
A Survey on Subgraph Counting: Concepts, Algorithms
and Applications to Network Motifs and Graphlets

PEDRO RIBEIRO1, PEDRO PAREDES1,2, MIGUEL E.P. SILVA1,3, DAVID APARÍCIO1,4,
and FERNANDO SILVA1

1
DCC-FCUP & CRACS/INESC-TEC, University of Porto, Portugal

2
Carnegie Mellon University, USA

3
University of Manchester, UK

4
Feedzai

Computing subgraph frequencies is a fundamental task that lies at the core of several network analysis

methodologies, such as network motifs and graphlet-based metrics, which have been widely used to categorize

and compare networks frommultiple domains. Counting subgraphs is however computationally very expensive

and there has been a large body of work on efficient algorithms and strategies to make subgraph counting

feasible for larger subgraphs and networks.

This survey aims precisely to provide a comprehensive overview of the existing methods for subgraph

counting. Our main contribution is a general and structured review of existing algorithms, classifying them

on a set of key characteristics, highlighting their main similarities and differences. We identify and describe

the main conceptual approaches, giving insight on their advantages and limitations, and provide pointers to

existing implementations. We initially focus on exact sequential algorithms, but we also do a thorough survey

on approximate methodologies (with a trade-off between accuracy and execution time) and parallel strategies

(that need to deal with an unbalanced search space).

Keywords: Subgraphs, Subgraph Enumeration, Network Motifs, Graphlets, Analytical Algorithms, Approxi-

mate Counting, Sampling, Parallel Computation, Unbalanced Work Division

1 INTRODUCTION
Networks (or graphs) are a very flexible and powerful way of modeling many real-world systems.

In its essence, they capture the interactions of a system, by representing entities as nodes and their

relations as edges connecting them (e.g., people are nodes in social networks and edges connect

those that have some relationship between them, such as friendships or citations). Networks

have thus been used to analyze all kinds of social, biological and communication processes [35].

Extracting information from networks is therefore a vital interdisciplinary task that has been

emerging as a research area by itself, commonly known as Network Science [15, 90].

One very common and important methodology is to look at the networks from a subgraph

perspective, identifying the characteristic and recurrent connection patterns. For instance, network

motif analysis [121] has identified the feed-forward loop as a recurring and crucial functional pattern

in many real biological networks, such as gene regulation and metabolic networks [101, 208]. An-

other example is the usage of graphlet-degree distributions to show that protein-protein interaction

networks are more akin to geometric graphs than with traditional scale-free models [138].

At the heart of these topologically rich approaches lies the subgraph counting problem, that is,

the ability to compute subgraph frequencies. However, this is a very hard computational task. In fact,

determining if one subgraph exists at all in another larger network (i.e., subgraph isomorphism [182])

is an NP-Complete problem [34]. Determining the exact frequency is even harder, and millions or

even billions of subgraph occurrences are typically found even in relatively small networks.

Authors’ contacts: Pedro Ribeiro (pribeiro@dcc.fc.up.pt), Pedro Paredes (preisben@cs.cmu.edu), Miguel E.P. Silva

(miguel.silva@manchester.ac.uk), David Aparício (david.aparicio@feedzai.com), Fernando Silva (fds@dcc.fc.up.pt)

This work was made when all the authors were at DCC-FCUP.

ar
X

iv
:1

91
0.

13
01

1v
1

 [
cs

.D
S]

 2
9

O
ct

 2
01

9

2 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

Given both its usefulness and hard tractability, subgraph counting has been raising a considerable

amount of interest from the research community, with a large body of published literature. This

survey aims precisely to organize and summarize these research results, providing a comprehensive

overview of the field. Our main contributions are the following:

• A comprehensive review of algorithms for exact subgraph counting.We give a struc-

tured historical perspective on algorithms for computing exact subgraph frequencies. We

provide a complete overview table in which we employ a taxonomy that allows to classify all

algorithms on a set of key characteristics, highlighting their main similarities and differences.

We also identify and describe the main conceptual ideas, giving insight on their main advan-

tages and possible limitations. We also provide links to existing implementations, exposing

which approaches are readily available.

• A comprehensive review of algorithms for approximate subgraph counting. Given

the hardness of the problem, many authors have resorted to approximation schemes, which

allow trading some accuracy for faster execution times. As on the exact case, we provide

historical context, links to implementations and we give a classification and description of key

properties, explaining how the existing approaches deal with the balance between precision

and running time.

• A comprehensive review of parallel subgraph counting methodologies. It is only

natural that researchers have tried to harness the power of parallel architectures to provide

scalable approaches that might decrease the needed computation time. As before, we provide

an historical overview, coupled with classification on a set of important aspects, such as

the type of parallel platform or availability of an implementation. We also give particular

attention to how the methodologies tackle the unbalanced nature of the search space.

We complement this journey trough the algorithmic strategies with a clear formal definition of
the subgraph counting problem being discussed here, an overview of its applications and complete

and a large number of references to related work that is not directly in the scope of this article. We

believe that this survey provides the reader with an insightful and complete perspective on the

field, both from a methodological and an application point of view.

The remainder of this paper is structured as follows. Section 2 presents necessary terminology,

formally describes subgraph counting, and describes possible applications related subgraph counting.

Section 3 reviews exact algorithms, divided between full enumeration and analytical methods.

Approximate algorithms are described in Section 4 and parallel strategies are presented in Section 5.

Finally, in Section 6 we give our concluding remarks.

A Survey on Subgraph Counting 3

2 PRELIMINARIES
2.1 Concepts and Common Terminology
This section introduces concepts and terminology related to subgraph counting that will be used

throughout this paper. A network is modeled with the mathematical object graph, and the two terms

are used interchangeably. Networks considered in this work are simple labeled graphs. Here we are
interested in algorithms that count small, connected, non-isomorphic subgraphs on a single network.

Graph: A graph G is comprised of a set V (G) of vertices/nodes and a set E(G) of edges/connections.
Nodes represent entities and edges correspond to relationships between them. Edges are repre-

sented as pairs of vertices of the form (u,v), where u,v ∈ V (G). In directed graphs, edges (u,v)
are ordered pairs (u → v) whereas in undirected graphs there is no order since nodes are always

reciprocally connected (u ⇄ v). The size of a graph is the number of vertices in the graph and

it is written as |V (G)|. A k-graph is a graph of size k . A graph is considered simple if it does not
contain multiple edges (two or more edges connecting the same vertex pair) nor self-loops (an

edge connecting a vertex to itself). Nodes are labeled from 0 to |V (G)| − 1, and L(u) < L(v) means

than u has a smaller label than v .

Neighborhood and Degree: The neighborhood of vertexu ∈ V (G), denoted as N (u), is composed

by the set of vertices v ∈ V (G) such that (u,v) ∈ E(G). The degree of u, written as deд(u), is
the given by |N (u)|. The exclusive neighborhood Nexc (u, S) are the neighbors of u that are not

neighbors of any v ∈ S with u , v .

Graph Isomorphism: A mapping of a graph is a bijection where each vertex is assigned a value.

In the context of this work, since graphs are labeled, a mapping is a permutation of the node

labels. Two graphs G and H are said to be isomorphic if there is a one-to-one mapping between

the vertices of both graphs, such that there is an edge between two vertices of G if and only if

their corresponding vertices in H also form an edge (preserving direction in the case of directed

graphs). More informally, isomorphism captures the notion of two networks having the same

edge structure – the same topology – if we ignore distinction between individual nodes. Figure 1

illustrates this concept. Despite looking different, the structure of the graphs is the same, and they

are isomorphic. The labels in the nodes illustrate mappings that would satisfy the conditions given

for isomorphism.

0

1

2 3

4

5

4

3

2 1

0

5

2

3

1 4

0

5

2

0

1 4

3

5

Fig. 1. Four isomorphic undirected graphs of size 6.

Subgraphs: A subgraph Gk of a graph G is a k-graph such that V (Gk) ⊆ V (G) and E(Gk) ⊆ E(G).
A subgraph is induced if ∀(u,v) ∈ E(GK) ↔ (u,v) ∈ E(G) and is said to be connected when all

pairs of vertices have a sequence of edges connecting them. Graphlets [138] are small, connected,

non-isomorphic, induced subgraphs. Figure 2 presents all 4-node undirected graphlets.

G6G5G4G3G1 G2

Fig. 2. All non-isomorphic undirected subgraphs (or graphlets) of size 4.

4 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

Orbit: The set of isomorphisms of a graph into itself is called the group of automorphisms: two
vertices are said to be equivalent when there exists some automorphism that maps one vertex into

the other. This equivalence relation partitions V (G) into equivalence classes, which we refer to

as orbits. Therefore, orbits are all the unique positions of a subgraph. For instance, a k−hub has
k nodes but only 2 orbits: one center-orbit inhabited by a single node and a leaf-orbit where the
remaining k-1 nodes are. Nodes at the same orbit are topologically equivalent. Figure 3 shows all

different orbits of the graphlets from Figure 2.

1

1

1

0
2

2

3

3

4

4

4

4

5

6 6

7

8 8

9

9

10

10
10

10

Fig. 3. The 10 orbits of all 4-node undirected graphlets.

Match and Frequency: A match of graph H in graphG occurs when there is a set of nodes from

V (G) that induce H . In other words,Gk is a subgraph ofG that is isomorphic to H . Figure 4 shows

the matches of three different subgraphs (A, B and C) on graph G. The frequency of H in G is the

number of different Gk ⊆ G that induce H . Two matches are considered different if they do not

share all nodes and edges.

Graphlet-Degree Distribution : It is an extension of the node-degree distribution and both can

be used for graph characterization and comparison. Notice that the node-degree can be seen

as simply the orbit a in Figure 4. The graphlet-degree vector GDV (v) is a feature vector of v
specifying how many times it occurs in each orbit. The graphlet-degree distribution GDDG is a

feature matrix of graph G where cell (i, j) indicates the number of nodes that appear i times in

orbit j, and can be constructed from FrG , the frequency matrix where each line is the GDV of a

single node.

G

orbit c dba

vGDV () 2 1 0 2

v

A B C c dba

1 0 2w

x

y

z

2
w

Fr x

v

y
z

G
=

3 1 2 1
3 1 2 1
1
1

2
2

0
0

0
0

c
d

b
a
1 2 3

GDD
G
=

2 1 2
3 0 0

40 0
2 1 0

a

a

b

b b

c

d d

Fig. 4. GDV (v) obtained by enumerating all undirected graphlet-orbits of sizes 2 and 3 (A, B and C) touching
v , and resulting FrG and GDDG matrices for the complete 3-subgraph census

2.2 Problem statement
Making use of previous concepts and terminology, we now give a more formal definition of the

problem tackled by this survey:

Definition 2.1 (SubgraphCounting). Given a set G of non-isomorphic subgraphs and a graph
G , determine the frequency of all induced matches of the subgraphs Gs ∈ G in G . Two occurrences are
considered different if they have at least one node or edge that they do not share.

A Survey on Subgraph Counting 5

This problem is also known as subgraph census. In short, one wants to extract the occurrences

of all subgraphs of a given size, or just a smaller set of "interesting" subgraphs, contained in a

large graph G. Note how here the input is a single graph, in contrast with Frequent Subgraph

Mining (FSM) where collections of graphs are more commonly used (differences between Subgraph

Counting and FSM are discussed in Section 2.4.5).

Approaches diverge on which subgraphs are counted inG. Network-centric methods extract all

k−node occurrences inG and then assess each occurrence’s isomorphic type. On the other end of the

spectrum, subgraph-centric methods first pick a isomorphic class and then only count occurrences

matching that class inG. Therefore, subgraph-centric methods are preferable to network-centric

algorithms when only one or a few different subgraphs are to be counted. Set-centric approaches
are middle-ground algorithms that take as input a set of interesting subgraphs and only count those

onG . This work is mainly focused on network-centric algorithms, while not limited to them, since:

(a) exploring all subgraphs offers the most information possible when applying subgraph counting

to a real dataset, (b) hand-picking a set of interesting subgraphs might might be hard or impossible

and could be heavily dependent on our knowledge of the dataset, (c) it is intrinsically the most

general approach. It is obviously possible to use subgraph-centric methods to count all isomorphic

classes, simply by executing the method once per isomorphic type. However, that option is only

feasible for small subgraph sizes because larger k values produce too many subgraphs (see Table 1)

and it is likely that a network only has a small subset of them, meaning that the method would

spend a considerable amount of time looking for features that do not exist, while network-centric

methods always do useful work since they count occurrences in the network.

Table 1. Number of different undirected and directed subgraphs (i.e., isomorphic classes), as well as their
respective orbits, depending on the size of the graphlets.

Undirected Directed

k #Subgraphs #Orbits #Subgraphs #Orbits

2 1 1 2 3 (1.5 × #Subgraphs)

3 2 3 15 30 (2.0 × #Subgraphs)

4 6 11 214 697 (3.3 × #Subgraphs)

5 21 58 9,578 44,907 (4.7 × #Subgraphs)

6 112 407 1,540,421 9,076,020 (5.9 × #Subgraphs)

7 823 4,306 872,889,906 ≈ 7 × #Subgraphs

8 11,117 72,489 1,792,473,955,306 ≈ 8 × #Subgraphs

9 261,080 2,111,013 13,026,161,682,466,252 ≈ 9 × #Subgraphs

Here we are mainly interested in algorithms that count induced subgraphs, but non-induced

subgraphs counting algorithms are also considered. Counting one or the other is equivalent since it

is possible to obtain induced occurrences from non-induced occurrences, and vice-versa. However,

we should note that, at the end of the counting process, induced occurrences need to be obtained

by the algorithm. This choice penalizes non-induced subgraph counting algorithms since the

transformation is quadratic on the number of subgraphs [52]. Some algorithms count orbits instead

of subgraphs [62]. However, counting orbits can be reduced to counting subgraphs and, therefore,

these algorithms are also considered.

We should note that we only consider the most common and well studied subgraph frequency

definition, in which different occurrences might share a partial subset of nodes and edges, but there

are other possible frequency concepts, in which this overlap is explicitly disallowed [47, 167].

6 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

2.3 Algorithms Not Considered
In this work we focus on practical algorithms that are capable of counting all subgraphs of a given

size. Therefore, algorithms that only target specific subgraphs are not considered (e.g., triads [163],

cliques [7, 51], stars [37, 54] or subtrees [91]). Furthermore, given our focus on generalizability,

we do not consider algorithms that are only capable of counting sugraphs in specific graphs (e.g.,

bipartite networks [161], trees [36]), or that only count local subgraphs [38].

Graphs used throughout this work are simple, have a single layer of connectivity and do not

distinguish the node or edge types with qualitative or quantitative features. Therefore we do

not discuss here algorithms that use colored nodes or edges [53, 58, 148], and neither those that

consider networks that are heterogeneous [57, 156], multilayer [23, 143], labelled/attributed [123],

probabilistic [162] or any kind of weighted graphs [197].

Finally, the networks we consider are static and do not change their topology. We should however

note that there has been an increasing interest in temporal networks, that evolve over time [66].

Some algorithms beyond the scope of this survey try to tackle temporal subgraph counting, either by

considering temporal networks as a series of static snapshots [14, 70], by timestamping edges [129],

or by considering a stream of small updates to the graph topology [27, 77, 166, 173].

2.4 Applications and Related Problems
2.4.1 Subgraph Isomorphism. Given two graphsG andH , the subgraph isomorphism problem is the

computational task of determining if G contains a subgraph isomorphic to H . Although efficient

solutions might be found for specific graph types (e.g., linear solutions exist for planar graphs [48]),

this is a known NP-Complete problem for general graphs [34], and can be seen as much simpler

version of counting, that is, determining if the number of occurrences is bigger than zero. This task

is closely related to the graph isomorphism problem [107, 108], that is, the task of determining if

two given graphs are isomorphic. Since many subgraph counting approaches rely on finding the

subgraphs contained in a large graph and then checking to what isomorphic class the subgraphs

found belong to, subgraph isomorphism can be seen as an integral part of them. The well known

and very fast nauty tool [106] is used by several subgraph counting algorithms to assess the type

of the subgraph found [130, 149, 196].

2.4.2 Subgraph Frequencies. The small patterns found in large graphs can offer insights about the

networks. By considering the frequency of all k-subgraphs, we have a very powerful and rich feature
vector that characterizes the network. There has been a long tradition on using the triad census on

the analysis of social networks [191], and they have been used as early as in the 70s to describe

local structure [65]. Examples of applications in this field include studying social capital features

such as brokerage and closure [137], discovering social roles [42], seeing the effect of individual

psychological differences on network structure [76] or characterizing communication [181] and

social networks [28]. Given the ubiquity of graphs, these frequencies have also been used on many

other domains, such as in biological [175], transportation [184] or interfirm networks [99].

2.4.3 Network Motifs. A subgraph is considered a network motif if it is somehow exceptional.

Instead of simply using a frequency vector, motif based approaches construct a significance profile
that associates an importance to each subgraph, typically related to how overrepresented it is. This

concept first appeared in 2002 and it was first defined as subgraphs that occurred more often than

expected when compared against a null model [121]. The most common null model is to keep the

degree sequence and with this we can obtain characteristic network fingerprints that have been

shown to be very rich and capable of classifying networks into distinct superfamilies [120]. Network

motif analysis has since been in a vast range of applications, such as in the analysis of biological

A Survey on Subgraph Counting 7

networks (e.g., brain [177], regulation and protein interaction [204] or food webs [16]), social

networks (e.g., co-authorship [32] or online social networks [43]), sports analytics (e.g., football

passing [17]) or software networks (e.g., software architecture [183] or function-call graphs [199]).

In order to compute the significance profile of motifs in a graphG, most conceptual approaches

rely on generating a large set of R(G) of similar randomized networks that serve as the desired

null model. Thus, subgraph counting needs to be performed both on the original network and

on the set of randomized networks. If the frequency of a subgraph S is significantly bigger in G
than it its average frequency in R(G), we can consider S to be a network motif of G [79]. Other

approaches try to avoid exhaustive generation of random networks and, thus, avoid also counting

subgraphs on them, by following a more analytical approach capable of providing estimations

of the expected frequencies (e.g., using an expected degree model [117, 135, 165] or a scale-free

model [178]. Nevertheless, there is always the need of counting subgraphs in the original network.

While network motifs are usually about induced subgraph occurrences [121, 198], there are some

motif algorithms that count non-induced occurrences instead [92, 126]. Moreover, although most

of the network motifs usages assume the previously mentioned statistical view on significance as

overrepresentation, there are other possible approaches [200] such as using information theory

concepts (e.g., motifs based on entropy [1, 33], subgraph covers [192], or minimum description

length [22]). We should also note that some approaches try to better navigate the space of "inter-

esting" subgraphs, so that reaching larger motif sizes can be reached not by searching all possible

larger k-subgraphs, but instead by leveraging computations of smaller motifs [97, 134].

Finally, we should note that several authors use the term motif to refer to small subgraphs, even

when it does not imply any significance value beyond simple frequency on the original network.

2.4.4 Orbit-Aware Approaches and Network Alignment. When authors use the term graphlet, they
commonly take orbits into consideration, and use metrics such as the graphlet-degree distribution

(GDD, see details in section 2.1), a concept that appeared in 2007 [138]. In this way, graphlet

algorithms count how many times each node appears in each orbit. Unlike motifs, graphlets do

not usually need a null model (i.e., networks are directly compared by comparing their respective

GDDs). These orbit-aware distributions can be used for comparing networks. For instance, they

have shown that protein interaction networks are more akin to random geometric graphs than

to traditional scale-free networks [138]. Moreover, they are also used to compare nodes (using

graphlet-degree vectors). This makes them useful for network alignment tasks, where one needs
to establish topological similarity between nodes from different networks [118]. Several graphlet-

based network alignment algorithms have been proposed and shown to work very well for aligning

biological networks [11, 87, 88, 100, 179].

2.4.5 Frequent Subgraph Mining (FSM). FSM algorithms find subgraphs that have a support higher
than a given threshold. The most prevalent branch of FSM takes as input a bundle of networks and

finds which subgraphs appear in a vast number of them - refereed to as graph transaction based
FSM [74]. These algorithms [69, 125, 202] heavily rely on the Downward Closure Property (DCP)

to efficiently prune the search space. Algorithms for subgraph counting, which is our focus, can

not, in general, rely on the DCP since it is not possible to know if growing an infrequent k-node
subgraph will result, or not, in a frequent k + 1 subgraph. Furthermore, we are not only interested

in frequent subgraphs but in all of them, since rare subgraphs can also give information about

the network’s topology. A less prominent branch of FSM, single graph based FSM, targets frequent

subgraphs in a single large network, much like our subgraph counting problem. However, they

adopt various support metrics that allow for the DCP to be verified, which, as stated previously, is

not the case in the general subgraph counting problem [74].

8 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

2.5 Other Surveys and Related Work
To the best of our knowledge there is no other comparable work to this survey in terms of scope,

thoroughness and recency. Most of the already existing surveys that deal with subgraph counting

are directly related to network motif discovery. Some of them are from before 2015 and therefore

predate many of the most recent algorithmic advances [82, 105, 150, 180, 198], and all of them

only present a small subset of the strategies discussed here. There are more recent review papers,

but they all differ from our work and have a much smaller scope. Al Hasan and Dave [6] only

consider triangle counting, Xia et al. [200] focus mainly on significance metrics, and finally, while

we here present a structured overview of more than 50 exact, approximate and parallel algorithmic

approaches, Jain and Patgiri [72] presents a much simpler description of 5 different algorithms.

3 EXACT COUNTING
As subgraph counting evolved over the years, a multitude of algorithms andmethodswere developed

that address the problem in different ways and for distinct purposes. As such, it is useful, although

not easy, to group strategies together in order to facilitate their understanding as well as learn why

and how they came about. With this in mind we divided this section into two major groups of

algorithms, namely enumeration and analytic approaches, which are further subdivided in their

respective section. Table 2 summarizes our proposed taxonomy composed of six aspects, ordered

by their publication year: (i) approach (enumeration or analytic), (ii) type (a subgroup of the

underlying approach), (iii) k-restriction (does the method only work for certain subgraph sizes?),

(iv) orbit awareness (does the method also count orbits?), (v) directed (is the method applicable to

directed graphs?) and (vi) if code is publicly available. At the end of this section, we also present

some related theoretical results that influenced some of the algorithms we discuss.

Table 2. Overview of all major exact algorithms.

Year Approach Type k-restriction Orbit Directed Code

Mfinder [121] 2002 Enum. Classical None ✗ ✓ [9]

ESU [193, 196] 2005 Enum. Classical None ✗ ✓ [194]

Itzhack [71] 2007 Enum. Classical ≤ 5 ✗ ✓ ✗

Grochow [56] 2007 Enum. Single-subgraph None ✗ ✓ ✗

Kavosh [78] 2009 Enum. Classical None ✗ ✓ [122]

Gtries [147, 149] 2010 Enum. Encapsulation None ✓ ✓ [144]

Rage [102, 103] 2010 Analytic Decomposition ≤ 5 ✗ ✓ [104]

NeMo [85] 2011 Enum. Single-subgraph None ✗ ✓ [155]

Netmode [92] 2012 Enum. Encapsulation ≤ 6 ✗ ✓ [93]

SCMD [185] 2012 Enum. Encapsulation None ✗ ✗ ✗

acc-Motif [110, 111] 2012 Analytic Decomposition ≤ 6 ✗ ✓ [109]

ISMAGS [40, 68] 2013 Enum. Single-subgraph None ✗ ✓ [133]

Quatexelero [80] 2013 Enum. Encapsulation None ✗ ✓ [81]

FaSE [130] 2013 Enum. Encapsulation None ✗ ✓ [145]

ENSA [205] 2014 Enum. Encapsulation None ✗ ✓ ✗

Orca [62, 63] 2014 Analytic Matrix-based ≤ 5 ✓ ✗ [64]

Hash-ESU [75] 2015 Enum. Encapsulation None ✗ ✓ ✗

Song [176] 2015 Enum. Encapsulation None ✗ ✓ ✗

Ortmann [127, 128] 2016 Analytic Matrix-based ≤ 4 ✓ ✓ ✗

PGD [3, 5] 2016 Analytic Decomposition ≤ 4 ✓ ✗ [2]

Patcomp [61] 2017 Enum. Encapsulation None ✗ ✓ ✗

Escape [136] 2017 Analytic Decomposition ≤ 5 ✓ ✗ [168]

Jesse [112, 114] 2017 Analytic Matrix-based None ✓ ✗ [113]

A Survey on Subgraph Counting 9

3.1 Enumeration approaches
A significant part of the history of practical subgraph counting algorithms is intertwined with net-

work motif analysis. This is because when motifs were first proposed [121], they raised the interest

and necessity for efficient subgraph counting, which has since been growing and establishing itself

as a very important graph analysis primitive with multidisciplinary applicability.

Exact subgraph counting consists of counting and categorizing (i.e., determining the isomorphic

class of) all subgraph occurrences. Early methods first enumerate all connected subgraphs with

k-vertices and only afterwards categorize each subgraph found using a graph isomorphism tool like

nauty [106]. We refer to these as classical methods.

Many methods followed this strategy, until new methods appeared that counted the frequency of

a single-subgraph category instead, thus avoiding the categorization step necessary by the classical

methods. This was done by only enumerating one particular subgraph of interest. Even though they

were not the fastest methods for a network-centric application, they were an important milestone

towards the methods that followed. We refer to these as single-subgraph-search methods.

The next step was to combine the two previous ideas into a more efficient approach: merge the

enumeration and categorization steps together. This was achieved in different ways, such as using

common topological features of subgraphs or pre-computing some information about subgraphs to

avoid repeated computations of isomorphism. We refer to these as encapsulation methods.

The next sections thoroughly delve into the most well-known methods of each category, giving

an historical perspective on each, in an effort to understand each method’s breakthroughs and

drawbacks, and how subsequent algorithms built upon them to reduce (or mitigate) their limitations.

3.1.1 Classical methods. In the seminal work,Milo et al. [121] first defined the concept of network

motif and also proposed MFinder, an algorithm to count subgraphs. MFinder is a recursive

backtracking algorithm, that is applied to each edge of the network. A given edge is initially stored

on a set S , which is recursively grown using edges that are not in S but share one endpoint with

at least one edge in S . When |S | = k , the algorithm checks if the subgraph induced by S has been

found for the first time by keeping a hash table of subgraphs already found. If the subgraph was

reached for the first time, the algorithm categorizes it and updates the hash table (otherwise, the

subgraph is ignored).

Another very important work, byWernicke [193], proposed a new algorithm called ESU, also

known as FANMOD due to the graphical tool that uses ESU as its core algorithm [196]. This

algorithm greatly improved onMFinder by never counting the same subgraph twice, thus avoiding

the need to store all subgraphs in a hash table. ESU applies the same recursive method to each

vertex v of the input graph G: it uses two sets VS and VE , which initially are set as VS = {v} and
VE = N (v). Then, for each vertexu inVE , it removes it fromVE and makesVS = VS ∪{u}, effectively
adding it to the subgraph being enumerated and VE = VE ∪ {u ∈ Nexc (u,VS) : L(u) > L(v)}
(where v is the original vertex to be added to VS). The Nexc here makes sure we only grow the

list of possibilities with vertices not already in VS and the condition L(u) > L(v) is used to break

symmetries, consequently preventing any subgraph from being found twice. This process is done

several times untilVS has k elements, which meansVS contains a single occurrence of a k-subgraph.
At the end of the process, ESU performs isomorphism tests to assess the category of each subgraph

occurrence, which is a considerable bottleneck.

Itzhack et al. [71] proposed a new algorithm that was able to count subgraphs using constant

memory (in relation to the size of the input graph). Itzhack et al. did not name their algorithm, so

we will refer to it as Itzhack from here on. Itzhack avoids explicitly computing the isomorphism

class of each counted subgraph by caching it for each different adjacency matrix, seen as a bitstring.

This strategy only works for subgraphs of k up to 5, since it would use too much memory for higher

10 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

values. Additionally, the enumeration algorithm is also different from ESU. This method is based

on counting all subgraphs that include a certain vertex, then removing that node from the network

and repeating the same procedure for the remaining nodes. For each vertex v , first the algorithm
considers the tree composed of the k neighborhood of v , that is, a tree of all vertices at a distance
of k − 1 or less from v . This is very similar to the tree obtained from performing a breadth-first

search starting on v , with the difference that vertices that appear on previous levels of the tree

are excluded if visited again. This tree can be traversed in a way that avoids actually creating it

by following neighbors, and thus only using constant memory. To perform the actual search, the

method uses the concept of counting patterns, which are different combinatorial ways of choosing

vertices from different levels of the tree. For instance, if we are searching for 3-subgraphs, and

considering that at the tree root level we can only have one vertex, we could have the combinations

with pattern 1-2 (one vertex at root level 0, two vertices at level 1) or with pattern 1-1-1 (one vertex

at root level 0, one at level 1 and one at level 2). In an analogous way, 4-subgraphs would lead to

patterns 1-1-1-1, 1-1-2, 1-2-1 and 1-3. Itzhack et al. claimed that Itzhack is over 1,000 times faster

than ESU, however the author of ESU disputed this claim in [195], stating that the experimental

setup was faulty and claimed that Itzhack is only slightly faster than ESU (its speedup could be

attributed mainly to the caching procedure).

Kashani et al. [78] proposed a new algorithm called Kavosh. Like ESU and Itzhack, the core

idea of the Kavosh is to find all subgraphs that include a particular vertex, then remove that

vertex and continue from there iteratively. Its functioning is very similar to that of Itzhack: it

builds an implicit breadth-first search tree and then uses a similar concept to the counting patterns

used by Itzhack. However, it is a more general method since it does not perform any caching of

isomorphism information, allowing the enumeration of larger subgraphs.

3.1.2 Single-subgraph-search methods. The idea that it is possible to obtain a very efficient method

of counting a single subgraph category was first noticed by Grochow and Kellis [56]. Their base

method consists on a backtracking algorithm that is applied to each vertex. It tries to build a partial

mapping from the input graph to the target subgraph (the subgraph it is trying to count) by building

all possible assignments based on the number of neighbours. Grochow and Kellis also suggested an

improvement based on symmetry breaking, using the automorphisms of the target subgraph to

build set of conditions, of the form L(a) < L(b), to prevent the same subgraph from being counted

multiple times. This symmetry breaking idea allowed for considerable improvements in runtime,

specially for higher values of k . Grochow and Kellis did not name their algorithm, so we will refer

to it as the Grochow algorithm from here on.

Koskas et al. [85] presented a new algorithm which they called NeMo. This method draws

some ideas from Grochow, since it performs a backtrack based search with symmetry breaking in

a similar fashion. Although, instead of using conditions on vertex labels, it finds the orbits of the

target subgraph and forces an ordering between the labels of the vertices from the input graph that

match vertices in the target subgraph with the same orbit. Additionally, it uses a few heuristics

to prune the search early, such as ordering the vertices from the target graph such that for all

1 ≤ i ≤ k , its first i vertices are connected.
ISMAGS, which is based on its predecessor ISMA [40], was proposed by Houbraken et al. [68].

The base idea of this method is similar to the one in Grochow, however, the authors use a clever

node ordering and other heuristics to speedup the partial mapping procedure. Additionally, their

symmetry breaking conditions are significantly improved by applying several heuristic techniques

based on group theory.

3.1.3 Encapsulation methods. The ideas applied to Grochow introduced a way of escaping the

classic setup of enumerating and then categorizing subgraphs, albeit focusing on a single subgraph.

A Survey on Subgraph Counting 11

The next step would be to extend this idea to a more general algorithm, which is appropriate to a

full subgraph counting. This was first done by Ribeiro and Silva [147] using a new data-structure

they called the g-trie, for graph trie. The g-trie is a prefix tree for graphs, each node represents a

different graph, where the graph of a parent node has shared common substructures with the graph

of its child node, which are characterized precisely by the vertices of the graph of the child node.

The root represents the one vertex graph with one child, a node representing the edge graph, which

in turn has two children representing the triangle graph and the 3-path, and so on. This tree can be

augmented by giving each node symmetry breaking conditions similar to those fromGrochow. The

authors show how to efficiently build this data-structure and augment with the symmetry breaking

conditions for any set of graphs. Also, they describe a subgraph counting algorithm based on using

this data-structure along with an enumeration technique similar to that of Grochow. However,

since this data-structure encapsulates the information of multiple graphs in an hierarchical order, it

achieves a much faster full subgraph counting algorithm. The usage of this data-structure has been

significantly extended since its original publication, such as a version for colored networks [148]

or an orbit aware version [13]. A more detailed discussion of the data-structure and the subgraph

counting algorithm is presented in [149]. Also, even though the subgraph counting algorithm was

not named, we will refer to it as the Gtrie algorithm from here on.

Gtrie encapsulates common topological information of the subgraphs being counted, but there

are other approaches, such as Li et al. [92], who developed Netmode. It builds on Kavosh, by

using its enumeration algorithm, but instead of using nauty to perform the categorization step, it

makes use of a cache to store isomorphism information and thus is able to perform it in constant

time. This is very similar to what Itzhack does, however, Li et al. suggested an improvement that

allows Netmode to scale to k = 6 without using too much memory. This improvement is based on

the reconstruction conjecture [60], that states that two graphs with 3 or more vertices are isomorphic

if their deck (the set of isomorphism classes of all vertex-deleted subgraphs of a graph) is the same.

This is known to be false for directed graphs with k = 6, but there are very few counter-examples

that can be directly stored such as in the k ≤ 5 case, thus Netmode applies the conjecture for all

the remaining cases by building their deck, hashing its value and storing its count in a table.

Wang et al. [185] proposed a new method called SCMD that counts subgraphs in compressed

networks. SCMD applies a symmetry compression method that finds sets of vertices that are in an

homeomorphism to cliques or empty subgraphs, which have the additional property that any other

vertex that connects to a vertex in the set is connected to all other vertices in the set. These sets of

vertices form a partition of the graph that is obtained using a method published in [98], which is

based on looking at vertices in the same orbit. This is a versatile method that can use algorithms

like ESU or Kavosh to enumerate all subgraphs of sizes from 1 to k in the compressed network.

Finally, SCMD “decompresses” the results by looking at all the different enumerated subgraphs and

calculating all the combinations that can form a decompressed subgraph. For example, for k = 3, if

a compressed 2-subgraph is found containing two vertices: one compressed vertex representing a

clique of 5 uncompressed vertices and a compressed vertex representing a single vertex from the

uncompressed graph, it results in

(
5

2

)
+
(
5

3

)
triangles from the uncompressed graph, obtained by

taking two vertices from the clique vertex and one from the other vertex, which are all connected

and thus form a triangle,

(
5

2

)
, plus taking three vertices from the clique vertex

(
5

3

)
. The authors argue

that most complex networks exhibit high symmetries and thus are improved by the application of

this technique. Even though their work only includes undirected graphs, the authors affirm it is

easy to extend the same concepts to directed networks. Xu et al. described another algorithm that

enumerates subgraphs on compressed networks, called ENSA [201, 205]. Their method is based

12 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

on an heuristic graph isomorphism algorithm, and they also discuss an optimization based on

identifying vertices with unique degrees.

Following the ideas first applied in Gtrie, Khakabimamaghani et al. [80] proposed a new

algorithm they called Quatexelero. Quatexelero is built upon any incremental enumeration

algorithm, like ESU, and it implements a data structure similar to a quaternary tree. Each node

in the tree represents a graph, that can be built by looking into the nodes from the path from it

to the root of the tree. Additionally, all graphs represented by a single node belong to the same

isomorphism class. To fill the tree, initially a pointer to the root of the tree is set. Whenever a

new vertex is added to the partial enumeration map,Quatexelero looks into the existing edges

between the newly added node and the previously existing nodes in the mapping and stores its

information in the quaternary tree. For each vertex in the mapping, depending on whether there is

no edge, an inedge, an outedge or a biedge between it and the newly added vertex, the pointer is

assigned to one of its four children, creating it if it was nonexistent.

Parallel to the publishing of the work of Quatexelero, Paredes and Ribeiro [130] proposed

FaSE. The idea of FaSE is similar to the one from Quatexelero, however, instead of using a

quaternary tree, it uses a data-structure similar to the g-trie, albeit without the symmetry breaking

condition augmentation. This data-structure has the same property as the quaternary tree that

every node represents a graph and each node is built using the adjacency information of a newly

added vertex in relation to the vertices present in its parent.

Other works that extend these ideas have been proposed subsequently. For example, Jing and

Cheng [75] proposeHash-ESU, an algorithm based on the same idea fromQuatexelero and FaSE,

but which hashes the adjacency information instead of storing it in a tree. Another example is the

work by Song et al. [176]. They describe a method that starts by enumerating all k = 3 subgraphs

using ESU and then use dynamic programming to grow connected sets and perform the counting.

Their algorithm was not named, so we will refer to it as the Song algorithm from here on.

BothQuatexelero and FaSE have potential memory issues, since there may be several nodes

representing the same graph, which is not a problem for Gtrie since it only stores one copy of

each possible graph. To address this, Himamshu and Jain [61] proposed Patcomp. Their method

compresses the quaternary tree using a technique similar to a radix tree, however, their method is

2 to 3 times slower and only saves around 10% of the memory usage.

3.2 Analytic approaches
Since the overall goal of the problem we are aiming to solve is to count subgraphs, it is not necessary

to explicitly enumerate each connected set of size k . Here lies the difference between counting and
enumerating or listing. It was with this in mind that a new class of methods emerged striving to

avoid enumerating all subgraphs in a graph. We can point two main approaches to this type of

counting.

The first one tries to relate the frequency of each subgraph with the frequencies of other

subgraphs of the same or smaller size. This permits constructing a matrix of linear equations

between subgraphs frequencies that can be solved using traditional linear algebra methods. We

refer to these as matrix based methods.

The second approach targets each subgraph individually by decomposing it in several smaller

patterns of graph properties, like common neighbors, or triangles that touch two vertices. We refer

to these as decomposition methods.

3.2.1 Matrix based methods. The first known method to apply a practical analytic approach based

on matrix multiplication to subgraph counting was ORCA, a work by Hočevar and Demšar [62],

which is based on counting orbits and not directly subgraphs. Their original work was targeted at

A Survey on Subgraph Counting 13

orbits in subgraphs up to 5 vertices and, because of that, they count induced subgraphs specifically,

while most analytic approaches count non-induced occurrences. ORCA works by setting up a

system of linear equations per vertex of the input graph that relate different orbit frequencies,

which are the system’s variables. This system of linear equations contains information about the

input graph. By construction, the matrix has a rank equal to the number of orbits minus 1, thus to

solve it one only need to find the value of one the orbit frequencies and use any standard linear

algebra method to solve it. Usually, the orbit pertaining to the clique is chosen, since there are

efficient algorithms to count this orbit and, for sparse enough networks, it is usually the one with

the least occurrences, making it less expensive to count.

Later, the authors of ORCA extended their work by suggesting a way of producing equations for

arbitrary sized subgraphs [63], although their available practical implementation is still limited to

size 5 [64]. Another possible extension for ORCA was proposed by [112] with the Jesse algorithm,

which was further complemented with a strategy for optimizing the computation by carefully

selecting less expensive equations [114].

Similar to ORCA, but using a different strategy, Ortmann and Brandes [127] proposed a new

method, which they further improved and better described in [128]. They also target orbits, but for

subgraphs of size up to 4. Their approach is based on looking into non-induced subgraphs using

them to build linear equations that are less expensive to compute. Additionally, they also apply an

improved clique counting algorithm. Ortmann and Brandes [127] did not name their algorithm,

so we will refer to it as the Ortmann algorithm from here on.

3.2.2 Decomposition methods. Before ORCA was proposed, the first ever practical method that

used an analytic approach to subgraph counting was Rage, by Marcus and Shavitt [102, 103].

Their method is based on [55] which employs similar techniques but with a more theoretical

focus. Rage targets non-induced subgraphs and orbits of size 3 and 4. It does so by running a

different algorithm for each of the 8 existing subgraphs. Each algorithm is based on merging the

neighborhoods of pairs of vertices to ensure that a given quartet of vertices have the desired edges

to form a certain subgraph.

acc-Motif, which was proposed by Meira et al. [110] and then further improved in [111], was

also one of the first methods to employ an analytic strategy, but stands out as the only known

analytic method that also works for directed subgraphs. acc-Motif also targets non-induced

subgraphs and their latest version supports up to size 6 subgraphs.

Another method that followed this trend of decomposition methods is PGD, proposed byAhmed

et al. [3, 4]. This method builds on the classic triangle counting algorithm to count several primitives

that are then used to obtain the frequency of each subgraph and orbit. It is currently one of the

fastest methods, however it can only count undirected subgraphs of size 3 and 4. Additionally, as

most analytic methods, it is highly parallelizible. Due to its versatile nature, PGD has been expanded

to other frequency metrics and it stands out as one of the only available efficient methods that can

count motifs incident to a vertex or edge of the graph [5], in what is called a “local subgraph count”.

More recently, ESCAPE was proposed by Pinar et al. [136]. This method is based on a divide

and conquer approach that identifies substructures of each counting subgraph to partition them

into smaller patterns. It is a very general method, but with the correct choices for decomposition, it

is possible to describe a set of formulas to compute the frequency of each subgraph. The original

paper only describes the resulting formulas to subgraphs up to size 5, however larger sizes can be

obtained with some effort. As of this writing, it is possibly the most efficient algorithm to count

undirected subgraphs and orbits up to size 5.

14 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

3.3 Theoretical Results
Even though the focus of this work is to look at the proposed practical algorithms, it is important

to note that some of the existing work drew inspiration from numerous more theoretical-oriented

works. Thus, it is of relevance to briefly summarize some of the achievements in this area and we

will do so with a special interest in those that directly influenced some of the algorithms discussed

in this section.

The first interest in subgraph counting stemmed from the world of enumeration algorithms.

The book “Enumeration in Graphs” [18] surveyed several methods to enumerate several different

structures in a graph, such as cycles, trees or cliques. Even though these are specific subpatterns,

they often represent the fundamental computation that needs to be done in order to enumerate any

subgraph. These ideas were translated into works that count subgraphs by efficiently enumerating

simpler substructures like these [71, 83]. Approximation schemes can also be developed with this

in mind, which approximates the frequency of several subgraph families like cycles or paths and

then generalize these for all size 4 subgraphs [55].

Another example of an initially purely theoretical technique is the work by Kowaluk et al. [86],

which was one of the inspirations for the multitude of matrix based analytic algorithms for counting

subgraphs. In fact, the most efficient algorithms are based on several theoretical foundations that

allow a tighter analysis of runtime. Due to this interplay, it is worth mentioned a few more recent

papers on subgraph counting and enumerating. There is an interest in finding efficient algorithms

that are parameterized or sensitive to certain properties of the graph, such as independent sets [197]

or its maximum degree [20]. Another current interest is in counting and enumerating subgraphs in

a dynamic or online environment [94]. Finally, another active theoretical topic is to find optimal

algorithms for enumeration, as in [50], as well as proving lower bounds on their time complexity,

as Björklund et al. [21] does for triangle listing.

4 APPROXIMATE COUNTING
Despite the significant advances made towards faster subgraph counting algorithms, current

state of the art algorithms that determine exact frequencies still take hours, if not days, for very

large networks. With the ever increasing amount of data our society generates (e.g., in big social

networks such as Twitter and Facebook new members/nodes join every second), it is unfeasible to

count all possible subgraphs. To solve this problem, subgraph counting research drifted towards

approximating these frequencies, making a trade-off between losing accuracy but gaining time.

Additionally, in some applications, approximate subgraphs counts might be sufficient [79, 146].

Throughout this section we make a distinction between algorithms that estimate (i) subgraph

frequencies or (ii) subgraph concentrations. Estimating subgraph frequencies is harder since the

algorithm needs to know the magnitude of the values, whereas to estimate concentrations the

algorithm only needs to know the different proportions of each subgraph in the network. Obtain-

ing subgraph concentrations from subgraph frequencies is trivial but the reverse requires extra

computational tasks.

We further split the approximate counting algorithms in five broad categories: randomised

enumeration, enumerate-generalize, path sampling, random walk, and colour coding. In

each subsection, we provide an algorithmic overview of each strategy and delve into the individual

algorithms that implement it and how they differ between themselves.

Tables 3 and 4 summarize the algorithms we discuss in the section. We split the methods into

algorithms where the full topology is assumed (Table 3) and algorithms tailored to networks with

restricted access (Table 4). Although some algorithms from each category may work in the other

setting, they excel for the task they were designed for and the distinction should be made clear. The

A Survey on Subgraph Counting 15

tables summarize our proposed taxonomy composed of five aspects, ordered by their publication

year: (i) the type of output (frequencies or concentrations), (ii) k-restrictions (does the method

only work for certain subgraph sizes?), (iii) directed (is the method applicable to directed graphs?),

(iv) the strategy it employs, according to our taxonomy, and (v) if code is publicly available. Note

that some authors do not have executable versions publicly available, but will be happy to share

them through email. We mark these algorithms with a ✓in the code column of the table.

Table 3. Algorithms for approximate subgraph counting.

Year Output k-restriction Directed Strategy Code

ESA [79] 2004 Conc. None ✓ Random Walk [9]

RAND-ESU [193] 2005 Freq. None ✓ Rand. Enum. [194]

TNP [139] 2006 Conc. 5 ✗ Enum. - Generalize ✗

RAND-GTrie [146] 2010 Freq. None ✓ Rand. Enum. [144]

GUISE [19] 2012 Conc. 5 ✗ Random Walk [141]

RAND-SCMD [185] 2012 Freq. None ✓ Enum. - Generalize ✗

Wedge Sampling [169] 2013 Freq. 3 ✓ Path Sampling [84]

GRAFT [142] 2014 Freq. 5 ✗ Enum. - Generalize [140]

PSRW & MSS [187] 2014 Conc. None ✗ Random Walk ✗

MHRW [159] 2015 Conc. None ✗ Random Walk ✓

RAND-FaSE [131] 2015 Freq. None ✓ Rand. Enum. [132]

Path Sampling [73] 2015 Freq. 4 ✗ Path Sampling ✗

k-profile sparsifier [45, 46] 2016 Freq. 4 ✗ Enum. - Generalize [44]

MOSS [189] 2018 Freq. 5 ✗ Path Sampling [186]

SSRW [203] 2018 Freq. 7 ✗ Random Walk ✗

CC [25] 2018 Freq. None ✗ Color Coding [24]

Table 4. Algorithms for approximate subgraph counting with restricted access.

Year Output k-restriction Directed Strategy Code

WRW [59] 2016 Conc. None ✗ Random Walk ✗

IMPR [31] 2016 Freq. 5 ✗ Random Walk [29]

CSS & NB-SRW [30] 2016 Conc. None ✗ Random Walk ✓

Minfer [188] 2017 Conc. 5 ✓ Enumerate - Generalize ✗

4.1 Randomised Enumeration
These algorithms are adaptations of older enumeration algorithms that perform exact counting.

They have the particularity that they all induce a tree-like search space in the computation, where

the leaves are the subgraph occurrences, and thus perform the approximation in a similar manner.

Each level of the search tree is assigned a value, pi , which denotes the probability of transitioning

from parent node to the child node in the tree. In this scheme, each leaf in this tree is reachable

with probability P =
∏k

i=1 pi and the frequency of each subgraph is estimated using the number of

samples obtained of that subgraph divided by P .

16 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

Figure 5 illustrates how probabilities are added to the search tree. In this specific example, which

could be equivalent to searching subgraphs of size 4, the first two levels of the tree have probability

100%, so their successors are all explored. On the other hand, in the last two levels, the probability

of exploring a node in the tree is only 80%, therefore some nodes, marked as grey, are not visited.

Fig. 5. Example of a tree-like search space induced by a Randomised Enumeration algorithm and a possible
distribution of transition probabilities per tree level.

The first algorithm to implement this strategy was RAND-ESU by Wernicke [193], an approxi-

mate version of ESU (described in Section 3.1.1). Recall that ESU maintains two sets VS and VE , the
set of vertices in the subgraph and the set of candidate vertices for extending the subgraph. When

adding a vertex fromVE toVS , this vertex is added with probability p |VS | , where |VS | is the depth of

the search tree.

Using the more efficient g-trie data structure, Ribeiro and Silva [146] proposed RAND-GTrie

and Paredes and Ribeiro [131] proposed RAND-FaSE. Each level of the g-trie is assigned a

probability, pi . When adding a new vertex to a subgraph of size d , corresponding to depth d in the

g-trie, this is done with probability pd .

4.2 Enumerate-Generalize
The general idea of these algorithms is to perform an exact count on a smaller network that was

obtained from the original one (e.g., a sample, or a compressed network). From the frequencies

of each subgraph in the smaller network, the frequencies in the original network are estimated.

Algorithms vary on (i) how the smaller network is obtained and on (ii) which estimator they use.

The first example of an algorithm in this category is Targeted Node Processing (TNP) by Pržulj

et al. [139]. This algorithm is specially tailored for protein-protein interaction ,that, according to

the authors, have a periphery that is sparser than the more central parts of the network. Using this

information, it performs an exact count of the subgraphs in the periphery of the network and uses

their frequencies to estimate the frequencies in the rest of the network. The authors claim that, due

to the uniformity of the aforementioned networks, the distribution of the subgraphs in the fringe is

representative of the distribution in the rest of the network.

SCMD byWang et al. [185] (already covered in Section 3.1.3) allows the use of any approximate

counting method in the compressed graph. There is no guarantee that subgraphs are counted

uniformly in the compressed graph, introducing a bias that needs to be corrected. The authors give

the example of this bias when using their method in conjunction with RAND-ESU. If each leaf

(subgraph) of depth k in the search tree is reached with probability P and a specific subgraph in the

compressed graph is sampled with probability ρ, then, to correct the sampling bias, the probability

of decompressing the relevant k-subgraph is P/ρ.
In GRAFT, Rahman et al. [142] provide a strategy for counting undirected graphlets of size

up to 5, using edge sampling. The algorithm starts by picking an edge eд from each of the 29

graphlets and a set of edges sampled from the graph S, without replacement. For each edge e ∈ S
and for each graphlet д, the frequency of д is calculated such that e has the same position in д as

eд (e is said to be aligned with eд). These frequencies are summed for all edges and divided by a

A Survey on Subgraph Counting 17

normalising factor, based on the automorphisms of each graphlet, which becomes the estimation for

the frequency of that graphlet in the whole network. Note that if S is equal to E(G), the algorithm
outputs an exact answer.

Elenberg et al. create estimators for the frequency of size 3 [45] and 4 [46] subgraphs. A major

difference from this work to previous ones is that Elenberg et al. estimate the frequencies of

subgraphs that are not connected, besides the usual connected ones. The authors start by removing

each edge from the network with a certain probability and computing the exact counts in this

“sub-sampled” network. Then, they craft a set of linear equations that relate the exact counts on

this smaller network to the ones of the original network. Using these equations, the estimation of

the frequency of the subgraphs in the original network follows.

Wang et al. [188] introduce an algorithm that aims to estimate the subgraph concentrations

of a network when only a fraction of its edges are known. They call this a “RESampled Graph”,

obtained from the real network through random edge sampling, a common scenario on applications

such as network traffic analysis. A key aspect of this algorithm is the number of non- induced

subgraphs of a size k graphlet that are isomorphic to another size k graphlet, an example of this

calculation can be found in Table 5. Using this number and the proportion of edges sampled to

form the smaller network, the authors compute the probability that a subgraph in the “RESampled

Graph” is isomorphic to another subgraph in the original graph. Then, an exact counting algorithm

is applied to the “RESampled Graph” and by composing the results from this algorithm with the

aforementioned probability, the subgraph concentrations in the original network are estimated.

4.3 Path Sampling
This family of algorithms relies on the idea of sampling path subgraphs to estimate the frequencies

of the other subgraphs. Path subgraphs are composed by 2 exterior nodes and k − 2 interior nodes

(where k is the size of the subgraph) arranged in a single line; the interior nodes all have degree

of 2, while the exterior nodes have degree of 1. Examples of these are the subgraphs G1, G3 and

G9 in Figure 6. The main idea for these algorithms, mainly for k ≥ 4, is relating the number of

non-induced occurrences of each subgraph of size k in the other size k subgraph. For example,

when k = 4, there are 4 non-induced occurrences of G3 in G5 or 12 non-induced occurrences of G3

in G8. Table 5 shows this full relationship when k = 4.

G10 G15G11 G16

G20

G12 G13 G14

G21

G18
G17

G24 G25

G19

G22 G27
G23 G28 G29

G26

G9

5-node

G4 G5 G6G2 G7 G8

2

G1 G3

3-node 4-node

Fig. 6. The 29 isomorphic classes of undirected subgraphs between size 3 and 5.

Seshadhri et al. [169] introduced the idea of wedge sampling, where wedges denote size 3 path
subgraphs. The premise of the algorithm is simple, they select a number of wedges uniformly at

18 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

д3 д4 д5 д6 д7 д8

д3 0 1 2 4 6 12

д4 1 0 1 0 2 4

д5 0 0 0 1 1 3

д6 0 0 1 0 4 12

д7 0 0 0 0 1 6

д8 0 0 0 0 0 1

Table 5. Number of non-induced occurences of each undirected graph of size 4 in each other. Position (i, j) in
the table indicates the number of times that graph i occurs non-induced in graph j.

random and check whether they are closed or not. The fraction of closed wedges sampled is an

estimation from for the clustering coefficient, from which the number of triangles can be derived.

Building on the idea of wedge sampling, Jha et al. [73] propose path sampling to estimate

the frequency of size 4 graphlets. The main primitive of the algorithm is sampling non-induced

occurrences of G3 and determining which graphlet is induced by that sample. The estimator relies

on both the number of induced subgraphs counted via the sampling and information contained

in Table 5. Finally, the authors determine an equation to count the number of stars with 4 nodes

(G4) based on the frequencies of each other graphlet, since G4 does not have any non-induced

occurrence of G3.

Applying the same concepts to size 5 subgraphs, Wang et al. [189] present MOSS-5. For size 5,

sampling paths is not enough to estimate the frequencies of all different subgraphs, as there are 3

subgraphs that do not have a non-induced occurrence of a path: G10, G11 and G14. On the other

hand, G11 does not have a non-induced occurrence in 3 subgraphs as well (G9, G10 and G15). Using

this knowledge, the authors create an algorithm divided in two parts: first it samples non-induced

size 5 paths (G9), similarly to Jha et al. [73], and then they repeat the procedure but sampling

occurrences of G11 instead. Combining the results from these two sampling schemes, the authors

are able to estimate the frequency of every size 5 subgraph.

To the best of our knowledge,MOSS-5 is the algorithm that achieves the best trade-off of accuracy

and time to estimate the frequency of 5-subgraphs, as it is able to reach very small errors (magnitude

10
−2
) with a very limited number of samples, even for big networks. However the ideas behind

MOSS-5 are not easily extendable to directed subgraphs and larger sized undirected subgraphs due

to the ever increasing number of dependencies between the number of non-induced occurrences,

making it harder to use the information contained in a table similar to Table 5 for these cases.

4.4 RandomWalk
A random walk in a graph G is a sequence of nodes, R, of the form R = (n1,n2, . . .), where n1
is the seed node and ni the ith node visited in the walk. A random walk can also be seen as a

Markov chain. We identify two main approaches to sample subgraphs using random walks. The

first is incrementing the size of the walk until a sequence of k distinct nodes is drawn, forming a

k-subgraph, which is then identified by an isomorphism test. The second approach is considering

a graph of relationships between subgraphs, where two subgraphs are connected if one can be

obtained from the other by adding or removing a node or by adding or removing an edge. A random

walk is then performed on this graph instead of on the original one.

Kashtan et al. [79], in their seminal work commonly called ESA (Edge Sampling), implemented

one of the first subgraph sampling methods in the MFinder software. The authors propose to do a

random walk on the graph, sampling one edge at a time until a set of k nodes is found, from which

A Survey on Subgraph Counting 19

the subgraph induced by that set of nodes is discovered. This method resulted in a biased estimator.

To correct the bias, the authors propose to re-weight the sample, which takes exponential time in

the size of the subgraphs.

Bhuiyan et al. [19] develop GUISE that computes the graphlet degree distribution for subgraphs

of size 3, 4 and 5 in undirected networks. The algorithm is based on Monte Carlo Markov Chain

(MCMC) sampling. It works by sampling a seed graphlet, calculating its neighbourhood (a set of

other graphlets), picking one randomly and calculating an acceptance probability to transition to

this new graphlet. This process is then repeated until a predefined number of samples is taken

from the graph. The neighbourhood of a graphlet is similar to the graph of relationships previously

mentioned, but to obtain a k-graphlet from another k-graphlet, a node from the original one is

removed and, if the remaining k − 1 nodes are connected, their adjacency lists are concatenated

and nodes are picked from there to form the new k-graphlet.
A similar approach to GUISE is used by Saha and Al Hasan [159], where MCMC sampling is

also used to compute subgraph concentration. A difference to GUISE is that the size of graphlets is

theoretically unbound and only a specific size k is counted, whereas GUISE counts graphlets of size

3, 4 and 5 simultaneously. They also suggest a modified version where the acceptance probability

is always one (that is, there is always a transition to the new subgraph), which introduces a bias

towards graphlets with nodes with a high degree. In turn, they propose an estimator that re-weights

the concentration to remove this bias.

Wang et al. [187] propose a random walk based method to estimate subgraph concentrations

that aims to improve on the approach taken by GUISE. The main improvement over GUISE is that

no samples are rejected, avoiding a cost of sampling without any gain of information. The authors

use a graph of relationships between connected induced subgraphs, where two k-subgraphs are
connected if they share k − 1 nodes, but this graph is not explicitly built, reducing memory costs.

The basic algorithm is just a simple random walk over this graph of relationships. The authors also

present two improvements: Pairwise Subgraph Random Walk (PSRW), estimates size k subgraph

by looking at the graph of relationships composed by k − 1-subgraphs; Mixed Subgraph Sampling
(MSS), estimates subgraphs of size k − 1, k and k + 1 simultaneously.

Han and Sethu [59] present an algorithm to estimate subgraph concentration based on random

walks. Their algorithm, Waddling Random Walk (WRW), gets its name from how the random walk

is performed, allowing sampling of nodes not only on the path of the walk, but also query random

nodes in the neighbourhood. Let l be the number of vertices (with repetition) in the shortest path

of a particular k-graphlet. The goal of the waddling is to reduce the number of steps the walk has

to take to identify graphlets with l > k . While executing a random walk to identify a k-subgraph,
the waddling approach limits the number of nodes explored to the size of the subgraph, k .
Chen and Lui [31] propose a randomwalk based algorithm to estimate graphlet counts in online

social networks, which are often restricted and the entire topology is hidden behind a prohibitive

query cost. With this context in mind, the authors introduced the concepts of touched and visible
subgraphs. The former are subgraphs composed of vertices whose neighbourhood is accessible.

The latter possess one and only one vertex with inaccessible neighbourhood. Their method, IMPR,

works by generating k − 1-node touched subgraphs via random walk and combining them with

their node’s neighbourhood for obtain k-node visible subgraphs, which form the k-node samples.

Chen et al. [30] introduce a new framework that incorporates PSRW as a special case. To sample

k-subgraphs, the authors also use a graph of relationships between connected induced d-subgraphs,
d ∈ {1, ..,k − 1}, and perform a random walk over this graph. The difference to PSRW is that PSRW
only uses d as k − 1, which becomes ineffective as k grows to larger sizes. The authors also augment

this method of sampling with a different re-weight coefficient to improve estimation accuracy and

20 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

add non-backtracking random walks, which eliminates invalid states in the Markov Chain that do

not contribute to the estimation.

Yang et al. [203] introduce another algorithm using random walks, Scalable subgraph Sampling
via Random Walk (SSRW), able to compute both frequencies and concentrations of undirected

subgraphs of size up to 7. The next nodes in the random walk are picked from the concatenation

of the neighbourhoods of all nodes previously selected to be a part of the sampled subgraph. The

authors present an unbiased estimator and compare it against Chen et al. [30] and Han and

Sethu [59], getting better results than both for the single network tested.

4.5 Colour Coding
The technique of colour coding [8] has been adapted to the problem of approximating subgraph

frequencies by Zhao et al. [206], Zhao et al. [207] and Slota and Madduri [174]. However, all

these works focus on specific categories of subgraphs, for example, SAHad [207] attempts to only

find subgraphs that are in the form of a tree.

More recently, Bressan et al. [25] present a general algorithm using colour coding, that works

for any undirected subgraph of size theoretically unbound. The algorithm works in two phases.

The first, based on the original description of [8], is counting the number of non-induced trees,

treelets, in the graph but with a particularity, the nodes were previously partitioned into k sets and

attributed a label (a colour). These treelets then must be constituted solely of nodes with different

colours. This part of the algorithm outputs counters C(T , S,v), for every v ∈ V (G), which are the

number of treelets rooted in v isomorphic to T , whose colours span the colour set S .
The second phase of the algorithm is the sampling part, which is focused on sampling treelets

uniformly at random. To pick a treelet with k nodes, the authors choose a random node v , a treelet
T with probability proportional to C(T , [k],v) and then pick one of the treelets that is rooted in v ,
is isomorphic to T and is coloured by [k]. Given a treelet Tk , the authors consider the graphletGk
induced by the nodes of Tk and increment its frequency by

1

σ (Gk) , where σ (Gk) is the number of

spanning trees of Gk .

5 PARALLEL STRATEGIES
By this point it should be clear that subgraph counting is a computationally hard problem. As

discussed in Section 3, analytic approaches are much more efficient than enumeration algorithms;

however, they are specific to certain sets of small subgraphs. Sampling strategies can produce results

in a fraction of the time; but there’s a trade-off between time and accuracy. Therefore, speeding

up subgraph counting remains a crucial task. The availability of parallel environments, such as

multicores, hybrid clusters, and GPUs gave rise to strategies that leverage on these resources.

Here we follow a different organizational approach than Sections 3 and 4: we first give an historic

overview of the parallel algorithms put forward throughout the years and then we discuss the

strategies on a higher level. This is done because most parallel algorithms have a sequential

counterpart (already described in previous sections) and many common aspects can be found

between the parallel strategies. Table 6 summarizes our proposed taxonomy composed of seven

aspects, ordered by their publication year: (i) their computational platform, (ii) the initial work-

units (what part of the graph is divided initially), (iii) the runtime work-units (what part of the

graph is divided during runtime), (iv) the search traversal strategy (how the graph is explored), (v)

thework division strategy (how work-units are distributed), (vi) howwork sharing is performed

(if applicable) between workers (e.g., CPU processors, or CPU/GPU threads), and (vii) if code is

publicly available.

A Survey on Subgraph Counting 21

Table 6. Parallel algorithms for subgraph counting.

Year Platform

Work-units Search Work Work Public

Initial Runtime Traversal Division Sharing Code

ParWang [190] 2005 DM Vertices ✗ DFS Static ✗ ✗

DM-Grochow [164] 2008 DM Isoclasses Isoclasses DFS First-Fit ✗ ✗

MPRF [96] 2009 MapReduce Edges Subgraphs BFS Static ✗ ✗

DM-ESU [154] 2010 DM Vertices Subgraph-trees DFS Diagonal M-W ✗

DM-Gtries [151] 2010 DM Vertices Subgraph-trees DFS Diagonal W-W ✗

SM-Gtries [12] 2014 SM Vertices Subgraph-trees DFS Diagonal W-W [145]

SM-FaSE [10] 2014 SM Vertices Subgraph-trees DFS Diagonal W-W [145]

Subenum [172] 2015 SM Edges Subgraphs DFS First-Fit ✗ [170]

GPU-Orca [119] 2015 GPU Vertices Subgraphs BFS Static ✗ ✗

Lin [95] 2015 GPU Vertices Subgraphs BFS Static ✗ ✗

MRSUB [171] 2015 MapReduce Edges Subgraphs BFS Static ✗ ✗

PGD [3] 2015 SM Edges ✗ DFS Static ✗ [2]

GPU-PGD [157] 2016 CPU+GPU Edges Subgraph-trees BFS First-Fit W-W ✗

Elenberg [46] 2016 DM Vertices Subgraphs DFS First-Fit ✗ [44]

MR-Gtries [124] 2017 MapReduce Vertices Subgraph-trees DFS Timed M-W ✗

5.1 Historical Overview
One key aspect necessary to achieve a scalable parallel computation is finding a balanced work

division (i.e., splitting work-units evenly between workers – parallel processors/threads). A naive

possibility for subgraph counting is to assign
|V (G) |
|P | nodes from network G to each worker p ∈ P .

This egalitarian division is a poor choice since two nodes induce very different search spaces;

for instance, hub-like nodes induce many more subgraph occurrences than nearly-isolated nodes.

Instead of performing an egalitarian division,Wang et al. [190] discriminate nodes by their degree

and distribute them among workers, the idea being that each worker gets roughly the same amount

of hard and easy work-units. Despite achieving a more balanced division than the naive version,

there is still no guarantee that the node-degree is sufficient to determine the actual complexity

of the work-unit. Distributing work immediately (without runtime adjustments) is called a static

division. Wang et al. did not assess scalability in [190], but they showed that their parallel algorithm

was faster thanMfinder [121] in an E. Coli transcriptional regulation network. Since their method

was not named, we refer to it as ParWang henceforth.

The first parallel strategy with a single-subgraph-search algorithm at its core, namely Gro-

chow [56], was by Schatz et al. [164]. Since the algorithm was not named, and it targets a

distributed memory (DM) architecture (i.e., parallel cluster), we refer to it as DM-Grochow. In

order to distribute query subgraphs (also called isoclasses) among workers they employed two

strategies: naive and first-fit. The naive strategy is similar to ParWang’s. In the first-fit model,

each slave processor requests a subgraph type (or isoclass) from the master and enumerates all

occurrences of that type (e.g., cliques, stars, chains). This division is dynamic, as opposed to static,

but it is not balanced since different isoclasses induce very different search trees. For instance, in

sparse networks k-cliques are faster to compute than k-chains. Using 64 cores, Schatz et al. obtained
≈10-15x speedups over the sequential version on a yeast PPI network. They also tried another

novel approach by partitioning the network instead of partitioning the subgraph-set. However,

finding adequate partitions for subgraph counting is a very hard problem due to partition overlaps

and subgraphs traversing different partitions, and no speedup was obtained using this strategy. We

should note that parallel graph partitioning remains an active research problem to this day [26, 116],

but is out of the scope of this work.

22 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

All parallel algorithms mentioned so far traverse occurrences in a depth-first (DFS) fashion,

since doing so avoids having to store intermediate states. By contrast, Liu et al. [96] use a breadth-

first search (BFS) where, at each step, all subgraph occurrences found in the previous one are

expanded by one node. Their algorithm,MPRF, is implemented following aMapReducemodel [39]

which is intrinsically a BFS-like framework. In MPRF, mappers extend size k occurrences to size

k + 1 and reducers remove repeated occurrences. At each BFS-level, MPRF divides work-units

evenly among workers. We still consider this to be a static division since no adjustments are made

in runtime. Thus, in our terminology, static divisions can be performed only once (at the start

of computation in DFS-like algorithms) or multiple times (once per level in BFS-like algorithms).

Overhead caused by reading and writing to files reduces MRPF’s efficiency, but the authors report

speedups of ≈ 7x on a 48-node cluster, when compared to the execution on a single-processor.

DFS-based algorithms discussed so far either perform a complete work-division right at the

beginning (ParWang), or they perform a partial work-division at the beginning and then workers

request work when idle (DM-Grochow). In both cases, a worker has to finish a work-unit before

proceeding a new one. Therefore, it is possible that a worker gets stuck processing a very computa-

tionally heavy work-unit while all the others are idle. This has to do with work-unit granularity:

work-units at the top of the DFS search space have high (coarse) granularity since the algorithm has

to explore a large search space. BFS-based algorithms mitigate this problem because work-units are

much more fine grained (usually a worker only extends his work-unit(s) by one node). The work by

Ribeiro et al. [154] was the first to implement work sharing during parallel subgraph counting,

alleviating the problem of coarse work-unit granularity of DFS-based subgraph counting algorithms.

Workers have a splitting threshold that dictates how likely it is to, instead of fully processing a

work-unit, putting part of it in a global work queue. A work-unit is divided using diagonal work

splitting which gathers unprocessed nodes at level k (i.e., nodes that are reached by expanding the

current work-unit) and recursively goes up in the search tree, also gathering unprocessed nodes of

level k − i , i < k , until reaching level 1. This process results in a set of finer-grained work-units

that induces a more balanced search space than static and first-fit divisions. In [154] Ribeiro et al.

use ESU as their core enumeration algorithm and propose amaster-worker (M-W) architecture

where a master-node manages a work-queue and distributes its work-units among slave workers.

This strategy, DM-ESU, was the first to achieve near-linear speedups (≈128x on a 128-node cluster)

on a set of heterogeneous network. A subsequent version [151] used GTries as their base algorithm

and implemented a worker-worker (W-W) architecture where workers perform work stealing.

DM-Gtries improves upon DM-ESU by using a faster enumeration algorithm (GTries) and having

all workers perform subgraph enumeration (without wasting a node in work queue management).

Similar implementations (based on W-W sharing and diagonal splitting) of GTries and FASE were

also developed for shared memory (SM) environments, which achieved near-linear speedups

in a 64-core machine [10, 12]. The main advantages of SM implementations is that work sharing

is faster (since no message passing is necessary) and SM architectures (such as multicores) are a

commodity while DM architectures (such as a cluster) are not.

Instead of developing efficient work sharing strategies, Shahrivari and Jalili [172] try to avoid

the unbalanced computation induced by vertice-based work-unit division. Subenum is an adaptation

of ESU which uses edges as starting work-units, achieving near-linear speedup (≈10x on a 12-core

machine). Using edges as starting work-units is also more suitable for the MapReduce model

since edges are finer-grained work-units than vertices. In a follow-up work [171], Shahrivari and

Jalili propose a MapReduce algorithm, MRSUB, which greatly improves upon [96], reporting a

speedup of ≈ 34x on a 40-core machine. Like Subenum,MRSUB does not support work sharing

between workers. A MapReduce algorithm with work sharing was put forward by Naser-eddin

and Ribeiro [124], henceforth calledMR-Gtries. Using work sharing with timed redistribution

A Survey on Subgraph Counting 23

(i.e., after a certain time, every worker stops and work is fully redistributed), they report a speedup

of ≈ 26x on a 32-core machine. WhileMRSUB andMR-GTries efficiency is comparable (≈ 80%),

the latter has a much faster sequential algorithm at its core; therefore, in terms of absolute runtime,

MR-Gtries is the fastest MapReduce subgraph counting algorithm that we know of.

Graphics processing units (GPUs) are processors specialized in image generation, but numerous

general purpose tasks have been adapted to them [49, 67, 115]. GPUs are appealing due to their

large number of cores, reaching hundreds or thousands of parallel threads whereas commodity

multicores typically have no more than a dozen. However, algorithms that rely on graph traversal

are not best suited for the GPU framework due to branching code, non-coalesced memory accesses

and coarse work-unit granularity [115]. Milinković et al. [119] were one of the firsts to follow a

GPU approach (GPU-Orca), with limited success. Lin et al. [95] put forward a GPU algorithm

(henceforth refereed to as Lin since it was unnamed) mostly targeted at network motif discovery

but also with some emphasis on efficient subgraph enumeration. Lin avoids duplicate in a similar

fashion to ESU [193] and auxiliary arrays are used to mitigate uncoalesced memory accesses. A

BFS-style traversal is used (extending each subgraph 1 node at a time) to better balance work-

units among threads. They compare Lin running on a 2496-core GPU (Tesla K20) against parallel

CPU algorithms and report a speedup of ≈10x to a 6-core execution of the fastest CPU algorithm,

DM-GTries.

Rossi and Zhou proposed the first algorithm that combinesmultiple GPUs and CPUs [157].

Their method dynamically distributes work between CPUs and GPUs, where unbalanced com-

putation is given to the CPU whereas GPUs compute the more regular work-units. Since their

method was not named, we refer to it as GPU-PGD. Their hybrid CPU-GPU version achieves

speedups of ≈ 20x to ≈ 200x when compared to sequential PGD, depending largely on the network.

As mentioned in Section 3, PGD is one of the fastest methods for sequential subgraph counting.

As such, GPU-PGD is the fastest subgraph counting algorithm currently available as far as we

know. However, GPU-PGD is limited to 4-node subgraphs, while DM-GTries is the fastest general

approach.

5.2 Platform
Different parallel platforms offer distinct advantages and are more suited for particular strategies.

Next we discuss the strategic differences between platforms.

5.2.1 Distributed Memory (DM). A parallel cluster offers the opportunity to use multiple (heteroge-

nous) machines to speedup computation. Clusters can have hundreds of processors and therefore,

if speedup is linear, computation time is reduced from weeks to just a few hours. For work sharing

to be efficiently performed on DM architectures one can either have a master-node mediating

work sharing [154] or have workers directly steal work from each other [151, 153]. Usually DM

approaches are implemented directly using MPI [151–153, 164, 190] but higher level software, such

as GraphLab, can also be used [46]. DM has the drawback of workers having to send messages

through the network, making network bandwidth a bottleneck.

5.2.2 Shared Memory (SM). SM approaches have the advantage in their underlying hardware

being a commodity (multicore computers). Furthermore, workers in a SM environment do not

communicate via network messages (since they can communicate directly in main memory), thus

avoiding a bottleneck in the network bandwidth. However, the number of cores is usually very

low when compared to DM, MapReduce, and GPU architectures. Algorithms on multicores tend to

traverse the search space in a DFS fashion [3, 10, 12, 172] thus avoiding the storage of large number

of subgraph occurrences in disk or main memory.

24 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

Fig. 7. Different base work-units, and their division to two workers P and Q .

5.2.3 MapReduce. The MapReduce paradigm has been successfully applied to problems where

each worker executes very similar tasks, which is the case of subgraph counting. MapReduce is an

inherently BFS method, whereas most subgraph counting algorithms are DFS-based. The biggest

setback of using MapReduce is the huge amount of subgraph occurrences that are stored in files

between each BFS-level iteration (corresponding to a node expansion) [96, 171]. To avoid this

setback, one can instead store them in RAM when the number of occurrences fits in memory [124].

5.2.4 GPU. GPUs are very appealing due to their large amount of parallel threads. Despite linear

speedups being rare in the GPU, since they have such a large number of cores the gains can still

be substantial. However, they are not well-suited for graph traversal algorithms. One of current

best pure BFS algorithms [115] on the GPU only achieve a speedup of ≈ 8x (on a 448-core NVIDIA

C2050) when compared to a 4-core CPU BFS algorithm [89]. By contrast, Monte Carlo calculations

on a NVIDIA C2050 GPU achieve a speedup of ≈ 30x [41] when compared to a 4-core CPU

implementation. This is mainly due to branching problems, uncoalesced memory accesses and

coarse work-unit granularity, sometimes leading to almost non-existent speedups in subgraph

counting [119]. Using additional memory to efficiently store neighbors and smart work division

help achieve some speedup [95]. Another approach is to combine CPUs and GPUs: CPUs handle

unbalanced computation while GPUs execute regular computation [157].

5.3 Work-units
When a program can be split into a series of (nearly) independent tasks, efficient parallelism greatly

reduces execution times. Each worker (be it a thread, CPU-core, or GPU-core) is assigned work-units
(parallel tasks), either at the start of the computation (initial work-units) or during runtime (runtime
work-units). Work-units in subgraph counting can be either (a) vertices, (b) edges, (c) subgraphs, (d)
isomorphic classes (or isoclasses for short), or (e) subgraph-trees, and each option is described next.

Figure 7 illustrates each base work-unit and gives an example of how each can be divided.

5.3.1 Vertices. One possibility is to consider each vertex v ∈ V (G) as a work-unit and split

them among workers. A worker p then computes all size-k subgraph occurrences that contain

vertex v . Naive approaches have different workers finding repeated occurrences that need to be

removed [190], but efficient sequential algorithms have canonical representations that eliminate

this problem [78, 149, 193], making each work-unit independent. Using vertices as work-units has

the drawback of creating very coarse work-units: different vertices induce search spaces with very

different computational costs. For instance, counting all the subgraph occurrences that start (or

eventually reach) a hub-like node is much more time-consuming than counting occurrences of

A Survey on Subgraph Counting 25

a nearly isolated node. For algorithms with vertices as work-units to be efficient they can either

try to find a good initial division [190] or enable work sharing between workers [10, 12, 152, 153].

Each of these work division strategies is discussed in Section 5.5.

5.3.2 Edges. Due to the unbalanced search tree induced by vertex division, some algorithms

use edges as work-units [3, 96, 171, 172]. The idea is similar to vertice division: distribute all

e(vi ,vj) ∈ E(G) evenly among the workers. An initial edge division guarantees that all workers

have an equal amount of 2-node subgraphs, which is not true for vertex division. However, for

k ≥ 3 this strategy offers no guarantees in terms of workload balancing. Therefore, in regular

networks (i.e. networks where all nodes have similar clustering coefficients) this strategy achieves

a good speedup, but it is not scalable in general. Some methods [157, 164] perform dynamic first-fit

division (discussed in Section 5.5.2) instead the simple static division described.

5.3.3 Subgraphs. At the start of computation, only vertices and edges from the network are known.

As the k-subgraph counting process proceeds, subgraphs of sizes k − i, i < k are found. Thus,

the work-units divided among threads can be these intermediate states (incomplete subgraphs).

Some BFS-based algorithms [95, 96, 119, 171] begin with either edges or vertices as initial work-

units and, at the end of each BFS-level, intermediate subgraphs are found and divided among

workers. DFS-based methods expand each subgraph work-unit by one node until they reach a

k-subgraph [46, 171].

5.3.4 Isoclass. Instead of partitioning the graph, like the previous three strategies do, one can

instead chose to partition the set of isoclasses being enumerated [164]. Work-units split in this

fashion have similar problems to the previously discussed: isomorphic classes do not induce

computationally equivalent search spaces. For instance, in sparse networks it is much more time-

consuming to enumerate chains or hubs than cliques.

5.3.5 Subgraph-trees. This approach is applicable only for DFS-like algorithms where, since the

search tree is explored in a depth-first fashion, a work-tree is implicitly built during enumeration:

when the algorithm is at level k of the search, unexplored candidates of stages {k − 1,k − 2, ..., 1}
were previously generated. Then, instead of splitting top vertices from stage 1 only (as described in

Section 5.3.1), the search-tree is split among sharing processors [10, 12, 151, 152] (more details on

this in Section 5.5.3). Subgraph-trees are expected to be similar since both coarse- and fine-grained

work-units are generated. Nevertheless, it is not guaranteed that work-units from the same level of

the search tree induce similar work. This strategy also incurs the additional complexity of building

the candidate-set of each level and splitting them among workers.

5.4 Search Traversal
Discounting analytic approaches presented in Section 3.2, subgraph counting algorithms typically

count occurrences by traversing the graph. How graph traversal is performed greatly influences

the parallel performance and is dependent on the platform, as is discussed next.

5.4.1 Breadth-First Search. Algorithms that adopt this strategy are typically MapReduce meth-

ods [96, 124, 171] or GPU [95, 119, 157] approaches. MapReduce works intrinsically in BFS fashion,

and GPUs are very inefficient when work is unbalanced and contains branching code. BFS starts by

(i) splitting edges among workers, (ii) the processors compute the patterns of size-3 from each edge

(size-2 subgraphs), (iii) the patterns of size-3 are themselves split among processors and (iv) this

process is repeated until the desired size-k patterns are obtained. The idea of BFS is to give large

amounts of fine-grained work-units to each worker, thus making work division more balanced

since these work-units induce similar work, making this approach more suitable for methods that

26 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

require regular data. However, the main drawback is that these algorithms need to store partial

results (which grow exponentially as k increases) and synchronize at the end of each BFS-level.

5.4.2 Depth-First Search. To avoid the cost of synchronization and of storing partial results, most

subgraph counting algorithms traverse the search space in a depth-first fashion [3, 10, 12, 56, 151–

153, 172, 190]. This means that the algorithm starts with Vsub = {v} and incrementally adds a new

node to Vsub until it obtains a match of the desired size, and backtracks to find new matches. This

strategy leads to unbalanced search spaces, caused by coarse-grained work-units, that need to be

controlled.

5.5 Work Division
Splitting work is obviously essential for a parallel approach. Work can be divided at two moments:

(i) an initial work division before subgraph counting starts and/or (ii) divisions during runtime.

5.5.1 Static. The simplest form of work division is to produce an initial distribution of work-units

and proceed with the parallel computation, without ever spending time dividing work during

runtime. Trying to obtain an estimation of the work beforehand [157, 190] is valuable but limited:

if the estimation is done quickly but is not very precise (such as using node-degrees or clustering

coefficients to estimate work-unit difficulty) little guarantees are offered that the work division

is balanced, and obtaining a very precise estimation is as computationally expensive as doing

subgraph enumeration itself. Following a BFS approach [96, 119, 171] helps balancing out the

work-units and a static work division at each BFS-level is usually sufficient to obtain good results.

However, those strategies have limitations as discussed in Section 5.4.1. Some analytic works,

which do not rely on explicit subgraph enumeration, do not need advanced work division strategies

because their algorithm is almost embarrassingly parallel [158].

5.5.2 Dynamic: First-fit. Instead of trying to estimate a good division one can generate work

on-demand during runtime. One isomorphic class [164] or small portions of the graph [172] can

be initially given at each processor and, when that computation is done, idle processors request

more work. This strategy has the penalty of maintaining a global queue of work-units to be

processed. Furthermore, the last |P | work-units (where |P | is the number of workers) can have

different granularities (and thus computational cost), so the speedup is largely dependent on how

well-balanced they are.

5.5.3 Dynamic: Diagonal Work Splitting. Algorithms that employ this strategy [10, 12, 151, 152]

perform an initial static work division. They do not need a sophisticated criteria to choose to whom

work-units are assigned because work will be dynamically redistributed during runtime: whenever

workers are idle, some work will be relocated from busy workers to them. Furthermore, instead of

simply giving half of their top-level work-units away and keeping the other half, a busy worker

fully splits its work tree The main idea is to build work-units of both fine- and coarse-grained sizes,

and this is particularly helpful in cases where a worker becomes stuck managing a very complex

initial work-unit; this way, that work-unit is split in half, and it can be split iteratively to other

workers if needed. These work-units can then either be stored in a global work queue, which a

master worker is responsible of managing [151, 152], or sharing is conducted between worker

threads themselves [10, 12] (more details on Sections 5.6.1 and 5.6.2, respectively).

5.5.4 Dynamic: Timed Redistribution. Timed Redistribution is a way to avoid estimating work

during runtime while guaranteeing that every worker has work (after a while). Workers first

receive work and try to process as much as they can. After a certain time, they all stop and work

is redistributed. This strategy is specially useful when worker communication is not practical,

A Survey on Subgraph Counting 27

such as in a MapReduce environment [124] on in the GPU. Setting an adequate threshold for work

redistribution has a great impact: redistributing work too quickly has the drawback of wasting

too much time in work division, while redistributing work too late has the drawback of having

idle workers. One solution is to use an adaptive threshold [124]: if workers are too often without

work, the threshold of the next iteration is lower, if workers are too often with much work left to

compute, the threshold of the next iteration is higher.

5.6 Work Sharing
Since work is unbalanced for enumeration algorithms, work sharing can be used in order to balance

work during runtime.

5.6.1 Master-Worker (M-W). This type of work sharing is mostly adopted in distributed memory

(DM) environments since workers do not share positions of memory that they can easily access and

use to communicate. A master worker initially splits the work-units among the workers (slaves)

and then manages load balancing. Load balancing can be achieved by managing a global queue

where slaves put some of their work, to be later redistributed by the master [154]. This strategy

implies that the master is not being used the enumeration and that there is a need communication

over the network.

5.6.2 Worker-Worker (W-W). Shared memory (SM) environments allow for direct communication

between workers, therefore a master node is redundant. In this strategy, an idle worker asks a

random worker for work [10, 12]. One could try to estimate which worker should be polled for

work (which is computationally costly) but random polling has been established as an efficient

heuristic for dynamic load balancing [160]. After the sharing process, computation resumes with

each worker evolved in the exchange computing their part of the work. Computation ends when all

workers are polling for work. This strategy achieves a balanced work-division during runtime, and

the penalty caused by worker communication is negligible [10, 12]. Most implementations of W-W

sharing are built on top of relatively homogeneous systems, such as multiworkered CPUs [172] or

clusters of similar processors [164]. In these systems, since all workers are equivalent, it is irrelevant

which ones get a specific easy (or hard) work-unit, thus only load balancing needs to be controlled.

Strategies that combine CPUs with GPUs, for instance, can split tasks in a way that takes advantage

of both architectures: GPUs are very fast for regular tasks while CPUs can deal with irregular ones.

For instance, a shared deque can be kept where workers, either GPUs or CPUs, put work on or take

work from [157]; the queue is ordered by complexity: complex tasks are placed at the front, and

simple tasks at the end. The main idea is that CPUs handle just a few complex work-units from the

front of the deque while GPUs take large bundles of work-units from the back.

6 CONCLUDING REMARKS
Over the last twenty years, subgraph counting has been under increased focus in the network

science community, specially since the introduction of networks motifs [121], and its status as an

important tool for network analysis, as well as graphlets [138] which are now established measures

for network alignment.

In this survey we explored existing practical methods to solve the subgraph counting problem

from three perspectives: (i) algorithms that efficiently perform exact counting, which is an in-

trinsically computationally hard task, (ii) algorithms that perform an approximation of subgraph

frequencies, making the process faster but taking into account the accuracy of their estimation,

and (iii) algorithms that efficiently exploit parallel architectures despite the unbalanced nature of

subgraph counting. We showed that all three of these categories are still attracting new work, with

new methods still emerging in an attempt to improve previous work.

28 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

The aim of this work was precisely to describe and classify the major algorithmic ideas in each of

these three categories, offering a structured and thorough review of how they work and what are

their advantages and disadvantages. Moreover, we provided more than two hundred references that

allow further exploration of any aspects that might be of particular interest to the reader, including

direct links to the existing practical implementations of the methods.

We feel that this survey provides valuable insight both from a more practical point of view,

offering solutions and application ideas for those who view subgraph counting as a tool for network

analysis, and from a more methodological angle, being not only a very strong starting point for

new researchers joining the area, but also a very useful and comprehensive summary of recent

research results for more established researchers.

REFERENCES
[1] Christoph Adami, Jifeng Qian, Matthew Rupp, and Arend Hintze. 2011. Information content of colored motifs in

complex networks. Artificial Life 17, 4 (2011), 375–390.
[2] Nesreen K. Ahmed. 2018. A Parallel Graphlet Decomposition Library for Large Graphs. https://github.com/nkahmed/

PGD. Accessed: 2019-10-09.

[3] Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, and Nick Duffield. 2015. Efficient graphlet counting for large

networks. In Data Mining (ICDM), 2015 IEEE International Conference on. IEEE, 1–10.
[4] Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, Nick G Duffield, and Theodore L Willke. 2017. Graphlet decompo-

sition: Framework, algorithms, and applications. Knowledge and Information Systems 50, 3 (2017), 689–722.
[5] Nesreen K Ahmed, Theodore L Willke, and Ryan A Rossi. 2016. Estimation of local subgraph counts. In Big Data (Big

Data), 2016 IEEE International Conference on. IEEE, 586–595.
[6] Mohammad Al Hasan and Vachik S Dave. 2018. Triangle counting in large networks: a review. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery 8, 2 (2018), e1226.

[7] Maryam Aliakbarpour, Amartya Shankha Biswas, Themis Gouleakis, John Peebles, Ronitt Rubinfeld, and Anak

Yodpinyanee. 2018. Sublinear-time algorithms for counting star subgraphs via edge sampling. Algorithmica 80, 2
(2018), 668–697.

[8] Noga Alon, Raphael Yuster, and Uri Zwick. 1995. Color-coding. Journal of the ACM (JACM) 42, 4 (1995), 844–856.
[9] Uri Alon. 2018. Network Motif Software. https://www.weizmann.ac.il/mcb/UriAlon/download/network-motif-

software. Accessed: 2019-10-09.

[10] David Aparicio, Pedro Paredes, and Pedro Ribeiro. 2014. A Scalable Parallel Approach for Subgraph Census Computa-

tion. In European Conference on Parallel Processing. Springer, 194–205.
[11] David Aparício, Pedro Ribeiro, Tijana Milenković, and Fernando Silva. 2019. Temporal network alignment via

GoT-WAVE. Bioinformatics 35, 18 (2019), 3527–3529.
[12] David Aparício, Pedro Ribeiro, and Fernando Silva. 2014. Parallel subgraph counting for multicore architectures. In

Parallel and Distributed Processing with Applications (ISPA), 2014 IEEE International Symposium on. IEEE, 34–41.
[13] David Aparicio, Pedro Ribeiro, and Fernando Silva. 2016. Extending the Applicability of Graphlets to Directed

Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2016).
[14] David Aparício, Pedro Ribeiro, and Fernando Silva. 2018. Graphlet-orbit Transitions (GoT): A fingerprint for temporal

network comparison. PloS one 13, 10 (2018), e0205497.
[15] Albert-László Barabási et al. 2016. Network science. Cambridge university press.

[16] Jordi Bascompte and Carlos J Melián. 2005. Simple trophic modules for complex food webs. Ecology 86, 11 (2005),

2868–2873.

[17] Joris Bekkers and Shaunak Dabadghao. 2017. Flow Motifs in Soccer: What can passing behavior tell us? Journal of
Sports Analytics Preprint (2017), 1–13.

[18] MA Bezem and Jan van Leeuwen. 1987. Enumeration in graphs. Vol. 87. Unknown Publisher.

[19] Mansurul A Bhuiyan, Mahmudur Rahman, and M Al Hasan. 2012. Guise: Uniform sampling of graphlets for large

graph analysis. In Data Mining (ICDM), 2012 IEEE 12th International Conference on. IEEE, 91–100.
[20] Andreas Bjorklund, Thore Husfeldt, Petteri Kaski, Mikko Kalle Henrik Koivisto, et al. 2018. Counting connected

subgraphs with maximum-degree-aware sieving. In 29th International Symposium on Algorithms and Computation
(ISAAC 2018). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[21] Andreas Björklund, Rasmus Pagh, Virginia VassilevskaWilliams, and Uri Zwick. 2014. Listing triangles. In International
Colloquium on Automata, Languages, and Programming. Springer, 223–234.

[22] Peter Bloem and Steven de Rooij. 2017. Large-scale network motif learning with compression. CoRR arXiv 1701

(2017).

https://github.com/nkahmed/PGD
https://github.com/nkahmed/PGD
https://www.weizmann.ac.il/mcb/UriAlon/download/network-motif-software
https://www.weizmann.ac.il/mcb/UriAlon/download/network-motif-software

A Survey on Subgraph Counting 29

[23] Hanjo D Boekhout, Walter A Kosters, and Frank W Takes. 2019. Efficiently counting complex multilayer temporal

motifs in large-scale networks. Computational Social Networks 6, 1 (2019), 1–34.
[24] Marco Bressan. 2018. Motif Counting Beyond Five Nodes. https://github.com/Steven--/graphlets. Accessed:

2019-10-09.

[25] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro Panconesi. 2018. Motif Counting

Beyond Five Nodes. ACM Transactions on Knowledge Discovery from Data (TKDD) 12, 4 (2018), 48.
[26] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. 2016. Recent advances in graph

partitioning. In Algorithm Engineering. Springer, 117–158.
[27] Robrecht Cannoodt, Joeri Ruyssinck, Jan Ramon, Katleen De Preter, and Yvan Saeys. 2018. IncGraph: Incremental

graphlet counting for topology optimisation. PloS one 13, 4 (2018), e0195997.
[28] Raphaël Charbey and Christophe Prieur. 2019. Stars, holes, or paths across your Facebook friends: A graphlet-based

characterization of many networks. Network Science (2019), 1–22.
[29] Xiaowei Chen. 2018. Mining Graphlet Counts in Online Social Networks. https://github.com/xwchen666/

GraphletCountOSN. Accessed: 2019-10-09.

[30] Xiaowei Chen, Yongkun Li, Pinghui Wang, and John Lui. 2016. A general framework for estimating graphlet statistics

via random walk. Proceedings of the VLDB Endowment 10, 3 (2016), 253–264.
[31] Xiaowei Chen and John CS Lui. 2016. Mining Graphlet Counts in Online Social Networks. In Data Mining (ICDM),

2016 IEEE 16th International Conference on. IEEE, 71–80.
[32] Sarvenaz Choobdar, Pedro Ribeiro, Sylwia Bugla, and Fernando Silva. 2012. Comparison of co-authorship networks

across scientific fields using motifs. In Advances in Social Networks Analysis and Mining (ASONAM), 2012 IEEE/ACM
International Conference on. IEEE, 147–152.

[33] Sarvenaz Choobdar, Pedro Ribeiro, and Fernando Silva. 2012. Motif Mining in Weighted Networks. In 2nd IEEE ICDM
Workshop on Data Mining in Networks. IEEE, 210–217. https://doi.org/10.1109/ICDMW.2012.111

[34] Stephen A Cook. 1971. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM
symposium on Theory of computing. ACM, 151–158.

[35] Luciano da Fontoura Costa, Osvaldo N Oliveira Jr, Gonzalo Travieso, Francisco Aparecido Rodrigues, Paulino Ribeiro

Villas Boas, Lucas Antiqueira, Matheus Palhares Viana, and Luis Enrique Correa Rocha. 2011. Analyzing and modeling

real-world phenomena with complex networks: a survey of applications. Advances in Physics 60, 3 (2011), 329–412.
[36] Éva Czabarka, László A Székely, and Stephan Wagner. 2018. On the number of nonisomorphic subtrees of a tree.

Journal of Graph Theory 87, 1 (2018), 89–95.

[37] Maximilien Danisch, Oana Balalau, andMauro Sozio. 2018. Listing k-cliques in sparse real-world graphs. In Proceedings
of the 2018 World Wide Web Conference. International World Wide Web Conferences Steering Committee, 589–598.

[38] Vachik S Dave, Nesreen K Ahmed, and Mohammad Al Hasan. 2017. E-CLoG: counting edge-centric local graphlets.

In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 586–595.
[39] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Commun. ACM

51, 1 (2008), 107–113.

[40] Sofie Demeyer, TomMichoel, Jan Fostier, Pieter Audenaert, Mario Pickavet, and Piet Demeester. 2013. The index-based

subgraph matching algorithm (ISMA): fast subgraph enumeration in large networks using optimized search trees.

PloS one 8, 4 (2013), e61183.
[41] Aiping Ding, Tianyu Liu, Chao Liang, Wei Ji, Mark S Shephard, X George Xu, and Forrest B Brown. 2011. Evaluation of

speedup of Monte Carlo calculations of two simple reactor physics problems coded for the GPU/CUDA environment.

(2011).

[42] Derek Doran. 2014. Triad-based role discovery for large social systems. In International Conference on Social Informatics.
Springer, 130–143.

[43] Alexandra Duma and Alexandru Topirceanu. 2014. A network motif based approach for classifying online social

networks. In 2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI).
IEEE, 311–315.

[44] Ehtna R. Elenberg. 2016. GraphLab PowerGraph implementation of 4-profile counting. https://github.com/eelenberg/4-

profiles. Accessed: 2019-10-09.

[45] Ethan R Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and Alexandros G Dimakis. 2015. Beyond triangles:

A distributed framework for estimating 3-profiles of large graphs. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 229–238.

[46] Ethan R Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and Alexandros G Dimakis. 2016. Distributed

estimation of graph 4-profiles. In Proceedings of the 25th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 483–493.

[47] Rasha Elhesha and Tamer Kahveci. 2016. Identification of large disjoint motifs in biological networks. BMC
bioinformatics 17, 1 (2016), 408.

https://github.com/Steven--/graphlets
https://github.com/xwchen666/GraphletCountOSN
https://github.com/xwchen666/GraphletCountOSN
https://doi.org/10.1109/ICDMW.2012.111
https://github.com/eelenberg/4-profiles
https://github.com/eelenberg/4-profiles

30 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

[48] David Eppstein. 2002. Subgraph isomorphism in planar graphs and related problems. In Graph Algorithms and
Applications I. World Scientific, 283–309.

[49] Wenbin Fang, Ka Keung Lau, Mian Lu, Xiangye Xiao, Chi K Lam, Philip Yang Yang, Bingsheng He, Qiong Luo, Pedro V

Sander, and Ke Yang. 2008. Parallel data mining on graphics processors. Hong Kong Univ. Sci. and Technology, Hong
Kong, China, Tech. Rep. HKUST-CS08-07 (2008).

[50] Rui Ferreira. 2013. Efficiently Listing Combinatorial Patterns in Graphs. arXiv preprint arXiv:1308.6635 (2013).
[51] Irene Finocchi, Marco Finocchi, and Emanuele G Fusco. 2015. Clique counting in MapReduce: algorithms and

experiments. Journal of Experimental Algorithmics (JEA) 20 (2015), 1–7.
[52] Peter Floderus, Mirosław Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. 2015. Induced subgraph isomorphism:

Are some patterns substantially easier than others? Theoretical Computer Science 605 (2015), 119–128.
[53] Ali Gholami Rudi, Saeed Shahrivari, Saeed Jalili, and Zahra Razaghi Moghadam Kashani. 2013. RANGI: a fast

list-colored graph motif finding algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB) 10, 2 (2013), 504–513.

[54] Mira Gonen, Dana Ron, and Yuval Shavitt. 2011. Counting stars and other small subgraphs in sublinear-time. SIAM
Journal on Discrete Mathematics 25, 3 (2011), 1365–1411.

[55] Mira Gonen and Yuval Shavitt. 2009. Approximating the number of network motifs. Internet Mathematics 6, 3 (2009),
349–372.

[56] Joshua A Grochow and Manolis Kellis. 2007. Network motif discovery using subgraph enumeration and symmetry-

breaking. In Annual International Conference on Research in Computational Molecular Biology. Springer, 92–106.
[57] Shawn Gu, John Johnson, Fazle E Faisal, and Tijana Milenković. 2018. From homogeneous to heterogeneous network

alignment via colored graphlets. Scientific reports 8, 1 (2018), 12524.
[58] Sylvain Guillemot and Florian Sikora. 2013. Finding and counting vertex-colored subtrees. Algorithmica 65, 4 (2013),

828–844.

[59] Guyue Han and Harish Sethu. 2016. Waddling Random Walk: Fast and Accurate Mining of Motif Statistics in Large

Graphs. In Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 181–190.
[60] Frank Harary. 1974. A survey of the reconstruction conjecture. In Graphs and combinatorics. Springer, 18–28.
[61] Himamshu and Sarika Jain. 2017. Impact of Memory Space Optimization Technique on Fast Network Motif Search

Algorithm. In Advances in Computer and Computational Sciences. Springer, 559–567.
[62] Tomaž Hočevar and Janez Demšar. 2014. A combinatorial approach to graphlet counting. Bioinformatics 30, 4 (2014),

559–565.

[63] Tomaž Hočevar and Janez Demšar. 2017. Combinatorial algorithm for counting small induced graphs and orbits. PloS
one 12, 2 (2017), e0171428.

[64] Tomaž Hočevar and Janez Demšar. 2018. Orca. http://www.biolab.si/supp/orca/. Accessed: 2019-10-09.

[65] Paul W Holland and Samuel Leinhardt. 1976. Local structure in social networks. Sociological methodology 7 (1976),

1–45.

[66] Petter Holme and Jari Saramäki. 2012. Temporal networks. Physics reports 519, 3 (2012), 97–125.
[67] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. 2011. Efficient parallel graph exploration on multi-core CPU

and GPU. In Parallel Architectures and Compilation Techniques (PACT), 2011 International Conference on. IEEE, 78–88.
[68] Maarten Houbraken, Sofie Demeyer, Tom Michoel, Pieter Audenaert, Didier Colle, and Mario Pickavet. 2014. The

Index-based Subgraph Matching Algorithm with General Symmetries (ISMAGS): exploiting symmetry for faster

subgraph enumeration. PloS one 9, 5 (2014), e97896.
[69] Jun Huan, Wei Wang, and Jan Prins. 2003. Efficient mining of frequent subgraphs in the presence of isomorphism. In

Third IEEE International Conference on Data Mining. IEEE, 549–552.
[70] Yuriy Hulovatyy, Huili Chen, and T Milenković. 2015. Exploring the structure and function of temporal networks

with dynamic graphlets. Bioinformatics 31, 12 (2015), i171–i180.
[71] Royi Itzhack, Yelena Mogilevski, and Yoram Louzoun. 2007. An optimal algorithm for counting network motifs.

Physica A: Statistical Mechanics and its Applications 381 (2007), 482–490.
[72] Deepali Jain and Ripon Patgiri. 2019. Network Motifs: A Survey. In International Conference on Advances in Computing

and Data Sciences. Springer, 80–91.
[73] Madhav Jha, C Seshadhri, and Ali Pinar. 2015. Path sampling: A fast and provable method for estimating 4-vertex

subgraph counts. In Proceedings of the 24th International Conference on World Wide Web. International World Wide

Web Conferences Steering Committee, 495–505.

[74] Chuntao Jiang, Frans Coenen, and Michele Zito. 2013. A survey of frequent subgraph mining algorithms. The
Knowledge Engineering Review 28, 01 (2013), 75–105.

[75] Zhao Jing and Zhong Cheng. 2015. HashESU: Efficient Algorithm for Identifying Motifs in Biological Networks.

Journal of Chinese Computer Systems 9 (2015), 024.

http://www.biolab.si/supp/orca/

A Survey on Subgraph Counting 31

[76] Yuval Kalish and Garry Robins. 2006. Psychological predispositions and network structure: The relationship between

individual predispositions, structural holes and network closure. Social networks 28, 1 (2006), 56–84.
[77] John Kallaugher, Michael Kapralov, and Eric Price. 2018. The sketching complexity of graph and hypergraph counting.

In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 556–567.
[78] Zahra Razaghi Moghadam Kashani, Hayedeh Ahrabian, Elahe Elahi, Abbas Nowzari-Dalini, Elnaz Saberi Ansari,

Sahar Asadi, Shahin Mohammadi, Falk Schreiber, and Ali Masoudi-Nejad. 2009. Kavosh: a new algorithm for finding

network motifs. BMC bioinformatics 10, 1 (2009), 318.
[79] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. 2004. Efficient sampling algorithm for estimating subgraph

concentrations and detecting network motifs. Bioinformatics 20, 11 (2004), 1746–1758.
[80] Sahand Khakabimamaghani, Iman Sharafuddin, Norbert Dichter, Ina Koch, and Ali Masoudi-Nejad. 2013. QuateXelero:

an accelerated exact network motif detection algorithm. PloS one 8, 7 (2013), e68073.
[81] Sahand Khakabimamaghani, Iman Sharafuddin, Norbert Dichter, Ina Koch, and Ali Masoudi-Nejad. 2018. QuateXelero

– Fast Motif Detection algorithm. http://apps.cytoscape.org/apps/ismags. Accessed: 2019-10-09.

[82] Wooyoung Kim, Martin Diko, and Keith Rawson. 2013. Network motif detection: Algorithms, parallel and cloud

computing, and related tools. Tsinghua science and technology 18, 5 (2013), 469–489.

[83] Ton Kloks, Dieter Kratsch, and Haiko Müller. 2000. Finding and counting small induced subgraphs efficiently. Inform.
Process. Lett. 74, 3-4 (2000), 115–121.

[84] Tamara Kolda, Ali Pinar, and C. Seshadhri. 2018. Triadic Measures on Graphs: The Power of Wedge Sampling.

http://www.sandia.gov/~tgkolda/feastpack/. Accessed: 2019-10-09.

[85] Michel Koskas, Gilles Grasseau, Etienne Birmelé, Sophie Schbath, and Stéphane Robin. 2011. NeMo: Fast count of

network motifs. Book of Abstracts for Journées Ouvertes Biologie Informatique Mathématiques (JOBIM) (2011), 53–60.
[86] Mirosław Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. 2013. Counting and detecting small subgraphs via

equations. SIAM Journal on Discrete Mathematics 27, 2 (2013), 892–909.
[87] Oleksii Kuchaiev, Tijana Milenković, Vesna Memišević, Wayne Hayes, and Nataša Pržulj. 2010. Topological network

alignment uncovers biological function and phylogeny. Journal of the Royal Society Interface 7, 50 (2010), 1341–1354.
[88] Oleksii Kuchaiev and Nataša Pržulj. 2011. Integrative network alignment reveals large regions of global network

similarity in yeast and human. Bioinformatics 27, 10 (2011), 1390–1396.
[89] Charles E Leiserson and Tao B Schardl. 2010. A work-efficient parallel breadth-first search algorithm (or how to cope

with the nondeterminism of reducers). In Proceedings of the twenty-second annual ACM symposium on Parallelism in
algorithms and architectures. ACM, 303–314.

[90] Ted G Lewis. 2011. Network science: Theory and applications. John Wiley & Sons.

[91] Guanghui Li, Jiawei Luo, Zheng Xiao, and Cheng Liang. 2018. MTMO: an efficient network-centric algorithm for

subtree counting and enumeration. Quantitative Biology 6, 2 (2018), 142–154.

[92] Xin Li, Douglas S Stones, Haidong Wang, Hualiang Deng, Xiaoguang Liu, and Gang Wang. 2012. Netmode: Network

motif detection without nauty. PloS one 7, 12 (2012), e50093.
[93] Xin Li, Douglas S Stones, Haidong Wang, Hualiang Deng, Xiaoguang Liu, and Gang Wang. 2016. NetMODE

SourceForge.net. https://sourceforge.net/projects/netmode/. Accessed: 2019-10-09.

[94] Min Chih Lin, Francisco J Soulignac, and Jayme L Szwarcfiter. 2012. Arboricity, h-index, and dynamic algorithms.

Theoretical Computer Science 426 (2012), 75–90.
[95] Wenqing Lin, Xiaokui Xiao, Xing Xie, and Xiao-Li Li. 2015. Network motif discovery: A GPU approach. In Data

Engineering (ICDE), 2015 IEEE 31st International Conference on. IEEE, 831–842.
[96] Yang Liu, Xiaohong Jiang, Huajun Chen, Jun Ma, and Xiangyu Zhang. 2009. Mapreduce-based pattern finding

algorithm applied in motif detection for prescription compatibility network. In International Workshop on Advanced
Parallel Processing Technologies. Springer, 341–355.

[97] Jiawei Luo, Lv Ding, Cheng Liang, and Nguyen Hoang Tu. 2018. An efficient network motif discovery approach for

co-regulatory networks. IEEE Access 6 (2018), 14151–14158.
[98] Ben D MacArthur, Rubén J Sánchez-García, and James W Anderson. 2008. Symmetry in complex networks. Discrete

Applied Mathematics 156, 18 (2008), 3525–3531.
[99] RavindranathMadhavan, Devi R Gnyawali, and Jinyu He. 2004. Two’s company, three’s a crowd? Triads in cooperative-

competitive networks. Academy of Management Journal 47, 6 (2004), 918–927.
[100] Noël Malod-Dognin and Nataša Pržulj. 2015. L-GRAAL: Lagrangian graphlet-based network aligner. Bioinformatics

31, 13 (2015), 2182–2189.

[101] Shmoolik Mangan and Uri Alon. 2003. Structure and function of the feed-forward loop network motif. Proceedings of
the National Academy of Sciences 100, 21 (2003), 11980–11985.

[102] Dror Marcus and Yuval Shavitt. 2010. Efficient counting of network motifs. In Distributed Computing Systems
Workshops (ICDCSW), 2010 IEEE 30th International Conference on. IEEE, 92–98.

http://apps.cytoscape.org/apps/ismags
http://www.sandia.gov/~tgkolda/feastpack/
https://sourceforge.net/projects/netmode/

32 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

[103] Dror Marcus and Yuval Shavitt. 2012. Rage–a rapid graphlet enumerator for large networks. Computer Networks 56, 2
(2012), 810–819.

[104] Dror Marcus and Yuval Shavitt. 2018. NeMo R Package (CRAN archive). http://www.eng.tau.ac.il/~shavitt/RAGE/

Rage.htm. Accessed: 2019-10-09.

[105] Ali Masoudi-Nejad, Falk Schreiber, and Zahra Razaghi Moghadam Kashani. 2012. Building blocks of biological

networks: a review on major network motif discovery algorithms. IET systems biology 6, 5 (2012), 164–174.

[106] Brendan D McKay. 2003. nauty user’s guide (version 2.2). Technical Report. Technical Report TR-CS-9002, Australian
National University.

[107] Brendan D McKay et al. 1981. Practical graph isomorphism. Department of Computer Science, Vanderbilt University

Tennessee, USA.

[108] Brendan D McKay and Adolfo Piperno. 2014. Practical graph isomorphism, II. Journal of Symbolic Computation 60

(2014), 94–112.

[109] Luís AA Meira, Vinícius R. Máximo, Ávaro L Fazenda, and Arlindo F da Conceição. 2018. acc-Motif: Accelerated Motif

Detection. https://www.ft.unicamp.br/docentes/meira/accmotifs/. Accessed: 2019-10-09.

[110] Luis AA Meira, Vinicius R Maximo, Alvaro L Fazenda, and Arlindo F da Conceicao. 2012. Accelerated motif detection

using combinatorial techniques. In Signal Image Technology and Internet Based Systems (SITIS), 2012 Eighth International
Conference on. IEEE, 744–753.

[111] Luis AA Meira, Vinícius R Máximo, Álvaro L Fazenda, and Arlindo F Da Conceição. 2014. Acc-motif: accelerated

network motif detection. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 11, 5 (2014),
853–862.

[112] Ine Melckenbeeck, Pieter Audenaert, Didier Colle, and Mario Pickavet. 2017. Efficiently counting all orbits of graphlets

of any order in a graph using autogenerated equations. Bioinformatics 34, 8 (11 2017), 1372–1380.
[113] Ine Melckenbeeck, Pieter Audenaert, Thomas Van Parys, Yves Van De Peer, Didier Colle, and Mario Pickavet.

2019. Jesse - Tree-based algorithm to calculate graphlet densities of nodes in a graph using equations. https:

//github.com/biointec/jesse. Accessed: 2019-10-09.

[114] Ine Melckenbeeck, Pieter Audenaert, Thomas Van Parys, Yves Van De Peer, Didier Colle, and Mario Pickavet. 2019.

Optimising orbit counting of arbitrary order by equation selection. BMC bioinformatics 20, 1 (2019), 27.
[115] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU graph traversal. In ACM SIGPLAN

Notices, Vol. 47. ACM, 117–128.

[116] Henning Meyerhenke, Peter Sanders, and Christian Schulz. 2017. Parallel graph partitioning for complex networks.

IEEE Transactions on Parallel and Distributed Systems 28, 9 (2017), 2625–2638.
[117] Giovanni Micale, Rosalba Giugno, Alfredo Ferro, Misael Mongiovì, Dennis Shasha, and Alfredo Pulvirenti. 2018. Fast

analytical methods for finding significant labeled graph motifs. Data Mining and Knowledge Discovery 32, 2 (2018),

504–531.

[118] Tijana Milenković, Weng Leong Ng, Wayne Hayes, and Nataša Pržulj. 2010. Optimal network alignment with graphlet

degree vectors. Cancer informatics 9 (2010), 121.
[119] Aleksandar Milinković, Stevan Milinković, and L Lazicć. [n. d.]. A contribution to acceleration of graphlet counting.

In Infoteh Jahorina Symposium, Vol. 14. 741–745.

[120] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal Ayzenshtat, Michal Sheffer, and Uri

Alon. 2004. Superfamilies of evolved and designed networks. Science 303, 5663 (2004), 1538–1542.
[121] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. 2002. Network motifs:

simple building blocks of complex networks. Science 298, 5594 (2002), 824–827.
[122] Shahin Mohammadi. 2014. Kavosh: a new algorithm for finding network motifs. https://github.com/shmohammadi86/

Kavosh. Accessed: 2019-10-09.

[123] Misael Mongioví, Giovanni Micale, Alfredo Ferro, Rosalba Giugno, Alfredo Pulvirenti, and Dennis Shasha. 2018.

gLabTrie: A Data Structure for Motif Discovery with Constraints. In Graph Data Management. Springer, 71–95.
[124] Ahmad Naser-eddin and Pedro Ribeiro. 2017. Scalable subgraph counting using MapReduce. In Proceedings of the

Symposium on Applied Computing. ACM, 1574–1581.

[125] Siegfried Nijssen and Joost N Kok. 2005. The gaston tool for frequent subgraph mining. Electronic Notes in Theoretical
Computer Science 127, 1 (2005), 77–87.

[126] Saeed Omidi, Falk Schreiber, and Ali Masoudi-Nejad. 2009. MODA: an efficient algorithm for network motif discovery

in biological networks. Genes & genetic systems 84, 5 (2009), 385–395.
[127] Mark Ortmann and Ulrik Brandes. 2016. Quad census computation: simple, efficient, and orbit-aware. In Proceedings

of the 12th International Conference and School on Advances in Network Science-Volume 9564. Springer-Verlag New

York, Inc., 1–13.

[128] Mark Ortmann and Ulrik Brandes. 2017. Efficient orbit-aware triad and quad census in directed and undirected

graphs. Applied Network Science 2, 1 (2017), 13.

http://www.eng.tau.ac.il/~shavitt/RAGE/Rage.htm
http://www.eng.tau.ac.il/~shavitt/RAGE/Rage.htm
https://www.ft.unicamp.br/docentes/meira/accmotifs/
https://github.com/biointec/jesse
https://github.com/biointec/jesse
https://github.com/shmohammadi86/Kavosh
https://github.com/shmohammadi86/Kavosh

A Survey on Subgraph Counting 33

[129] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. 2017. Motifs in temporal networks. In Proceedings of the
Tenth ACM International Conference on Web Search and Data Mining. ACM, 601–610.

[130] Pedro Paredes and Pedro Ribeiro. 2013. Towards a faster network-centric subgraph census. In Advances in Social
Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM International Conference on. IEEE, 264–271.

[131] Pedro Paredes and Pedro Ribeiro. 2015. Rand-FaSE: fast approximate subgraph census. Social Network Analysis and
Mining 5, 1 (2015), 17.

[132] Pedro Paredes and Pedro Ribeiro. 2018. FaSE - Fast Subgraph Enumeration. https://github.com/ComplexNetworks-

DCC-FCUP/fase. Accessed: 2019-10-09.

[133] Thomas V Parys and Ine Melckenbeeck. 2016. ISMAGS - Enumerate all instances of a motif in a graph, making

optimal use of the motif’s symmetries. http://apps.cytoscape.org/apps/ismags. Accessed: 2019-10-09.

[134] Sabyasachi Patra and Anjali Mohapatra. 2018. Motif discovery in biological network using expansion tree. Journal of
bioinformatics and computational biology 16, 6 (2018), 1850024–1850024.

[135] Franck Picard, J-J Daudin, Michel Koskas, Sophie Schbath, and Stephane Robin. 2008. Assessing the exceptionality of

network motifs. Journal of Computational Biology 15, 1 (2008), 1–20.

[136] Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. 2017. Escape: efficiently counting all 5-vertex subgraphs. In

Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences

Steering Committee, 1431–1440.

[137] Christina Prell and John Skvoretz. 2008. Looking at social capital through triad structures. Connections 28, 2 (2008),
4–16.

[138] Nataša Pržulj. 2007. Biological network comparison using graphlet degree distribution. Bioinformatics 23 (2007),
177–183.

[139] N Pržulj, Derek G Corneil, and Igor Jurisica. 2006. Efficient estimation of graphlet frequency distributions in

protein–protein interaction networks. Bioinformatics 22, 8 (2006), 974–980.
[140] Mahmudur Rahman, Mansurul Bhuiyan, and Mahmuda Rahman. 2018. GRAFT: an approximate graphlet counting

algorithm for large graph analysis. https://github.com/DMGroup-IUPUI/GRAFT-Source. Accessed: 2019-10-09.

[141] Mahmudur Rahman, Mansurul Bhuiyan, Mahmuda Rahman, and Mohammad Al Hasan. 2018. GUISE: Uniform

Sampling of Graphlets for Large Graph Analysis. https://github.com/DMGroup-IUPUI/GUISE-Source. Accessed:

2019-10-09.

[142] Mahmudur Rahman, Mansurul Alam Bhuiyan, and Mohammad Al Hasan. 2014. Graft: An efficient graphlet counting

method for large graph analysis. IEEE Transactions on Knowledge and Data Engineering 26, 10 (2014), 2466–2478.

[143] Yuanfang Ren, Aisharjya Sarkar, Ahmet Ay, Alin Dobra, and Tamer Kahveci. 2019. Finding Conserved Patterns

in Multilayer Networks. In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational
Biology and Health Informatics. ACM, 97–102.

[144] Pedro Ribeiro. 2018. gtrieScanner - Quick Discovery of Network Motifs. http://www.dcc.fc.up.pt/gtries/. Accessed:

2019-10-09.

[145] Pedro Ribeiro, David Aparício, Pedro Paredes, and Fernando Silva. 2017. GTScanner - Quick Discovery of Network

Motifs. http://www.dcc.fc.up.pt/~daparicio/software. Accessed: 2019-10-09.

[146] Pedro Ribeiro and Fernando Silva. 2010. Efficient subgraph frequency estimation with g-tries. Algorithms in
Bioinformatics (2010), 238–249.

[147] Pedro Ribeiro and Fernando Silva. 2010. G-tries: an efficient data structure for discovering network motifs. In

Proceedings of the 2010 ACM Symposium on Applied Computing. ACM, 1559–1566.

[148] Pedro Ribeiro and Fernando Silva. 2014. Discovering colored network motifs. In Complex Networks V. Springer,
107–118.

[149] Pedro Ribeiro and Fernando Silva. 2014. G-Tries: a data structure for storing and finding subgraphs. Data Mining and
Knowledge Discovery 28, 2 (2014), 337–377.

[150] Pedro Ribeiro, Fernando Silva, and Marcus Kaiser. 2009. Strategies for network motifs discovery. In 2009 Fifth IEEE
International Conference on e-Science. IEEE, 80–87.

[151] Pedro Ribeiro, Fernando Silva, and Luís Lopes. 2010. Efficient parallel subgraph counting using g-tries. In Cluster
Computing (CLUSTER), 2010 IEEE International Conference on. IEEE, 217–226.

[152] Pedro Ribeiro, Fernando Silva, and Luís Lopes. 2010. A parallel algorithm for counting subgraphs in complex networks.

In International Joint Conference on Biomedical Engineering Systems and Technologies. Springer, 380–393.
[153] Pedro Ribeiro, Fernando Silva, and Luís Lopes. 2012. Parallel discovery of network motifs. J. Parallel and Distrib.

Comput. 72, 2 (2012), 144–154.
[154] Pedro Ribeiro, Fernando MA Silva, and Luís MB Lopes. 2010. Parallel Calculation of Subgraph Census in Biological

Networks.. In BIOINFORMATICS. 56–65.
[155] Stéphane Robin, Etienne Birmelé, Michel Koskas, Gilles Grasseau, and Sophie Schbath. 2018. RAGE - graphlet

enumeration algorithm. https://cran.r-project.org/src/contrib/Archive/NeMo/. Accessed: 2019-10-09.

https://github.com/ComplexNetworks-DCC-FCUP/fase
https://github.com/ComplexNetworks-DCC-FCUP/fase
http://apps.cytoscape.org/apps/ismags
https://github.com/DMGroup-IUPUI/GRAFT-Source
https://github.com/DMGroup-IUPUI/GUISE-Source
http://www.dcc.fc.up.pt/gtries/
http://www.dcc.fc.up.pt/~daparicio/software
https://cran.r-project.org/src/contrib/Archive/NeMo/

34 P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparício, and F. Silva

[156] Ryan A Rossi, Nesreen K Ahmed, Aldo Carranza, David Arbour, Anup Rao, Sungchul Kim, and Eunyee Koh. 2019.

Heterogeneous network motifs. arXiv preprint arXiv:1901.10026 (2019).
[157] Ryan A Rossi and Rong Zhou. 2016. Leveraging Multiple GPUs and CPUs for Graphlet Counting in Large Networks. In

Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. ACM, 1783–1792.

[158] RyanARossi, Rong Zhou, andNesreen KAhmed. 2017. Estimation of graphlet statistics. arXiv preprint arXiv:1701.01772
(2017).

[159] Tanay Kumar Saha and Mohammad Al Hasan. 2015. Finding Network Motifs Using MCMC Sampling.. In CompleNet.
13–24.

[160] Peter Sanders. 1994. A detailed analysis of random polling dynamic load balancing. In Parallel Architectures, Algorithms
and Networks, 1994.(ISPAN), International Symposium on. IEEE, 382–389.

[161] Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyuce, and Srikanta Tirthapura. 2018. Butterfly Counting in Bipartite

Networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
ACM, 2150–2159.

[162] Aisharjya Sarkar, Yuanfang Ren, Rasha Elhesha, and Tamer Kahveci. 2018. A new algorithm for counting independent

motifs in probabilistic networks. IEEE/ACM transactions on computational biology and bioinformatics (2018).
[163] Thomas Schank and DorotheaWagner. 2005. Finding, counting and listing all triangles in large graphs, an experimental

study. In International Workshop on Experimental and Efficient Algorithms. Springer, 606–609.
[164] Michael Schatz, Elliott Cooper-Balis, and Adam Bazinet. 2008. Parallel network motif finding. Techinical report,

University of Maryland Insitute for Advanced Computer Studies (2008).
[165] Sophie Schbath, Vincent Lacroix, and Marie-France Sagot. 2008. Assessing the exceptionality of coloured motifs in

networks. EURASIP Journal on Bioinformatics and Systems Biology 2009, 1 (2008), 616234.

[166] Benjamin Schiller, Sven Jager, Kay Hamacher, and Thorsten Strufe. 2015. Stream-A stream-based algorithm for

counting motifs in dynamic graphs. In International Conference on Algorithms for Computational Biology. Springer,
53–67.

[167] Falk Schreiber and Henning Schwöbbermeyer. 2005. Frequency concepts and pattern detection for the analysis of

motifs in networks. In Transactions on computational systems biology III. Springer, 89–104.
[168] C Seshadhri. 2017. Escape (Bitbucket). https://bitbucket.org/seshadhri/escape. Accessed: 2019-10-09.

[169] Comandur Seshadhri, Ali Pinar, and Tamara G Kolda. 2013. Triadic measures on graphs: The power of wedge sampling.

In Proceedings of the 2013 SIAM International Conference on Data Mining. SIAM, 10–18.

[170] Saeed Shahrivari. 2016. GraphLab PowerGraph implementation of 4-profile counting. https://github.com/eelenberg/4-

profiles. Accessed: 2019-10-09.

[171] Saeed Shahrivari and Saeed Jalili. 2015. Distributed discovery of frequent subgraphs of a network using MapReduce.

Computing 97, 11 (2015), 1101–1120.

[172] Saeed Shahrivari and Saeed Jalili. 2015. Fast parallel all-subgraph enumeration using multicore machines. Scientific
Programming 2015 (2015), 6.

[173] Miguel EP Silva, Pedro Paredes, and Pedro Ribeiro. 2017. Network motifs detection using random networks with

prescribed subgraph frequencies. In International Workshop on Complex Networks. Springer, 17–29.
[174] George M Slota and Kamesh Madduri. 2013. Fast approximate subgraph counting and enumeration. In Parallel

Processing (ICPP), 2013 42nd International Conference on. IEEE, 210–219.
[175] Ricard V Solé and Sergi Valverde. 2007. Spontaneous emergence of modularity in cellular networks. Journal of The

Royal Society Interface 5, 18 (2007), 129–133.
[176] Xiaoli Song, Changjun Zhou, Bin Wang, and Qiang Zhang. 2015. A Method of Motif Mining Based on Backtracking

and Dynamic Programming. In International Workshop on Multi-disciplinary Trends in Artificial Intelligence. Springer,
317–328.

[177] Olaf Sporns and Rolf Kötter. 2004. Motifs in brain networks. PLoS biology 2, 11 (2004), e369.

[178] Clara Stegehuis, Remco van der Hofstad, and Johan SH van Leeuwaarden. 2019. Variational principle for scale-free

network motifs. Scientific reports 9, 1 (2019), 6762.
[179] Yihan Sun, Joseph Crawford, Jie Tang, and Tijana Milenković. 2015. Simultaneous optimization of both node and edge

conservation in network alignment via WAVE. In International Workshop on Algorithms in Bioinformatics. Springer,
16–39.

[180] Ngoc Tam L Tran, Sominder Mohan, Zhuoqing Xu, and Chun-Hsi Huang. 2014. Current innovations and future

challenges of network motif detection. Briefings in bioinformatics 16, 3 (2014), 497–525.
[181] Shahadat Uddin and Liaquat Hossain. 2013. Dyad and triad census analysis of crisis communication network. Social

Networking (2013).

[182] Julian R Ullmann. 1976. An algorithm for subgraph isomorphism. Journal of the ACM (JACM) 23, 1 (1976), 31–42.
[183] Sergi Valverde and Ricard V Solé. 2005. Network motifs in computational graphs: A case study in software architecture.

Physical Review E 72, 2 (2005), 026107.

https://bitbucket.org/seshadhri/escape
https://github.com/eelenberg/4-profiles
https://github.com/eelenberg/4-profiles

A Survey on Subgraph Counting 35

[184] Sebastian Wandelt and Xiaoqian Sun. 2015. Evolution of the international air transportation country network from

2002 to 2013. Transportation Research Part E: Logistics and Transportation Review 82 (2015), 55–78.

[185] Jianxin Wang, Yuannan Huang, Fang-Xiang Wu, and Yi Pan. 2012. Symmetry compression method for discovering

network motifs. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 9, 6 (2012), 1776–1789.
[186] Pinghui Wang. 2018. MOSS-5: Fast Method of Approximating Counts of 5-Node Graphlets in Large Graphs. http:

//nskeylab.xjtu.edu.cn/dataset/phwang/code/mosscode.zip. Accessed: 2019-10-09.

[187] Pinghui Wang, John Lui, Bruno Ribeiro, Don Towsley, Junzhou Zhao, and Xiaohong Guan. 2014. Efficiently estimating

motif statistics of large networks. ACM Transactions on Knowledge Discovery from Data (TKDD) 9, 2 (2014), 8.
[188] Pinghui Wang, Yiyan Qi, John CS Lui, Don Towsley, Junzhou Zhao, and Jing Tao. 2017. Inferring Higher-Order

Structure Statistics of Large Networks From Sampled Edges. IEEE Transactions on Knowledge and Data Engineering
(2017).

[189] Pinghui Wang, Junzhou Zhao, Xiangliang Zhang, Zhenguo Li, Jiefeng Cheng, John CS Lui, Don Towsley, Jing Tao,

and Xiaohong Guan. 2018. MOSS-5: A fast method of approximating counts of 5-node graphlets in large graphs. IEEE
Transactions on Knowledge and Data Engineering 30, 1 (2018), 73–86.

[190] Tie Wang, Jeffrey W Touchman, Weiyi Zhang, Edward B Suh, and Guoliang Xue. 2005. A parallel algorithm for

extracting transcriptional regulatory network motifs. In Bioinformatics and Bioengineering, 2005. BIBE 2005. Fifth IEEE
Symposium on. IEEE, 193–200.

[191] Stanley Wasserman and Katherine Faust. 1994. Social network analysis: Methods and applications. Vol. 8. Cambridge

university press.

[192] Anatol E Wegner. 2014. Subgraph covers: an information-theoretic approach to motif analysis in networks. Physical
Review X 4, 4 (2014), 041026.

[193] Sebastian Wernicke. 2005. A faster algorithm for detecting network motifs. InWABI, Vol. 3692. Springer, 165–177.
[194] Sebastian Wernicke. 2006. FANMOD: a tool for fast network motif detection. http://theinf1.informatik.uni-jena.de/

motifs/. Accessed: 2019-10-09.

[195] Sebastian Wernicke. 2011. Comment on ’An optimal algorithm for counting networks motifs’. Physica A: Statistical
Mechanics and its Applications 390 (2011), 143–145.

[196] Sebastian Wernicke and Florian Rasche. 2006. FANMOD: a tool for fast network motif detection. Bioinformatics 22, 9
(2006), 1152–1153.

[197] Virginia Vassilevska Williams and Ryan Williams. 2013. Finding, minimizing, and counting weighted subgraphs.

SIAM J. Comput. 42, 3 (2013), 831–854.
[198] Elisabeth Wong, Brittany Baur, Saad Quader, and Chun-Hsi Huang. 2012. Biological network motif detection:

principles and practice. Briefings in bioinformatics 13, 2 (2012), 202–215.
[199] PengWu, JunfengWang, and Bin Tian. 2018. Software homology detection with software motifs based on function-call

graph. IEEE Access 6 (2018), 19007–19017.
[200] Feng Xia, Haoran Wei, Shuo Yu, Da Zhang, and Bo Xu. 2019. A Survey of Measures for Network Motifs. IEEE Access

7 (2019), 106576–106587.

[201] Yuan Xu, Qiang Zhang, and Changjun Zhou. 2014. A newmethod for motif mining in biological networks. Evolutionary
bioinformatics online 10 (2014), 155.

[202] Xifeng Yan and Jiawei Han. 2002. gspan: Graph-based substructure pattern mining. In 2002 IEEE International
Conference on Data Mining, 2002. Proceedings. IEEE, 721–724.

[203] Chen Yang, Min Lyu, Yongkun Li, Qianqian Zhao, and Yinlong Xu. 2018. SSRW: A Scalable Algorithm for Estimating

Graphlet Statistics Based on RandomWalk. In International Conference on Database Systems for Advanced Applications.
Springer, 272–288.

[204] Esti Yeger-Lotem, Shmuel Sattath, Nadav Kashtan, Shalev Itzkovitz, Ron Milo, Ron Y Pinter, Uri Alon, and Hanah

Margalit. 2004. Network motifs in integrated cellular networks of transcription–regulation and protein–protein

interaction. Proceedings of the National Academy of Sciences 101, 16 (2004), 5934–5939.
[205] Qiang Zhang and Yuan Xu. 2014. Motif mining based on network space compression. BioData mining 8, 1 (2014), 29.

[206] Zhao Zhao, Maleq Khan, VS Anil Kumar, and Madhav V Marathe. 2010. Subgraph enumeration in large social contact

networks using parallel color coding and streaming. In Parallel Processing (ICPP), 2010 39th International Conference
on. IEEE, 594–603.

[207] Zhao Zhao, Guanying Wang, Ali R Butt, Maleq Khan, VS Anil Kumar, and Madhav V Marathe. 2012. Sahad: Subgraph

analysis in massive networks using hadoop. In Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th
International. IEEE, 390–401.

[208] Dongxiao Zhu and Zhaohui S Qin. 2005. Structural comparison of metabolic networks in selected single cell organisms.

BMC bioinformatics 6, 1 (2005), 1.

http://nskeylab.xjtu.edu.cn/dataset/phwang/code/mosscode.zip
http://nskeylab.xjtu.edu.cn/dataset/phwang/code/mosscode.zip
http://theinf1.informatik.uni-jena.de/motifs/
http://theinf1.informatik.uni-jena.de/motifs/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Concepts and Common Terminology
	2.2 Problem statement
	2.3 Algorithms Not Considered
	2.4 Applications and Related Problems
	2.5 Other Surveys and Related Work

	3 Exact Counting
	3.1 Enumeration approaches
	3.2 Analytic approaches
	3.3 Theoretical Results

	4 Approximate Counting
	4.1 Randomised Enumeration
	4.2 Enumerate-Generalize
	4.3 Path Sampling
	4.4 Random Walk
	4.5 Colour Coding

	5 Parallel Strategies
	5.1 Historical Overview
	5.2 Platform
	5.3 Work-units
	5.4 Search Traversal
	5.5 Work Division
	5.6 Work Sharing

	6 Concluding remarks
	References

