
Efficient Parallel Subgraph Counting using G-Tries

Pedro Ribeiro, Fernando Silva, Luı́s Lopes
CRACS & INESC-Porto LA,

Faculdade de Ciências, Universidade do Porto
R. Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

Email: {pribeiro, fds, lblopes}@dcc.fc.up.pt

Abstract—Finding and counting the occurrences of a collec-
tion of subgraphs within another larger network is a compu-
tationally hard problem, closely related to graph isomorphism.
The subgraph count is by itself a very powerful character-
ization of a network and it is crucial for other important
network measurements. G-tries are a specialized data-structure
designed to store and search for subgraphs. By taking advan-
tage of subgraph common substructure, g-tries can provide
considerable speedups over previously used methods. In this
paper we present a parallel algorithm based precisely on g-
tries that is able to efficiently find and count subgraphs. The
algorithm relies on randomized receiver-initiated dynamic load
balancing and is able to stop its computation at any given
time, efficiently store its search position, divide what is left
to compute in two halfs, and resume from where it left. We
apply our algorithm to several representative real complex
networks from various domains and examine its scalability.
We obtain an almost linear speedup up to 128 processors,
thus allowing us to reach previously unfeasible limits. We
showcase the multidisciplinary potential of the algorithm by
also applying it to network motif discovery.

Keywords-Parallel Algorithms, Adaptive Load Balancing,
Complex Networks, Graph Mining, G-Tries

I. INTRODUCTION

Complex networks are everywhere [1]. They can describe
a very wide range of natural and artificial systems. Under-
standing their underlying topology, and how they can be
modeled and characterized has a broad multidisciplinary ap-
plicability [2]. In order to extract useful features from these
networks, a large number of metrics were developed [3].

Finding and counting subnetworks within the whole
global network is one very important associated task. We
could be interested in discovering the most frequent patterns,
which can for example be used for network indexing [4].
We might find useful the frequency of all subnetworks, in
order to characterize the network [5]. Or we could want to
discover subnetworks that occur more often than in similar
randomized networks [6].

Computing the frequency of one or more subnetworks
is a computationally hard problem since we are basically
dealing with graph isomorphism [7]. For special cases of
networks and subnetworks polynomial solutions exist [8].
When searching only for the most frequent subgraphs, we
may me able to narrow the search space [9]. But for

the general case, possibly with infrequent subgraphs, the
problem remains completely exponential in nature.

The methods currently used for the general subgraph
counting problem typically opt for one of two opposite
approaches: either we enumerate all subnetworks of a de-
sired size and then compute which ones are isomorphic [6],
[10] (network-centric); or by knowing the subnetworks to
search, we compute the individual frequency of each one by
running an efficient subgraph matching procedure for each
subnetwork [11] (subgraph-centric).

By knowing the subnetworks that we are looking for, we
could try to solve the problem by using an intermediate
approach. Instead of having to enumerate all subnetworks
(and only after do the isomorphism tests) or matching one at
a time, we could at the same time try to match all the desired
subnetworks. G-tries are a very recent data structure that can
be used precisely to this end [12]. They take advantage of
common topologies to create a tree that represents a set of
subgraphs, with which we simultaneously search multiple
subnetworks. This leads to considerable speedups when
compared to the previous methods, up to one hundred times
faster for some networks.

The current methods are also almost all sequential in na-
ture. Considering the computational tractability, we feel that
resorting to parallel algorithms to speedup the computation
can have a strong multidisciplinary impact. More than just
computing faster, we can reach subgraph and graph sizes
that were previously not reachable for efficiency reasons.

Our main contribution in this paper is an efficient parallel
algorithm for the general subgraph counting problem, that
uses g-tries as the underlying data structure. We extend
and parallelize the counting procedure with receiver-initiated
dynamic load balancing [13], paving the way for efficient
and scalable counting for any types of subgraphs and graphs.

The remainder of this paper is organized as follows. Sec-
tion II establishes a network terminology, formally defines
the problem we are tackling and overviews the related work.
Section III describes the g-trie data structure and details
the parallel algorithm we developed. Section IV discusses
the results obtained for a set of representative networks and
gives an example of a practical application in the discovery
of network motifs. Section V concludes the paper, with
comments on the results and possible future work.

2010 IEEE International Conference on Cluster Computing

978-0-7695-4220-1/10 $26.00 © 2010 IEEE

DOI 10.1109/CLUSTER.2010.27

217

II. PRELIMINARIES

A. Graph terminology

In order to have a well defined and coherent network
terminology throughout the paper, we first review the main
concepts and introduce some notation that will be used on
the following sections.

A network can be modeled as a graph G composed of the
set V (G) of vertices or nodes and the set E(G) of edges or
connections. The size of a graph is the number of vertices
and is indicated as |V (G)|. A k-graph is a graph of size k.
Every edge is composed by a pair of two endpoints in the
set of vertices. This pair is ordered in the case of a directed
graph, in opposition to undirected graphs where edges do not
express direction. The neighborhood of a vertex u in a graph
G, is a subgraph, denoted as N(u), composed by the set of
all other nodes v of G such that (u, v) or (v, u) belong to
E(G). All vertices are assigned consecutive integer numbers
starting from 0, and the comparison v < u means that the
index of v is lower than that of u. The adjacency matrix of
a graph G is denoted as GAdj , and GAdj [a][b] represents a
possible edge between vertices with index a and b.

A subgraph Gk of a graph G is a graph of size k in which
V (Gk)⊆V (G) and E(Gk)⊆E(G). This subgraph is said to
be induced if for any pair of vertices u and v of V (Gk),
(u, v) is an edge of Gk if and only if (u, v) is an edge of
G, that is, a vertex set of the subgraph has all the edges that
the same vertex set has in the complete graph G.

A mapping of a graph is a bijection where each node
is assigned a value. Two graphs G and H are said to
be isomorphic, denoted as G∼H , if there is a one-to-one
mapping between the vertices of both graphs where two
vertices of G share an edge if and only if their corresponding
vertices in H also share an edge.

B. The General Subgraph Counting Problem

Here we formalize the problem we are tackling, which is
computing the frequency of a determined set of subgraphs
within a larger graph.

Definition 1 (General Subgraph Counting Problem):
Given a set of subgraphs SG and a graph G, determine the
exact count of all induced occurrences of subgraphs of SG

in G. Two occurrences are considered different if they have
at least one node or edge that they do not share. Other
nodes and edges can overlap.

This definition is very flexible and can be applied to any
type of graphs, whether they are directed or undirected,
colored or not and weighted or not. The second part of
the definition contains the most widely used concept for
distinguishing two occurrences of a subgraph. Note that this
has a direct impact on the number of the subgraphs and
on the problem’s tractability, since there is no downward

closure property, i.e., a subgraph may appear more times
than a subgraph contained in it [14].

Note also that this problem is conceptually very different
from frequent subgraph discovery [15] (FSD), which derives
from the frequent itemset problem [16]. In FSD we look
for subgraphs that occur at least a pre-determined number
of times (in opposition to really computing the frequency)
in a minimum number of elements of a set of graphs (in
opposition to only one single original graph). Therefore, the
algorithmic techniques used are different, with more focus
on creating increasingly larger candidate graphs using the a-
priori principle [17], and are not applicable to our problem.

C. Related Work

To our best knowledge, the ESU algorithm [10] presents
the most efficient full enumeration of k-subgraphs (network-
centric approach), i.e., computing a subgraph census. Gro-
chow and Kellis [11] show how to efficiently count the
occurrences of an individual subgraph (subgraph-centric
approach).

All the aforementioned methods are sequential in nature
and parallel work on general subgraph counting is still very
scarce. Wang et al. [18] provide a complete census with
static load balancing and limited scalability study up to 32
processors. Ribeiro et al. [19] also parallelize a complete
census based on the ESU algorithm with dynamic load
balancing and almost linear speedup up to 128 processors.
Schatz et al. [20] parallelize the Grochow and Kellis ap-
proach, using a master-worker load balancing scheme of
several individual queries, and present an almost linear
speedup up to 64 processors on the single network studied.
They also try to parallelize an individual subgraph query but
show very limited scalability tests.

The main difference in our work is that we use g-tries
as the underlying data-structure and therefore we have a
new, potentially more efficient, start point. G-tries associated
sequential methods and performance comparison to other
approaches can be seen in [12].

III. PARALLEL ALGORITHM

A. The G-Trie Data Structure

A g-trie is a multiway tree able to store a collection of
subgraphs, that is, a set of abstract graph “patterns”. Each
tree node contains information about a single subgraph ver-
tex and its connections to the ancestor nodes. Descendants
of a tree node share a common topology and a path from the
root to a node defines one single subgraph. Figure 1 gives
an example of a g-trie with 6 undirected subgraphs.

Each g-trie node must store information about the con-
nections to ancestor nodes and to itself. If the subgraphs
are undirected, we can do that by storing the respective
adjacency matrix row (up to that node position), which
will effectively result in only half of the full symmetrical
adjacency matrix being stored in the g-trie. If the subgraphs

218

Figure 1. A g-trie representing a set of 6 undirected subgraphs. Each g-trie
node adds a new vertex (in black) to the already existing ones in the ancestor
nodes (white vertices). The connections to these nodes are represented by
a sequence of numbers indicating the corresponding adjacency matrix row.

are directed, then we must also store the respective matrix
column, as well as the row, in order to specify in and out
edges.

Note that the g-trie root node must be empty, because
there are two possible direct descendant nodes: a vertex with
or without a connection to itself.

In order to obtain an unique g-trie representation for a set
of subgraphs and guarantee that a specific subgraph always
leads to the same tree path, we use a canonical adjacency
matrix. Among the many possibilities, one can for example
use the lexicographically larger, favoring the occurrence
of more common substructures with higher degree nodes
appearing in lower depth levels.

This capability of identifying common sub-topologies is
the strength of a g-trie. Not only can we compress the
information by avoiding redundant storage, but when we
are matching a specific node in the g-trie we are matching
at the same time all possible descendant subgraphs stored in
the g-trie.

In order to avoid subgraph symmetries, g-tries also store
symmetry breaking conditions of the form a < b indicating
that the vertex in position a should have a graph index
smaller than vertex in position b (refer to [12] for more
details). Using these conditions, we can find each subgraph
only once.

In order to avoid ambiguities in the description, from now
on we will use the term node to refer to the g-trie tree nodes,
and vertex to refer to a node in the stored subgraphs. Given a
g-trie node T , we will use T.vertex to refer the new vertex
of that node (represented in black in Figure 1, and T.in[i]
and T.out[i] to refer to the boolean value of the new vertex
having respectively an ingoing or outgoing connection to
the vertex with index i, i.e., the new node represented in the
ancestor of depth i. Note that if the g-trie stores undirected

subgraphs, then T.in[i] = T.out[i]. We will also use T.cond
to denote the set of conditions that break symmetries for the
descendant nodes that correspond to a full subgraph. T.root
denotes the g-trie root node and T.isGraph indicates if the
node stores a full subgraph (in Figure 1 this corresponds to
all leaf nodes).

B. Adapted Sequential Algorithm

In order to conceive a parallel approach we started by
looking at our g-trie serial matching and modified it in a
way suitable for parallelization. Our aim was to create a
framework where given some part of the whole computation,
we would either be able to compute it completely or divide
it in similar independent smaller pieces of computation.

The algorithm in Figure 2 details the initial adaptation of
our sequential algorithm, now tailored to be later adapted
for parallel execution.

1: procedure MATCHALL(T, G)
2: for all children c of T.root do
3: MATCH(c, ∅)
4: procedure MATCH(T, Vused)
5: V = MATCHINGVERTICES(T, Vused)
6: for all node v of V do
7: if T.isGraph then FOUNDMATCH()
8: for all children c of T do
9: MATCH(c, Vused ∪ {v})

10: function MATCHINGVERTICES(T, Vused)
11: if Vused = ∅ then
12: Vcand := V (G)
13: else
14: Vconn = {v : v = Vused[i], T.in[i] ∨ T.out[i]}
15: m := m ∈ Vconn : ∀v∈ Vconn, |N(m)| ≤ |N(v)|
16: Vcand := {v ∈ N(m) : v 6∈ Vused}
17: V ertices = ∅
18: for all v ∈ Vcand do
19: if ∀i∈[1..|Vused|]:
20: T.in[i] = GAdj [Vused[i]][v]∧
21: T.out[i] = GAdj [v][Vused[i]] then
22: if ∃C ∈ T.cond : Vused + v respects C then
23: V ertices = V ertices ∪ {v}
24: return V ertices

Figure 2. Algorithm for matching subgraphs of g-trie T in graph G

The basic idea of the algorithm is to try to find a
set of vertices (Vused) that match to a path in the g-trie
and therefore correspond to an occurrence of the subgraph
represented by that path. We use the information stored in
the g-trie to heavily constrain and limit the search.

We start with the g-trie root children nodes and call the
recursive procedure match() with an initial empty matched
set (lines 2 and 3). The later procedure starts by creating
a set of vertices that fully match the current g-trie node
(line 5). We traverse that set (line 6) and recursively try
to expand it through all possible paths (lines 8 and 9). If
the node corresponds to a full subgraph, then we found an
occurrence of that subgraph (line 7).

219

Generating the set of matching vertices is done in the
matchingVertices() procedure. The efficiency of the
algorithm depends heavily on the above mentioned con-
straints, since they help reduce the search-space. To generate
the matching set, we start by creating a set of candidates
(Vcand). If we are at a root children, then all graph vertices
are viable candidates (lines 11 and 12). If not, we select
from the already matched vertices that are connected to the
new vertex (line 14) the one with the smallest neighborhood
(line 15), reducing the possible candidates (line 16). Then,
we traverse the set of candidates (line 18) and if one respects
all connections to ancestors (lines 19 to 21) and respects
at least one set of symmetry breaking conditions for a
possible descendant subgraph (line 22), we add it to the
set of matching vertices (line 23).

C. Parallel Subgraph Counting

This sequential algorithm produces a tree shaped search
space with each node being a call to match(T, Vused). A
crucial aspect is that all these calls are independent from
each other. A pair (T, Vused) uniquely identifies where we
are in the search and we can continue from that point without
knowledge of what may have been computed. From now
on we call such a pair a work-unit. The processing of one
work-unit may originate other work-units (if we are able to
progress to a higher depth on the g-trie and add other vertex
to Vused) or may not result in new work (if we are in a g-trie
leaf or if no suitable graph vertex candidate is found).

In order to parallelize our search we need to distribute the
work-units among all processors. The problem is that the
search tree is highly unbalanced and the execution time of
each work-unit varies significantly. This makes it very hard
to use a pre-determined static allocation scheme, because
approximating the execution time cost of a work-unit can
be as hard as computing the work-unit itself and, therefore,
we opted for a dynamic load balancing strategy.

Our target parallel programming model is distributed
memory with message passing. We opted for a receiver-
initiated scheme [13] in order to cope with a heavy system
load. The algorithm Figure 3 gives a global simplified view
of our approach that we detail later.

Basically, each processor starts by choosing its initial
share of work (line 2) and then keeps processing it (line
4) until the whole global computation is completed (line 3).
While doing this, after a determined threshold is reached
(line 12), it checks for incoming messages from other
processors (13). If a work request message was received (line
14), the recursive computation is stopped and the search state
stored (line 15). Then it uses this state to divide the current
search into two different sets of work units (line 6), sending
one to the requesting processor (line 7) and keeping one to
itself, in order to continue the computation. If there were no
work request messages, the recursive search is completed,
ending in a situation with no more work-units to compute,

1: procedure PARALLELCOUNT
2: W = GETINITIALWORK()
3: while NOTFINISHED() do
4: RECURSIVEPROCESS(W)
5: if RECEIVEDWORKREQUEST() then
6: (W, W2) = DIVIDEWORK()
7: SENDWORK(W2)
8: if W = ∅ then
9: W = ASKFORMOREWORK()

10: AGGREGATERESULTS()

11: procedure RECURSIVEPROCESS(W)
12: if CHECKMESSAGESTHRESHOLD() then
13: CHECKMESSAGES()
14: if RECEIVEDWORKREQUEST() then
15: stop and store recursive computation
16: else
17: keep doing recursive search

Figure 3. Simplified view of parallel algorithm for subgraph counting

and therefore the processor starts looking for unprocessed
work-units from another processor (line 9). Finally, after all
work is done, we aggregate the distributed results in order
to produce the desired output (line 10).

Figure 4. The state of the match() procedure frozen at a given time. In
gray we illustrate the exact subgraph being matched, corresponding to the
current position in the two main cycles of the recursive procedure

The main core of the search is the recursive procedure,
which will correspond to the match() procedure of the
sequential algorithm. A crucial extension for our parallel
approach is that we must be able to stop and store the
state of that recursive computation. For this we must capture
the stack contents and we want to do it in an efficient
way. Figure 4 depicts the recursive state of the computation
at any given time. Note that match() (fig. 2) revolves
around two cycles: one enumerates all possible matching
vertices (line 6) and the other around all possible children

220

D - Larger recursive depth
Vi - currently explored graph vertex in depth i
Ni - currently explored g-trie node in depth i

Ui - number of unexplored vertices in depth i

UV j
i - j-th unexplored vertices in depth i

D V0 V1 . . . VD−1 N0 N1 . . . ND−1 U1 UV 1
1 UV 2

1 . . . UV U1

1 UD UV 1
D UV 2

D . . . UV UD

D

Figure 5. The structure of a work array representing completely the recursive search state.

of the corresponding matching g-trie node (line 8). If we
freeze time, the search position will therefore be defined by
knowing the position where we are at each of these two
cycles in all depths.

In order to store this state, we need to save the cycle
position (i.e., the current node and vertex) for all depths
of the recursive procedure. In the case of a g-trie node,
by knowing the current node one can instantly know the
remaining nodes to explore, since the g-trie is fixed. In the
case of the vertices, we must explicitly store the unexplored
vertices, because they are dynamic and correspond to real
computation work done in matchingVertices() (lines
10 to 24 of fig. 2). We can univocally identify each g-
trie node by a single integer number, and the same can be
done with each graph vertex. With this in mind, we create
a compact array structure that encapsulates everything that
we need in order to later resume the search. This array is
depicted in Figure 5 and we will call it a work array.

The algorithm in Figure 6 details our adaptation of the
match() procedure so that it is able to stop and store the
recursion whenever a request for work arrives. In this case,
it builds the correspondent work array and stops the search.

1: procedure PARALLELMATCH(T, Vused)
2: if CHECKMESSAGESTHRESHOLD() then
3: CHECKMESSAGES()
4: V = MATCHINGVERTICES(T, Vused)
5: for all node v of V do
6: if RECEIVEDWORKREQUEST() then
7: state.ADD(remaining nodes of V); break
8: if T.isGraph then FOUNDMATCH()
9: for all children c of T do

10: if RECEIVEDWORKREQUEST() then
11: state.ADD(current children c); break
12: PARALLELMATCH(c, Vused ∪ {v})

Figure 6. Parallel version of match() procedure

Lines 4, 5, 8, 9 and 12 are the same as in the sequential
algorithm. What changes is that now we keep checking for
messages as explained before (lines 2 and 3). When a request
for work arrives, we stop making recursive calls, break all
cycles, and build the work array (lines 6, 7, 10 and 11).

The algorithm of Figure 7 shows how to resume a given
work array W , assuming the notation given in Figure 5. We
also assume that the child nodes of a g-trie node are ordered
and that by bigger siblings we mean the g-tries nodes that
share the same direct ancestor node, i.e., the same “father”,
and that are bigger in that order context.

1: procedure RESUMEWORK(W)
2: Vused = {V0, . . . , VD−1}
3: for i: D − 1 down to 0 do
4: Nremaining = Ni∪ BIGGERSIBBLINGS(Ni)
5: for all C in Nremaining do
6: if RECEIVEDWORKREQUEST() then
7: state.ADD(remaining children); break;
8: PARALLELMATCH(C, Vused)
9: for j: 1 to U i do

10: if RECEIVEDWORKREQUEST() then
11: state.ADD(remaining nodes); break;
12: remove last element from Vused

13: add UV j
i to end of Vused

14: if Ni.isGraph then FOUNDMATCH()
15: for all children C of FATHER(Ni) do
16: if RECEIVEDWORKREQUEST() then
17: state.ADD(remaining children); break;
18: PARALLELMATCH(C, Vused)
19: remove last element from Vused

Figure 7. Algorithm for resuming a work array

We start by creating the set of used vertices, Vused as in
parallelMatch() (line 2). We then traverse all recursive
depths, from the highest to the lowest (line 3), since it would
be in that order that they would be computed in the original
recursive procedure. Then, we traverse all remaining g-trie
nodes (line 5), as it would happen in the inner cycle of
parallelMatch(), in order to simulate the continuation
of the cycle that we stopped. We then follow with all
remaining unexplored nodes of that depth (line 9), proceed
by updating Vused accordingly (line 12 and 13), and then
traverse all possible g-trie nodes from that search position
(lines 15). In all of these cases, continuation of computation
itself is done by calling the original parallelMatch()
procedure (lines 8 and 18). As in the original procedure, if
the computation has to stop, we update the respective work
array (lines 6, 7, 16 and 17).

The whole resumeWork() is done in order to sim-
ulate what would happen if the original recursive pro-
cedure kept computing. In fact, if we would artificially
stop parallelMatch(), and then resume work with
resumeWork(), we would obtain the exact same results
with almost no performance loss. This is due to our efficient
array work structure. We experimented with other ways of
saving state, like keeping a list of all work units, but that
list size would not be really bounded and there would be
much redundant information, like common subsets of Vused.
By using our work array, we minimize the information

221

needed to continue, restricting it to the bare essencial,
and we have a strictly bounded way of keeping state. In
fact, the maximum theoretical size of the work array is
O(max depth gtrie×V (G)), since we can only go as far
as the maximum g-trie depth, and each depth always has
at maximum all nodes as unexplored. In practice, the work
array will be kept, with very high probability, much lower
than this maximum, since all the constraints will reduce the
possible candidates.

The fact that our array is small sized is also beneficial
because it means we can easily communicate the array
to another processor that issued a request for work. The
idea is that, upon receiving such a request, the current
processor partitions its work array in two valid pieces,
continues to compute with one of them and dispatches
the other for the requesting processor. This partitioning is
done by the procedure divideWork(), claled in line 6
of the parallelCount() algorithm (Figure 3). In order
to maintain the computation balanced, it is crucial that a
processor divides his work array as equally as possible. To
achieve this goal, we try to equally divide all unexplored
vertices, in a round-robin fashion, in the following way:
• 1st Half maintains currently explored nodes and ver-

tices; gets even numbered unexplored vertices.
• 2nd Half gets odd numbered unexplored vertices.

This configures what we can call a diagonal work split,
meaning that we traverse diagonally our tree search space.
This always provides two equally sized halfs in terms of
the number of unexplored vertices. For a balanced tree
this would provide equal work shares. However, the tree
may be highly unbalanced, but nevertheless this is our best
estimate. We also use a splitting threshold Tsplit, a way of
knowing when not to divide our work array. If it is in fact
too small, we may spend more time preparing and sending
the work-unit than really just computing it. We based our
threshold on the distance to the g-trie leaf node: as we get
closer, our work-unit will take less time. So, if all remaining
unexplored vertices are closer to a leaf than Tsplit, we do
not divide work and instead send a “no work available”
message to the requesting processor. This threshold could
even be dynamically adapted as we discover how much time
an average work-unit is taking. In practice, in our particular
environment, a constant value was enough (see Section IV).

For the initial work share division
(getInitialWork()), there are several possibilities.
One option would be to put all work on a single processor
and start all other processors with an empty share of work.
This would have the undesirable side effect of having all
processors but one communicating with the root processor
for an initial assignment of work. Conscientiously, we
opted to equally divide all the initial graph vertices among
processors. Thus, instead of being able to start a subgraph
in all possible graph nodes, a processor now has its own

possible subset for the first node of any subgraph found. We
use a round-robin scheme for the division. This corresponds
to changing line 10 of algorithm 2 in order to have Vcand

initiated only with the correspondent graph nodes. So, for
example, if we have a graph with 1,000 nodes and we
are using 10 processors, processor #1 will start to use as
candidate nodes 1, 11, 21, . . ., processor #2 will have nodes
2, 12, 22, . . . and so on. If there are less graph nodes than
processors, than some processors will not have feasible
candidates and will quickly ask for work. It is very hard to
have a perfect static division of the work in the beginning
since the search tree is highly irregular, but this approach
has the potential to give an initial fair division of work that
will afterward be adaptively and dynamically balanced.

The frequency by which processors check for incoming
messages (checkMessagesThreshold()) is important
and must be adequately parametrized. If we check too
often, we may spend unnecessary time checking while we
could instead be computing. If we check to seldom, the
receiver may be stuck too long waiting for new work. At
the beginning of the computation, there are scarce requests,
since every processor is busy. As time goes by, requests
become more often, since the search space gets smaller and
new work is needed more often. In order to cope with that,
we experimented to have an adaptive and dynamic threshold.
We started with an initial threshold Tcheck and each time
we check for messages and don’t have any, we augment
(or multiply) the threshold a little. If we do have a request
message, than, by opposition, we diminish it. In practice,
in our particular environment, a constant value was enough,
and more than that, the threshold could be small since the
probing mechanism provided by MPI_Probe() was very
fast. See Section IV for more details on this.

The receiver-initiated work request
(askForMoreWork()) is done by sending a non-
blocking message to another processor. Several options
exist to determine which processors should we address for
work, for example, always prefer the last asked processor,
or pick processors on a round-robin fashion, or maintain
a preferred group of processors. However, since work
arrays are small, with no data locality to be exploited,
and since the search tree is highly unbalanced, we opted
to always choose a random processor. Any other option
would possibly have worst case scenarios with a really
bad execution time behavior. Sanders [28] gives a more
analytical explanation of why random polling works well
in practice.

IV. RESULTS

Termination detection (notFinished()) is imple-
mented by broadcasting a termination message whenever a
processor discovers that no more work is available, after
having asked all other processors for work. We could use
a more refined termination mechanism, but for a moderate

222

Table I
THE SET OF FIVE DIFFERENT REPRESENTATIVE REAL NETWORKS USED ON PARALLEL PERFORMANCE TESTING.

Network |V (G)| |E(G)| |E(G)|
|V (G)| Directed Description Source

baywet 128 2106 16.45 Yes Food Web of Florida Bay (Wet Season) [21], [22]
neural 297 2148 7.23 Yes Neural network of C. Elegans [23], [24]
netsc 1589 2742 16.21 No Coauthorships of scientists working on network theory and experiment [24], [25]
yeast 2361 7182 3.04 No Protein-protein interaction network in budding yeast [22], [26]

foldoc 13356 91471 6.85 Yes Relationships between terms in computing dictionary [22], [27]

number of processors (in our environment, a maximum of
192) this is efficient.

After the termination, the frequency counters of all sub-
graphs are distributed and we need to aggregate the results
in a single processor (aggregateResults()). Since all
processors know beforehand the associated g-trie, all they
need to do is share a vector of frequencies, where the vector
position uniquely identifies to which subgraph it is referring
to. We use native message passing sum reducing capabilities
in order to efficiently collect the results.

All experimental results were obtained on a dedicated
cluster with 12 SuperMicro Twinview Servers for a total of
24 nodes. Each node has 2 quad core Xeon 5335 processors
and 12 GB of RAM, totaling 192 cores, 288 GB of RAM,
and 3.8TB of disk space, using Infiniband interconnect. The
code was developed in C++ and compiled with gcc 4.1.2.
For message passing we used OpenMPI 1.2.7. All measured
times are wall clock times meaning real time from the start
to the end of all processes.

We tested our algorithm in five different representative
real complex networks with varied topological properties.
Table I summarizes their features.

A. Parallel Performance
In order to study the scalability and performance of our

parallel algorithm, we applied it to all five networks. Since
the problem we are solving is to count the frequency of a
set of subgraphs SG in another larger graph, we also need to
choose SG. There are many possibilities for this, depending
on what we are really trying to discover and it is impossible
to show all possible sets. Since g-tries are an efficient and
specialized data-structure, there are cases were the results are
computed sequentially in seconds, even when using previous
methods these would take a considerable amount of time.
The main aim of this section is to show that our algorithm
is parallelizable and scalable, and therefore we will show
possible use cases where the sequential execution time is big
enough to justify parallelization to 128 processors. Note that
in reality, for someone studying the network, there is always
the need for going to cases where the computation takes
much time, since increasing the set and size of subgraphs
will lead to a better characterization of the network.

We separately show the results for directed and undirected
g-tries. In what regards the performance for undirected sub-
graphs, we apply g-tries for counting all possible subgraphs

of a determined size. This corresponds to what is called
a subgraph census, a network characterization valuable by
itself [5]. More than that, by having all possible subgraphs,
we show the flexibility and general applicability of our
parallelization scheme. We ran the sequential version of our
algorithm for increasing subgraph sizes until the time it takes
to compute is reasonable for parallel execution on up to 128
processors. We use one hour as the threshold. We also pro-
vide the average growth ratio of the execution time whenever
the subgraph size is increased by one (shown in table field
average growth) as it gives us a strong indication of a
suitable problem size for each network. We transformed the
directed networks in undirected ones by making all edges
bidirectional (these networks are identified by the suffix
-un), so that our testing range is wider in variety. Note that
this transformation still provides meaningful results, because
an undirected subgraph in a direct network still evaluates
connectedness.

Regarding directed subgraphs, we only used the directed
networks. Computing a census, as before, by applying a g-
trie with all possible subgraphs of a determined size, is not
feasible since the number of different subgraphs is much
bigger (for example, there are 880,471,142 different classes
of isomorphic directed subgraphs of size 7 and only 853
undirected ones of the same size). We still wanted to show
a use case where the computation would have meaning, so
we use as a base set of subgraphs a random sample of
subgraphs from the network. So, instead of having every
possible subgraph of a determined size, we have a subset
of that that is meaningful for that particular network. We
sampled 0.1% of all subgraphs of a determined size by
using the ESU_RAND method described in [10], computed
the set of different classes of isomorphic subgraphs and then
started our algorithm with that as our input set of subgraphs
to count. Note that even 0.1% of all subgraph occurrences
will result in a large set of different classe and completely
counting them after will result in a very high percentage
of all occurrences, because frequent subgraphs will be in
the input set. As before, we ran the sequential version for
increasing sizes until the computation took more than one
hour and took note of the average growth.

Tables II and III detail the results for the above mentioned
methodology, with focus on the absolute speedup obtained.
The sequential time only shows the time spent in counting.

223

Table II
DETAILED ALGORITHM PARALLEL BEHAVIOR FOR UNDIRECTED NETWORKS.

Network Subgraph Sequential Average #Subgraphs #CPUs: speedup
size time growth in g-trie 8 16 32 64 128

baywet-un 7 38233.89s 44.9±8.8 853 7.94 15.87 31.73 63.76 127.03
neural-un 7 843212.02s 55.8±15.2 853 7.90 15.87 31.43 61.69 122.78

netsc 9 6141.13s 11.6±0.7 261080 7.90 14.76 31.40 62.40 124.02
yeast 7 187671.34s 31.6±6.2 853 7.91 15.90 31.41 63.43 124.36

foldoc-un 5 5949.54s 307.8±272.2 21 7.87 15.70 30.28 61.63 121.36

Table III
DETAILED ALGORITHM PARALLEL BEHAVIOR FOR DIRECTED NETWORKS.

Network Subgraph Sequential Average #Subgraphs #CPUs: speedup
size time growth in g-trie 8 16 32 64 128

baywet 7 63675.32s 51.1±10.6 288119 7.86 15.72 31.37 61.18 124.80
neural 7 28591.07s 42.5±11.9 347120 7.91 15.53 31.93 61.10 123.04
foldoc 5 13061.18 97.3±45.8 2702 7.83 15.01 30.87 62.28 125.02

The generation of the g-trie could also be parallelized, but
it is always a minor fraction of the cost of the counting
function. In fact, the g-trie generation was always less than
5% of the sequential time for the subsets represented in
the table. Note that in some cases we could even have that
particular g-trie already pre-computed and re-used. All times
measured are wall clock times from the beginning to the
end of the computation. We also took note of how many
different classes of subgraphs we were looking for (field
#Subgraphs in g-trie).

In the algorithm description we mentioned two parameters
that act as thresholds. Tsplit tells where to stop dividing
work, and it is measured in distance to a leaf node. Tcheck

controls the frequency at which we poll for incoming mes-
sages, and it can be measured in terms of number of work
units computed or time spent. We empirically tested several
values for these parameters and discovered that, for our par-
ticular environment, we could identify constant values that
consistently produced good results. We chose Tsplit = 2,
so, whenever all remaining unexplored vertices are within
a distance of 2 to a g-trie leaf, we stop diving work. For
Tcheck, we noted that using as a unit the time spent was
not feasible, because the threshold condition is tested very
often, on every recursive call, and the most efficient language
primitive for time check would still degrade considerable the
algorithm performance if used that often. We opted for using
Tcheck = 100000 nodes, that would roughly correspond to
0.1s of computation for each message poll. Such a small
value is feasible because the MPI implementation available
had a very efficient poll primitive (MPI_Probe). We are
aware that these values can be data and system dependent
for optimal performance, and that ideally these should be
dynamically computed by our own algorithm, and that is
indeed in our future plans. But it remains that they add
adaptability to the algorithm, instead of detracting it from
being efficient on other cases.

The obtained results clearly show that our algorithm is
scalable up to 128 processors and obtains an almost perfect
linear speedup for all tested cases. The main bottleneck
of the computation is the counting itself, with the final
aggregation of results being almost negligible. The time
spent in the final aggregation always corresponded to less
than 3%.

If we have a more detailed look at how the parallel
computation and communication is being managed, we can
observe that the behavior is as expected.

Finally, notice the average growth of the time needed
for the computations. The standard deviation (except for
foldoc) is relatively stable and thus we can predict the
time needed for increasing the size of subgraphs. Since we
obtained almost linear speedups, we could see that by using
the 128 processors we would be able to calculate in the same
time larger subgraphs. We note that even increasing the size
by one can give new meaningful practical results, since a
whole new characterization or pattern can be discovered.

B. Example Application

We will now illustrate the potential of our parallel al-
gorithm on a real practical application: finding network
motifs [6]. These are subgraphs that are overrepresented
in the network. Network motifs have a transverse applica-
bility, and there exist already dozens of published papers
with a main focus on their discovery in networks from
domains so varied as biology (like with protein-protein
interaction [29] or transcriptional regulatory networks [30]),
software engineering [31], social networks [32] or even
electronic circuits [33].

Present methods calculate this overrepresentation by gen-
erating an ensemble of similar randomized networks and
computing the frequency of the subgraphs both in the
original and the random networks. For a typical application,
a user generates something like 1,000 random networks [6].

224

Figure 8. Communication between processors when counting all 7-subgraphs in yeast network. White means the processor is busy counting subgraphs,
black indicates a processor is asking for work or sharing work.

In order to find the needed frequencies the most customary
approach is to compute a subgraph census by enumerating
all subgraphs and then computing isomorphisms. As said, to
our best knowledge, the ESU algorithm is generally speaking
the most efficient algorithm for this task and it is the
basis of the well known motif finding tool FANMOD [34].
Another possible approach is to compute the frequency of
each subgraph individually, with Grochow and Kellis [11]
providing an efficient way of doing that.

If we use our algorithm, we can substantially speedup
motifs computation. We can do this by first computing a
census of subgraphs of a determined size using ESU [10].
Then we construct a g-trie holding all subgraphs found
on the original network (or a subset based on a threshold
minimum frequency) and we apply our counting algorithm
to all generated random networks, one by one.

Compared to ESU or Grochow and Kellis, sequential g-
tries already present a substantial speedup that can be has
high as 100× faster [12] on some networks. If we then add
the almost linear speedup obtained by the parallel version
of g-tries, we can start to see the potential of this approach,
up to more than 1000× faster than the previoulsy best
sequential algorithm, when using 128 processors.

For an empirically verified example, we experimented this
approach with netsc network. We have an implementation
of the ESU and Grochow and Kellis algorithms, comparable
in performance with the author’s implementations, that uses
the same basic code framework as our g-trie implementation.
This allows us to isolate execution time differences in the
algorithms themselves. We were able to consistently achieve
speedups higher than 2000 in relation to the initial sequential
network-centric approach, and higher than 500 in relation to
the subgraphic-centric approach.

We note that for example ESU allows one to use sub-
graph sampling in order drastically reduce execution time.
However, this comes at the cost of accuracy in the results.
It remains that for a complete perfect computation, our
approach is a feasible option and we also plan to incorporate
sampling in our algorithm in the near future, allowing to gain
even more speed, trading it for the loss of some accuracy.

V. CONCLUSION

In this paper we presented a novel parallel algorithm to
count subgraphs. We used as a basis the g-trie data structure,
an efficient specialized multiway tree akin to a prefix tree
that uses common topologies in subgraphs in order to
prune the search three. We created an efficient search state
representation, with which we areable to stop, divide and
resume the computation. This allowed us to extend and adapt
the original g-trie matching algorithm and devise a receiver-
initiated scheme in order to obtain dynamic load balancing.
We used random polling for work distribution and we
collectively aggregate the results in the end. Our algorithm
also exhibits extra flexibility and adaptability made possible
by the use of throttling parameters that help to dynamically
control its behavior.

We tested our algorithm for a set of different represen-
tative networks and we achieved an almost linear speedup
up to 128 processors in all networks. We have shown that
this can allow not only faster response times, but also sub-
graphs limits previously unfeasible. We have also shown its
potential on a multidisciplinary application: finding network
motifs. The set of possible uses of the parallel algorithm is
however even broader in range.

For future work, we plan to automatically and dinamically
compute the threshold parameters Tsplit and Tcheck. We are
also exploring the notion of sampling in g-tries in order to
give the user the option of trading accuracy for better perfor-
mance. We will parallelize the network motif computation as
whole, in order to avoid having to synchronize processors
between each random network. Finally, we want to really
put to use our algorithm and apply it on real networks in
order to find previously unknown characteristics, like really
large network motifs.

ACKNOWLEDGMENTS

We thank Enrico Pontelli for the use of Inter Cluster in
the New Mexico State University. Pedro Ribeiro is funded
by an FCT Research Grant (SFRH/BD/19753/2004). This
work was also partially supported by project CALLAS of
the FCT (contract PTDC/EIA/71462/2006).

225

REFERENCES

[1] R. Albert and A. L. Barabasi, “Statistical mechanics of
complex networks,” Reviews of Modern Physics, vol. 74,
no. 1, 2002.

[2] L. da F. Costa, O. N. Oliveira Jr, G. Travieso, F. A. Rodrigues,
P. R. V. Boas, L. Antiqueira, M. P. Viana, and L. E. C. da
Rocha, “Analyzing and modeling real-world phenomena with
complex networks: A survey of applications,” ArXiv e-prints,
vol. 0711, no. 3199, 2007.

[3] L. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. V.
Boas, “Characterization of complex networks: A survey of
measurements,” Advances In Physics, vol. 56, p. 167, 2007.

[4] X. Yan, P. S. Yu, and J. Han, “Graph indexing: A frequent
structure-based approach,” in ACM SIGMOD Conference,
2004, pp. 335–346.

[5] I. Bordino, D. Donato, A. Gionis, and S. Leonardi, “Mining
large networks with subgraph counting,” in 8th IEEE Interna-
tional Conference on Data Mining (ICDM), 2008, pp. 737–
742.

[6] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,
and U. Alon, “Network motifs: simple building blocks of
complex networks.” Science, vol. 298, no. 5594, pp. 824–827,
2002.

[7] J. Köbler, U. Schöning, and J. Torán, The graph isomorphism
problem: its structural complexity. Basel, Switzerland:
Birkhauser Verlag, 1993.

[8] T. Kloks, D. Kratsch, and H. Müller, “Finding and counting
small induced subgraphs efficiently,” Information Processing
Letters, vol. 74, no. 3-4, pp. 115–121, 2000.

[9] M. Kuramochi and G. Karypis, “Finding frequent patterns in a
large sparse graph,” Data Mining and Knowledge Discovery,
vol. 11, no. 3, pp. 243–271, 2005.

[10] S. Wernicke, “Efficient detection of network motifs,”
IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. 3, no. 4, pp. 347–359, 2006.

[11] J. Grochow and M. Kellis, “Network motif discovery using
subgraph enumeration and symmetry-breaking,” Research in
Computational Molecular Biology, pp. 92–106, 2007.

[12] P. Ribeiro and F. Silva, “G-tries: an efficient data structure for
discovering network motifs,” in ACM Symposium on Applied
Computing, 2010.

[13] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “A comparison
of receiver-initiated and sender-initiated adaptive load shar-
ing (extended abstract),” ACM SIGMETRICS - Performance
Evaluation Review, vol. 13, no. 2, pp. 1–3, 1985.

[14] F. Schreiber and H. Schwobbermeyer, “Towards motif detec-
tion in networks: Frequency concepts and flexible search,” in
Proceedings of the International Workshop on Network Tools
and Applications in Biology (NETTAB04, 2004, pp. 91–102.

[15] M. Kuramochi and G. Karypis, “Frequent subgraph discov-
ery,” in IEEE International Conference on Data Mining, 2001,
p. 313.

[16] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discov-
ering frequent closed itemsets for association rules,” in 7th
International Conference on Database Theory, 1999, pp. 398–
416.

[17] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules,” in 20th International Conference on Very
Large Data Bases, 1994, pp. 487–499.

[18] T. Wang, J. W. Touchman, W. Zhang, E. B. Suh, and G. Xue,
“A parallel algorithm for extracting transcription regulatory
network motifs,” IEEE International Symposium on Bioinfor-
matics and Bioengineering, pp. 193–200, 2005.

[19] P. Ribeiro, F. Silva, and L. Lopes, “Parallel calculation of
subgraph census in biological networks,” in 1st International
Conference on Bioinformatics, Valencia, Spain, 2010.

[20] M. Schatz, E. Cooper-Balis, and A. Bazinet, “Parallel network
motif finding,” 2008.

[21] R. Ulanowicz, C. Bondavalli, and M. Egnotovich, “Network
analysis of trophic dynamics in south florida ecosystem, fy
97: The florida bay ecosystem,” Technical Report Ref. No.
[UMCES] CBL, pp. 98–123, 1998.

[22] V. Batagelj and A. Mrvar, “Pajek datasets,”
http://vlado.fmf.uni-lj.si/pub/networks/data/ ,
2006.

[23] D. J. Watts and S. H. Strogatz, “Collective dynamics
of ’small-world’ networks.” Nature, vol. 393, no. 6684,
pp. 440–442, 1998.

[24] M. Newman, “Network data sets,”
http://www-personal.umich.edu/˜mejn/netdata/ ,
2010.

[25] M. E. J. Newman, “Finding community structure in
networks using the eigenvectors of matrices,” Physical
Review E, vol. 74, no. 3, p. 036104, 2006.

[26] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu,
J. Zhang, S. Sun, L. Ling, N. Zhang, G. Li, and
R. Chen, “Topological structure analysis of the protein-
protein interaction network in budding yeast,” Nucleic
Acids Research, vol. 31, no. 9, pp. 2443–2450, 2003.

[27] E. D. Howe, “The free on-line dictionary of comput-
ing,” http://www.foldoc.org/, 2010.

[28] P. Sanders, “A detailed analysis of random polling dy-
namic load balancing,” in In International Symposium
on Parallel Architectures Algorithms and Networks.
IEEE, 1994, pp. 382–389.

[29] S. Wuchty, Z. Oltvai, and A. Barabasi, “Evolutionary
conservation of motif constituents within the yeast
protein interaction network,” Nature Genetics, vol. 35,
p. 176, 2003.

[30] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, “Net-
work motifs in the transcriptional regulation network of
escherichia coli,” Nature Genetics, vol. 31, no. 1, pp.
64–68, 2002.

[31] S. Valverde and R. V. Solé, “Network motifs in compu-
tational graphs: A case study in software architecture,”
Physical Review E, vol. 72, no. 2, 2005.

[32] K. Juszczyszyn, P. Kazienko, and K. Musiał, “Local
topology of social network based on motif analysis,”
in 12th international conference on Knowledge-Based
Intelligent Information and Engineering Systems, Part
II, 2008, pp. 97–105.

[33] S. Itzkovitz, R. Levitt, N. Kashtan, R. Milo,
M. Itzkovitz, and U. Alon, “Coarse-graining and self-
dissimilarity of complex networks.” Physical Review E,
vol. 71, no. 1 Pt 2, 2005.

[34] S. Wernicke and F. Rasche, “Fanmod: a tool for fast
network motif detection,” Bioinformatics, vol. 22, no. 9,
pp. 1152–1153, 2006.

226

