yield
scientifically important results because a new previously unseen pattern with
functional significance may be discovered.

The three best known production tools for finding motifs are all based on
serial algorithms. Mfinder [17] was the first and it is based on a recursive back-
tracking algorithm that generates all k-subgraphs. It may generate the same
subgraph several times because it initiates a search procedure in each of its
nodes. Fanmod [27] uses an improved algorithm called ESU, that only allows
searches being initiated on the nodes with an index higher than the root node
and therefore each subgraph is found only once. MAVisto [21] does not improve
efficiency except when it uses a different concept for frequency.

Work on parallel algorithms for subgraph census is scarce. [23] propose an
algorithm for finding frequent subgraphs but do not count all of them. [20]
focuses on network motifs and how to parallelize queries of individual subgraphs
and not on how to enumerate all of them.[24] takes the closest approach to our
work. Their algorithm relies on finding a neighborhood assignment for each node
that avoids overlap and redundancy on subgraph counts, as in [27], and tries to
statically balance the workload “a priori” based only on each node degree (no
details are given on how this is done and how it scales). Another distinctive
characteristic of their approach is that they do not do isomorphism tests during
the parallel computation, they wait until the end to check all the subgraphs
and compute the corresponding isomorphic classes. As we will see, our approach
differs significantly from this one as it contributes with dynamic and adaptive
strategies for load balancing, thus attaining higher efficiency.

3 Parallel Algorithms

3.1 Core sequential unit

Given that we are interested in having an exact count of all classes of isomorphic
subgraphs, we must enumerate all subgraphs. The ESU algorithm [27] is a key
component of the fastest network motif tool available and as far as we know
it is one of the most efficient algorithms for subgraph enumeration. Thus we
chose the ESU algorithm as our starting point and modified its recursive part
to create a procedure that given a graph G, a size k, a vertex minimum index
min, a partially constructed subgraph Gsubgraph, and a list of possible extension
nodes Vext, enumerates all k-subgraphs that contain Gsubgraph and no nodes with
index lower than min. This procedure is depicted in algorithm 1. It recursively
extends the subgraph Gsubgraph by first adding the new node u. If the new
subgraph has size k, then it determines a unique identification and saves it in a
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dictionary. Otherwise, it expands the set of possible extension nodes, Vext, with
the nodes that are in the exclusive neighborhood of u relative to the subgraph
Gsubgraph and also satisfy the property of being numerically bigger then min. If
the extension set of nodes is not null then a new node is removed from extended
Vext and recursion is made.

Algorithm 1 Extending a partially enumerated subgraph

1: procedure Extend(G, k,min, u,Gsubgraph, Vext)
2: G′

subgraph ← Gsubgraph ∪ {u}
3: if |V (G′

subgraph)| = k then
4: str ← CanonicalString(G′

subgraph)
5: Dictionary.AddAndIncrement(str)
6: else
7: V ′

ext←Vext∪{v∈Nexcl(u,Gsubgraph) : v > min}
8: while V ′

ext 6= ∅ do
9: Remove an arbitrarily chosen v ∈ V ′

ext

10: Extend(G, k,min, v,G′
subgraph, V

′
ext)

Calling Extend(G,k,u,u,{},{}) for every u ∈ V (G) is exactly the equiva-
lent to the original ESU algorithm. Therefore, as long as we call it on all nodes,
we can be certain that it will produce complete results, as shown in [27]. More-
over, Extend() guarantees that each existent subgraph will only be found once
on the call of its lowest index, as exemplified in figure 1. This avoids redundant
calculations as in [24] and is crucial to achieve an efficient census.

Fig. 1: Example of how Extend() calls generate all subgraphs.

Before going into the details of the parallelism two additional notes are
needed. First, isomorphism (line 4 of the procedure) is taken care of by using
the canonical string representation of the graphs, defined as the concatenation
of the elements of the adjacency matrix of the canonical labeling. In our case
we use McKay’s nauty algorithm [15], a widely known fast and practical imple-
mentation of isomorphism detection. Second, in order to store the results found
within one call to our procedure (line 5), we use a string dictionary structure.
This can be implemented in many ways, for example using an hash table or a
balanced red-black tree. We implement the later (using STL map from C++).

3.2 Initial parallel approaches

Each of the aforementioned calls to Extend(G,k,u,u,{},{}) is completely in-
dependent from each other and we call it a primary work unit. A possible way
of parallelizing subgraph census is then to distribute these work units among all
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CPUs. The problem is that these units have a computational cost with a huge
variance, as the inherent substructure and the number of subgraphs each one
enumerates are also quite different.

We experimented several strategies for the distribution in order to obtain
the desired load balance. The first one was to statically allocate the units to
workers before starting the census computation. In order to obtain good results
this would need accurate estimates of the time that each unit takes to compute.
We were unable to do that with the desired accuracy, since calculating this is
almost as difficult as enumerating the subgraphs themselves.

We then took the path of a more dynamic approach using a master-worker
architecture. The master maintains a list of unprocessed primary work units.
Workers ask the master for a unit, process it and repeat until there is nothing
more to compute. Each worker maintains its own dictionary of frequencies. When
all work units have been computed the master is responsible for collecting and
merging all results, summing up the frequencies found.

The position of the work units on the master’s list will determine the total
time needed and we tried several strategies. Initially we just added all work units
to the list in chronological order of the nodes. This proved to be a bad strategy
since it is the same as a random assignment, which is in principle the worst
possible. We then experimented giving the work units sorted to an estimated
cost, using LPTF (Largest Processing Time First) strategy. If the estimate was
perfect, it is known that we would achieve at least 3

4 of the optimum [9]. We only
had an approximation (based on the number of nodes achievable in k− 1 steps)
and therefore that boundary is not guaranteed. However, since our heuristic
function maintained a reasonable ordering of the nodes, the performance was
vastly improved.

We still had the problem that the call to a few primary work units (po-
tentially even just one) could consume almost all the necessary compute time.
This prevents good load balance strategies, given that each work units runs se-
quentially. This problems occurs very often in reality because typical complex
networks are scale free [3]. Whenever their hubs are the starting nodes of a work
unit, very large neighborhoods are induced and a huge amount of subgraphs is
generated. No matter what we do, there will always be a worker computing the
largest sequential work unit and therefore the total compute time needed cannot
be smaller than that. On some of our experiments with real biological networks,
this largest atomic unit could consume more than 25% of the total execution
time, which limits our scalability.

Considering that a work unit only calculates subgraphs containing nodes with
indices greater than the index of the initial node, we devised a novel strategy
in which we give higher index numbers to the potentially more time consuming
nodes (those with larger degrees). This reduces the number of subgraphs spawn-
ing from these nodes, thus reducing the granularity of the work units induced
by those nodes. To accomplish this strategy, we implemented a node relabeling

from now on we will refer to processors in computational nodes as CPUs or workers
to avoid confusion between them and graph nodes.
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algorithm in which the nodes are sorted increasingly by their degree. This im-
proved our results, but we could not reduce enough the granularity, and we need
a strategy that can divide the work units further.

3.3 Adaptive Parallel Enumeration

By inspecting the computation flow of a primary work unit, we can observe
that there are several recursive calls to Extend(), as exemplified in figure 2 (for
simplicity, we do not show G and k since these are fixed arguments).

Extend(1, 1, {}, {}); V ′
ext = {2, 3, 4}

Extend(1, 2, {1}, {3, 4}); V ′
ext = {3, 4, 5}

Extend(0, 3, {1, 2}, {4, 5}) → Found {1, 2, 3}
Extend(0, 4, {1, 2}, {5}) → Found {1, 2, 4}
Extend(0, 5, {1, 2}, {}) → Found {1, 2, 5}

Extend(0, 3, {1}, {4}); V ′
ext = {4}

Extend(0, 4, {1, 3}, {}) → Found {1, 3, 4}
Extend(0, 4, {1}, {}); V ′

ext = {5}
Extend(0, 5, {1, 4}, {}) → Found {1, 4, 5}

Fig. 2: The computation flow of a primary work unit.

With our formulation of Extend(), all recursive calls are independent with
no need for information of previous data on the recursion stack besides the argu-
ments it was called with. One way to divide a primary work unit is therefore to
partitionate it in its recursive calls. A tuple (min, u,Gsubgraph, Vext) completely
defines the resulting call to Extend() and we will now call work unit to a tuple
like this, with primary work units being only a particular case.

Our new strategy to reduce the granularity of the work units uses a threshold
parameter to indicate the point in the computation at which we split the execu-
tion of the current work unit into smaller work units. Instead of really computing
subsequent recursive calls, we encapsulate their arguments into new smaller work
units and send them to the master to be added to the list of unprocessed work,
effectively dividing our previously atomic sequential units. This leads to a sim-
pler, yet elegant, solution when compared to more common adaptive strategies
that need a queue in each computation node [7]. Figure 3 illustrates our strategy
at work. Remember that the new work units are still independent and we do not
need to be concerned with locality. All subgraphs will be found and added to
the respective worker’s dictionary of frequencies, being merged in the end of the
whole computation to determine the global resulting census.

Our algorithm is able to adjust itself during execution using this division
strategy. It splits large work units into new smaller work units ensuring that
their grain-size will never be larger than the size of work units executed up to
the threshold value. In doing so, we are able to improve the load balancing and
thus achieve an effective dynamic and adaptive behavior.

The splitting threshold parameter is central in our adaptive algorithm. If it is
set too high, the work units will not be sufficiently divided in order to adequately
balance the work among all CPUs. If it is too low, work will be divided too soon
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Extend(1, 1, {}, {}); V ′
ext = {2, 3, 4}

Extend(1, 2, {1}, {3, 4}); V ′
ext = {3, 4, 5}

Extend(0, 3, {1, 2}, {4, 5}) → Found {1, 2, 3}
Extend(0, 4, {1, 2}, {5}) → Found {1, 2, 4}
——– Splitting Threshold ——–

Extend(0, 5, {1, 2}, {})
⇒ New work unit with these arguments

Extend(0, 3, {1}, {4}); V ′
ext = {4}

⇒ New work unit with these arguments

Extend(0, 4, {1}, {}); V ′
ext = {5}

⇒ New work unit with these arguments

Fig. 3: Dividing a primary work unit.

and the communication costs will increase. As a proof of concept our current
implementation uses a threshold that limits the computation time spent on a
work unit to a maximum value, but other measures could be used like for example
the number of subgraphs already enumerated.

One aspect not yet discussed, but that is orthogonal to all discussed strate-
gies, concerns the aggregation of results at the master. If a naive approach was
taken, then each worker would be sending their results to the master sequentially.
This would be highly inefficient and therefore we devised a parallel approach for
this final step. We use an hierarchical binary tree to organize the aggregation
of results, where each worker receives the results of two other child workers,
updates its own frequency dictionary accordingly, and then in turn sends the
aggregated results to its parent. This has the potential to logarithmically reduce
the total time needed to accomplish this step.

All the ideas described are the basis for our main algorithm that we called
Adaptive Parallel Enumeration (APE). Algorithms 2 and 3 describe in detail our
APE master and worker procedures.

The master starts by adding all primary work units to the list of unprocessed
work units (LWorkUnits). Then starts its main cycle where it waits for a message
from a worker. If the message indicates that the worker needs more work, the
master sends it the next unprocessed work unit LWorkUnits. If the list is empty,
the master signals the worker as being idle. If the message indicates that the
worker is splitting work and thus sending a new unprocessed work unit, then
the master adds that new work unit to LWorkUnits. If there is an idle worker,
then this unit is sent right away to that worker. When all workers are idle, the
subgraph enumeration is complete and the master ends its main cycle, broad-
casting to all workers that event. What remains is then to collect the results and
following the explained hierarchical aggregation process, the master receives the
results of two workers and merges them in an unified global dictionary of the
frequencies of each isomorphic class of k-subgraphs.

The worker has a main cycle where it waits for messages from the master.
If the message signals a new work unit to be processed, than it calls a modified
version of the Extend() procedure to compute it. If the message signals termi-
nation, then it exits the cycle, receiving and merging the results from two other
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Algorithm 2 APE master node.

1: procedure Master(G,k)
2: LWorkUnits.add(AllPrimaryWorkUnits)
3: while CPUsWorking 6= ∅ do
4: msg ← ReceiveMessage(AnyWorker)
5: if msg.type = RequestForWork then
6: if LWorkUnits.notEmpty() then
7: W ← LWorkUnits.pop()
8: newMsg ← EncapsulateWorkUnit(W )
9: SendMessage(msg.Sender, newMsg)

10: else
11: IdleWorkers.push(msg.Sender)

12: else if msg.type = NewWorkUnit then
13: if IdleWorkers.notEmpty() then
14: worker ← IdleWorker.pop()
15: SendMessage(worker,msg)
16: else
17: W ← ExtractWorkUnit(msg)
18: LWorkUnits.push(W)

19: BroadcastMessage(Terminate);
20: ReceiveResults(LeftChild,RightChild)

Algorithm 3 APE worker node.

1: procedure Worker(G,k)
2: while msg.type 6= Terminate do
3: msg ← ReceiveMessage(Master)
4: if msg.type = NewWorkUnit then
5: W = (G, k,min, u,Gsubgraph, Vext)← ExtractWorkUnit(msg)
6: Extend’(W )

7: ReceiveResults(LeftChild,RightChild)
8: SendResults(ParentWorker)

9: procedure Extend’(W )
10: if SplittingThresholdAchieved() then
11: msg ← EncapsulateWorkUnit(W )
12: SendMessage(Master,msg)
13: else
14: lines 2 to 9 of algorithm 1
15: Extend’(W ′ = (G, k,min, v,G′

subgraph, V
′
ext))

16: lines 11 and 12 of algorithm 1
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workers with its own dictionary. It then send those results to a single parent
processor, that depending on the worker rank number may be other worker or
the master itself, completing the hierarchical aggregation phase. Regarding the
modified version of the Extend() procedure, it is exactly the same as the ver-
sion depicted on algorithm 1 except the fact than when the splitting threshold
is achieved, the computation is stopped and all subsequent calls consist now in
encapsulating the arguments into a new work unit and sending it to the master.

There are two issues that we would like to clarify. First, we decided to use a
dedicated master because it is a central piece in the architecture and we needed
the highest possible throughput in the assignment of new work units to idle work-
ers. Second, APE was originally created having in mind homogeneous resources
but its dynamic and adaptive design makes it also suited for heterogeneous en-
vironments.

4 Results

All experimental results were obtained on a dedicated cluster with 12 SuperMicro
Twinview Servers for a total of 24 nodes. Each node has 2 quad core Xeon 5335
processors and 12 GB of RAM, totaling 192 cores, 288 GB of RAM, and 3.8TB
of disk space, using Infiniband interconnect. The code was developed in C++
and compiled with gcc 4.1.2. For message passing we used OpenMPI 1.2.7. All
the times measured were wall clock times meaning real time from the start to
the end of all processes.

In order to evaluate our parallel algorithms we used four different repre-
sentative biological networks from different domains: Neural [26], Gene [17],
Metabolic [11] and Protein [5]. The networks present varied topological fea-
tures that are summarized in Table 1.

Table 1: Networks used for experimental testing of the algorithms.
Network Nodes Edges Avg. Degree Description

Neural 297 2345 7.90 Neural network of C. elegans

Gene 688 1079 1.57 Gene regulation network of S. cerevisiae

Metabolic 1057 2527 2.39 Metabolic network of S. pneumoniae

Protein 2361 7182 3.04 Protein-protein interaction network of S. cerevisiae

We first studied the computational behaviour of each network using the
equivalent to the ESU algorithm, sequentially calling all primary work units
(with no MPI overhead). This measures how much time a serial program would
take to calculate a subgraph census. We took note of what was the maximum
possible subgraph size k achievable in a reasonable amount of time (we chose
one hour as the maximum time limit). We calculated the average growth ratio,
that is, by which factor did the execution time grew up as we increased k by
one. Finally, we also calculated the total number of different occurrences of k-
subgraphs and the number of different classes of isomorphism found on those
subgraphs. The results obtained can be seen in table 2.
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Table 2: Maximum achievable subgraph sizes k using a serial program.

Network k
Time Average Total nr of Isomor.

spent (s) Growth subgraphs classes

Neural 6 10,982.9 47.6±0.4 1.3× 1010 286,376

Gene 7 4,951.0 19.0±1.4 4.2× 109 4,089

Metabolic 6 14,000.1 46.5±2.7 1.9× 1010 1,696

Protein 6 10,055.2 31.2±3.1 1.3× 1010 231,620

Note the relatively small subgraph sizes achievable. This is not caused by
our implementation, since using the FANMOD tool [27], the fastest available for
network motifs calculation, we also were only able to achieve the same maximum
k in one hour. The cause is that, as expected, the computing time grows expo-
nentially as the subgraph size increases. We also observe that although different
graphs present very different average growths, the growth rate for a given graph
seems fairly constant (note the standard deviation).

For the next set of results we decided to fix the respective k for each graph
to the values depicted in table 2, in order to have more comparable results. We
evaluated the parallel strategies described in section 3. We compared the speedup
obtained on all three graphs for the dynamic strategy with chronological order
in the work units list (DYN-CRON), with LPTF ordering (DYN-LPTF), with
graph relabeling followed by LPTF (DYN-RELABEL) and finally with the APE
strategy.

For the APE algorithm it is necessary to explain how we chose the value
for the splitting threshold parameter. We chose to employ the time spent in the
same work unit as a proof of concept for the usefulness of APE and we empiri-
cally experimented several values for this time limit, reducing it while verifying
that the speedup was being improved. This value controls the granularity of the
work units. We want it as small as possible, as long as the increase in commu-
nication costs does not overcome the effect of increased sharing. We found that
for our context 2 seconds appeared to be a good and balanced value (the time
spent in communications during the enumeration of the subgraphs was always
smaller than 2% of the total time spent), and we measured the speedup with
that particular value chosen as the threshold (APE-2s).

We used a minimum of 8 CPUs because each computation node in the cluster
had precisely that number of processors. With less CPUs the nodes would not
be exclusively dedicated to the subgraph census. The results obtained up to 128
processors are depicted in figure 4. The results obtained clearly show different
performance levels for the different strategies. Generally speaking, the strate-
gies based on the atomic primary work units do not scale well, although the
incremental strategies used show some improvements in the speedup. Overall,
as expected, the adaptive strategy, APE-2s, outperforms all others and clearly
achieves scalability.

Next, we further analyze the performance of APE-2s on all networks. Table 3
details the performance of the APE-2s up to 128 processors, and show the per-
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Fig. 4: Speedups obtained with several parallel approaches.

centage of time spent in the final step of aggregating all frequency results in the
master CPU.

Table 3: Detailed APE behavior with splitting threshold set to 2s.

Network k
#CPUs: speedup (% time spent in aggregating results)

8 16 32 64 128

Neural 6 7.0 (0.2%) 14.8 (1.2%) 30.1 (3.4%) 58.7 (8.0%) 107.0 (16.9%)

Gene 7 7.0 (0.1%) 15.0 (0.2%) 30.7 (0.4%) 62.0 (0.8%) 125.0 (0.7%)

Metabolic 6 6.9 (0.1%) 14.9 (0.1%) 30.8 (0.3%) 62.4 (0.6%) 125.5 (1.3%)

Protein 6 6.6 (0.2%) 13.7 (1.2%) 28.0 (3.3%) 54.6 (7.4%) 96.9 (18.8%)

We can observe that for Gene and Metabolic, APE-2s obtains almost perfect
linear speedup, with a reduced amount of time spent in the aggregation phase.
In Neural and Protein, despite the good results, there is still some room for
improvement. The time spent communicating the results in the end of the com-
putation, more than 15% of the execution time with 128 processors, is the cause
for the loss in the speedup. In fact, with more than 200,000 classes of isomorphic
subgraphs in the network (see table 2), each worker has to communicate all of
the frequencies it finds in its respective computation. On average, the number
of different classes of isomorphism discovered on the same CPU, is larger than
150,000. Each of these classes has to be encapsulated (uniquely identifying the
class) in order for the receiver to be able to decode it and merge the results.
Even with our hierarchical method for aggregating the results, this still takes a
considerable amount of time. This effect is not so noticeable in the other net-
works since the number of different classes found is much lower (due to inherent
network topology, with a smaller average degree per node).

As a final demonstration of the relevance of our algorithm, consider the av-
erage growth as we increase k (shown in Table 2). As long as the number of
processors we have available is larger than the average growth, we should be
able to compute the (k + 1)-census in the same amount of time we initially
were able to compute the k-census sequentially. For example, using the average
growth, we can estimate that calculating a 7-census of Metabolic would take
more than one week, if done sequentially. Using 128 processors and APE-2s, we
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were able to calculate it in less than 1h30m, spending even less than half of the
time a sequential 6-census takes.

5 Conclusion

We presented several strategies for calculating subgraph census of biological net-
works in parallel. Our approaches are based on an efficient sequential algorithm
called ESU that we parallelized by initially modifying it to a version capable
of producing independent and dividable work units. We started with a dynamic
master-worker strategy and subsequently improved it with an LPTF order of
processing and a smart relabeling of the nodes in the graph. We also presented
APE, a novel adaptive load balancing algorithm, which includes an hierarchical
aggregation of the results found in each worker. APE proved to be an acceptable
and scalable solution for the set of representative networks studied, successfully
reducing the time needed to calculate the subgraph census and achieving larger
subgraph sizes than were before possible.

The main drawback of APE seems to be the final aggregation of results. We
plan to research and improve this step in the future. One way of doing it would
be to use a more compact and compressed representation of the results. We also
plan to research the splitting threshold parameter in order to better understand
on what does it depend, exactly how does it affect the computation and how
could it be automatically determined by the algorithm. We are collaborating
with neuroinformatics scientists in order to apply the described strategies on real
neural networks to obtain new and interesting results on previously unfeasible
subgraph census.
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